MIMO Identification

System identification of multi-input multi-output (MIMO) linear system through the use of active set methods

This project performed multi-input multi-output (MIMO) system identification using randomized active-set methods. The system fidelity term may incorporate time-domain and frequency-domain data. A MIMO-aware regularizer was developed by an L1/Linfinity group-lasso strategy (over pole coefficients), and optimization occured using Fully Corrective Frank-Wolfe (FCFW). The full-correction steps allowed poles to be added and dropped as necessary while maintaining a monotonically decreasing objective error, whereas the (Forward) Frank-Wolfe scheme never drops poles and results in a high-order system.

Comparison of system order and objective convergence for Forward vs. Fully Corrective Frank-Wolfe for MIMO sysid.

The algorithm has two phases: Randomize and Reweight. The Randomize phase picks out poles at random and performs FCFW steps over this active set. After sufficiently many iterations (user-specified), the Reweight phase sparsifies the set of poles while retaining monotonicity in objective by adjusting the weights of the regularizer.

Both the cost and the number of active poles decrease after reweighting.

Relevant Publications:

Conference Articles

  1. CDC
    MIMO System Identification by Randomized Active-Set Methods
    Miller, Jared, Singh, Rajiv, and Sznaier, Mario
    In 59th IEEE Conference on Decision and Control (CDC) 2020