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Main Ideas

Time delays are hard

Define measure-valued solutions

Form upper-bounds to peak values
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Time-Delay Background



Time-Delay Examples

Delay between state change and its effect on system

System Delay

Epidemic Incubation Period

Population Gestation Time

Traffic Reaction Time

Congestion Queue Time

Fluid Flow Moving in Pipe

Functional Differential Equation
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Dynamics Model

Finite number of bounded discrete delays

0 = τ0 < τ1 < . . . < τr < ∞

Dynamics for initial history xh(t)

ẋ(t) = f (t, x(t), x(t − τ1), x(t − τ2), . . . , x(t − τr ))

x(t) = xh(t) ∀t ∈ [−τr , 0]

History xh(t) does not have to obey dynamics
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Dependence on History
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x ′(t) = −2x(t)− 2x(t − 1)

All trajectories pass through (t, x) = (0, 1)

Initial history determines behavior, not just initial point 4



Propagation of Continuity
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Increasing Continuity

x ′(t) = −2x(t)− 2x(t − 1)

Continuity increases every τr time steps
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Delay Bifurcation Example
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x ′(t) = −x(t − τ) (Fridman 2014) 6



Peak Value vs. Delay
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Infected Population vs. Delay

(a) Ih = 0.1, peak decreases
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Infected Population vs. Delay

(b) Ih = 0.2, peak increases

[
S ′(t)

I ′(t)

]
=

[
−0.4S(t)I (t)

0.4S(t − τ)I (t − τ)− 0.1I (t)

]
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Existing Methods (very brief)

Certificates of Stability

• Lyapunov-Krasovskii

• Razumikhin

• Hanalay

• ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2)

SOS Barrier (Papachristodoulou and Peet, 2010)

Fixed-terminal-time OCP with gridding (Barati 2012)

Riesz Operators (Magron and Prieur, 2020)
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Peak Estimation (ODE)



Peak Estimation Background

Find supremal value of p(x) along ODE trajectories

P∗ = sup
t, x0∈X0

p(x(t | x0))

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

p(x) = x2, ẋ = [x2,−x1 − x2 + x31/3]
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Occupation Measures

Time trajectories spend in set

Test function

v(t, x) ∈ C ([0,T ]× X )

Single trajectory:

⟨v , µ⟩ =
∫ T

0
v(t, x(t | x0))dt

Averaged trajectory: ⟨v , µ⟩ =∫
X

(∫ T

0
v(t, x)dt

)
dµ0(x)

x ′ = −x(x + 2)(x − 1)
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Connection to Measures

Measures: Initial µ0, Peak µp, Occupation µ

For all functions v(t, x) ∈ C ([0,T ]× X )

µ∗
0 : ⟨v(0, x), µ∗

0⟩ = v(0, x∗0 )

µ∗
p : ⟨v(t, x), µ∗

p⟩ = v(t∗p , x
∗
p )

µ∗ : ⟨v(t, x), µ∗⟩ =
∫ t∗p
0

v(t, x∗(t | x∗0 ))dt
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Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

p∗ = sup ⟨p(x), µp⟩ (1a)

⟨1, µ0⟩ = 1 (1b)

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ ∀v (1c)

µ, µp ∈ M+([0,T ]× X ) (1d)

µ0 ∈ M+(X0) (1e)

Test functions v(t, x) ∈ C 1([0,T ]× X )

Lie derivative Lf v = ∂tv(t, x) + f (t, x) · ∇xv(t, x)

(µ∗
0, µ

∗
p, µ

∗) is feasible with P∗ = ⟨p(x), µ∗
p⟩
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Peak Estimation Example Bounds

Converging bounds to min. x2 = −0.5734 (moment-SOS)

Box region X = [−2.5, 2.5], time t ∈ [0, 5]
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Peak Estimation (Delayed)



Peak Estimation

History xh(t) resides in a class of functions H

Graph-constrained H : (t, xh(t)) contained in H0 ⊂ [−τ, 0]×X

P∗ = sup
t∗, xh

p(x(t∗))

ẋ = f (t, x(t), x(t − τ)) t ∈ [0, t∗]

x(t) = xh(t) t ∈ [−τ, 0]

xh(·) ∈ H

Represent x(t | xh) : t ∈ [−τ, t∗] as occupation measure
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Time-Delay Visualization
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Delayed Trajectory

x(t) = −2x(t)− 2x(t − 1), xh(t) = 1− t/2
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Time-Delay Embedding

