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Motivation

Manyproblems inmachine learningcanbeequivalentlyexpressed

as rank-constrained semidefinite programs (SDPs):

X∗ = argmin
X

〈C, X〉

subject to 〈Ai, X〉 = bi i = 1..m

X � 0, rank(X) ≤ t,

(1)

Problem (1) is NP-hard, but the Reweighted Trace Heuristic is a

convex relaxation. Rank-approximated SDPs exhibit poor scaling

properties as the size ofX grows.

Exploiting chordal sparsity inML-motivated SDPs
often leads to algorithms that scale linearly with the
number of data points.

Chordal Graphs and Semidefinite Optimization

In sparse SDPs, only a fewentries ofX appear in the cost function

and equality constraints. All other entries are ``free'' to choose in

order to force X � 0. If the structure is chordal, we can take ad-
vantage of this to reduce computational complexity.

(a) Variables that appear in (C, Ai) vs.
`free' entries (?).

(b) Associated chordal sparsity

pattern G(V , E)

Sn
+(E , ?) is the set of PSD-completable matrices with sparsity G .

If G(V , E) is chordal (all 4+ length cycles have shortcuts), Grone's

theorem gives neccesary and sufficient conditionsX ∈ Sn
+(E , ?).

Grone's theorem

Let G(V , E) be a chordal graph with a set of maximal cliques

{C1, C2, . . . , Cp}. Then,X ∈ Sn
+(E , ?) if and only if

Xk = ECk
XET

Ck
∈ S|Ck|

+ , k = 1, . . . , p
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Figure 2: All clique submatrices should be PSD

Minimum Rank Compleধon

For any X ∈ Sn
+(E , ?), there exists a unique max. determinant

completion, and at least onemin. rank PSD completion where:

rank(X) = max
k

rank(ECk
XET

Ck
)

Minimizing rank(X) of a largematrix is equivalent to

minimizing themaximum rank(Xk)with smaller matrices.

Chordal Decomposition of Rank-Minimized SDP

The reweighted heuristic is rank(X) ≈ 〈W, X〉, whereW = (X∗ +
δI)−1. Penalize 〈W, X〉, solve for X∗, then update W for the next

iteration. The chordalized rank-minimized SDP is:

min
X

〈C + WC, X〉
subject to 〈Ai, X〉 = bi i = 1..m

Xk = ECk
XET

Ck
� 0 k = 1..p

(2)

where WC =
∑p

k=1 ET
Ck

WkECk
is the clique weights, and Wk =

(X∗
k + δI)−1. The new costC + WC retains the pattern EC.

Figure 3: Left column is the pattern of an SDP, solving givesX∗. Center is

reweighting byX∗, and right is reweighting byX∗
k . Block-arrow (top) is

already chordal, butMCP (bottom) requires a chordal extension.

Experiments

Problem (2) is convex for each reweighting iteration. Tests were

run on Subspace Clustering andMaxcut SDPs by algorithms such

as interior point methods and ADMM.
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Figure 4: Chordal Rank SDP on an 1000-vertexMaxcut problem. Maximum

clique rank starts at 9 (blue), and drops to 4 (orange) after 15 rounds.

(a) Time vs. |V| (b) Rank vs. |V|

Figure 5:Maxcut experimentation,± 1 stdev with 5 trials

Subspace Clustering (Switched Sysid)

Given Np points xj ∈ RD and a Ns subspaces with normals ri ∈
RD, subspace clustering aims to determine if point xj came from

subspace ri (binary labels sij). This occurs if rT
i xj = 0, relaxed to

|rT
i xj| ≤ ε under bounded noise. Switched System Identification

is an application of subspace clustering (SARXmodel).

These algorithms allow subspace clustering to scale
linearly with number of points and subspaces.
Chordal sparsity patterns are preserved throughout.

(a) Points from subspaces (b) Example of a switched system

Finding (ri, sij) is a nonconvex quadratic feasibility problem:

find
r,s

sij|rT
i xj| ≤ sijε sij = s2

ij

Ns∑
i=1

sij = 1 rT
i ri = 1

(3)

Given X = [1, ri, sij][1, ri, sij]T , this is a rank-1 SDP in X . We im-

prove Cheng et. al. [2016]'s chordal sparsity (grey) by using a

reduced chordal extension (red) with smaller cliques.

Figure 7: a)X structure and chordal extensions. b, c, d) Runtime analysis.

A summary of the cliquematrix sizes |Ck| are:

Rank 1 PSD Other PSD

Problem # Cliques Size Cliques # Cliques Size Cliques % edges

Full X 1 1 +Ns(D +Np) ∅ ∅ 1637%
Cheng 1 1 +NsD Np 1 +Ns(D + 1) 350%
Ours Ns D + 1 NpNs D + 2 13%

1

Table 1: Sizes of cliques in subspace clustering. %edges measures size of

chordal extension over baseline E (variables in (3)) (D = 3, Np = 10, Ns = 5).
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