Delay Embedding
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Black curve: (t, x(t), x(t − τ))
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Measure-Valued Solution

Tuple of measures for the delayed case

History µh ∈ M+(H0)

Initial µ0 ∈ M+(X0)

Peak µp ∈ M+([0,T ]× X )

Occupation Start µ̄0 ∈ M+([0,T − τ ]× X 2)

Occupation End µ̄1 ∈ M+([T − τ,T ]× X 2)

Time-Slack ν ∈ M+([0,T ]× X )
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Types of Constraints

History-Validity: initial conditions

Liouville: Dynamics

Consistency: Time-delay overlaps
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History Validity

History (t, xh(t)) defines a curve [−τ, 0], point at xh(0)

Point evaluation ⟨1, µ0⟩ = 0

t-marginal of µh should be the Lebesgue measure in [−τ, 0]
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Liouville

Sum µ̄ = µ̄0 + µ̄1 is a relaxed occupation measure of the delay

embedding (t, x(t), x(t − τ))

For all test functions v ∈ C 1([0,T ]× X ):

⟨v , µp⟩ = ⟨v(0, x), µ0(x)⟩+ ⟨v(t, x0), µ̄0(t, x0, x1) + µ̄1(t, x0, x1)⟩
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Consistency Issue
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Consistency Fix
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Early stopping in delayed time 22



Consistency Constraint

Inspired by changing limits of integrals(∫ t∗

0

+

∫ min(T ,t∗+τ)

t∗

)
ϕ(t, x(t − τ))dt

=

(∫ 0

−τ

+

∫ min(t∗,T−τ)

0

)
ϕ(t ′ + τ, x(t ′))dt ′.

Shift-push Sτ
# with ⟨ϕ, Sτ

#µ⟩ = ⟨Sτϕ, µ⟩ = ⟨ϕ(t + τ, x), µ⟩

Consistency constraint with time-slack ν

πtx1
# (µ̄0 + µ̄1) + ν = Sτ

#(µh + πtx0
# µ̄0).
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Measure Linear Program

Linear program for time-delay peak estimation

p∗ = sup ⟨p, µp⟩ (2a)

History-Validity(µ0, µh) (2b)

Liouville(µ0, µp, µ̄0, µ̄1) (2c)

Consistency(µ̄h, µ̄0, µ̄1, ν) (2d)

Measure Definitions for (µh, µ0, µp, µ̄0, µ̄1, ν) (2e)
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Computational Complexity

Use moment-SOS hierarchy (Archimedean assumption)

Degree d , dynamics degree d̃ = d + ⌊deg f /2⌋

Bounds: p∗d ≥ p∗d+1 ≥ . . . = p∗ ≥ P∗

Size of Moment Matrices Peak Estimation

Measure: µ0 µp µh

Size:
(
n+d
d

) (
n+1+d

d

) (
n+1+d̃

d̃

)
Measure: µ̄0 µ̄1 ν

Size:
(
2n+1+d̃

d̃

) (
2n+1+d̃

d̃

) (
n+1+d̃

d̃

)
Timing scales approximately as (2n + 1)6d̃ or d̃4(2n+1)
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Examples



SIR Peak Estimation Example
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Upper bound Imax ≥ 56.9% with order 3 LMI

Recovery: t∗ = 15.6 days, (S∗, I ∗) = (56.9%, 5.61%)
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Delay Comparision
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]
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Single History Plot
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Peak Estimate with Multiple Histories

Minimize x2 on the delayed Flow system 29



Distance Estimate with Multiple Histories

Figure 2: Minimize c(x ;Xu) on the delayed Flow system
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Time-Varying System

Maximize x1 on ẋ(t) =

[
x2(t)t − 0.1x1(t)− x1(t − τ)x2(t − τ)

−x1(t)t − x2(t) + x1(t)x1(t − τ)

]
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Time-Varying System (Cont.)

3d view of system
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Time-Varying Histories

History restrictions and trajectories of system 33



Take-aways



Conclusion

Posed peak estimation problem for delayed system

Defined measure-valued solutions

Solved sequence of SDPs to get peak bounds
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Future Work

• Conditions for no conservatism

• Improve scaling/computational complexity

• Better bounds and conditioning

• Other delay structures (e.g. discrete-time, proportional)

• Reachable set estimation
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Thank you for your attention
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