Peak Estimation for Time-Delay Systems

Jared Miller

Milan Korda Victor Magron Mario Sznaier MERIIT Lab (NYU) Feb. 21, 2023

Time delays are hard

Define measure-valued solutions

Form upper-bounds to peak values

Time-Delay Background

Delay between state change and its effect on system

System	Delay
Epidemic	Incubation Period
Population	Gestation Time
Traffic	Reaction Time
Congestion	Queue Time
Fluid Flow	Moving in Pipe

Functional Differential Equation

Finite number of bounded discrete delays

$$0 = \tau_0 < \tau_1 < \ldots < \tau_r < \infty$$

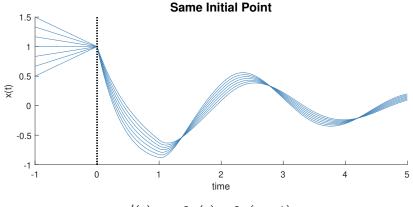
Dynamics for initial history $x_h(t)$

$$\dot{x}(t) = f(t, x(t), x(t - \tau_1), x(t - \tau_2), \ldots, x(t - \tau_r))$$

 $x(t) = x_h(t) \qquad \forall t \in [-\tau_r, 0]$

History $x_h(t)$ does not have to obey dynamics

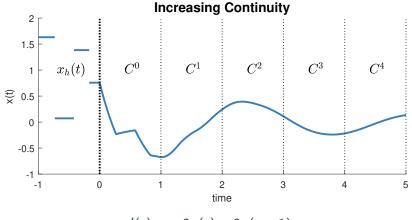
Dependence on History



$$x'(t) = -2x(t) - 2x(t-1)$$

All trajectories pass through (t, x) = (0, 1)Initial history determines behavior, not just initial point

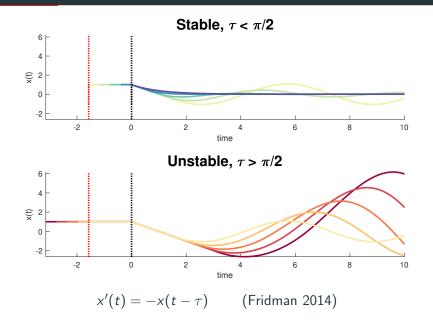
Propagation of Continuity



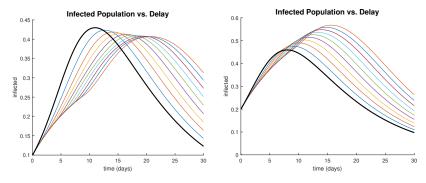
x'(t) = -2x(t) - 2x(t-1)

Continuity increases every τ_r time steps

Delay Bifurcation Example



Peak Value vs. Delay



(a) $I_h = 0.1$, peak decreases

(b) $I_h = 0.2$, peak increases

$$\begin{bmatrix} S'(t)\\ I'(t) \end{bmatrix} = \begin{bmatrix} -0.4S(t)I(t)\\ 0.4S(t-\tau)I(t-\tau) - 0.1I(t) \end{bmatrix}$$

Existing Methods (very brief)

Certificates of Stability

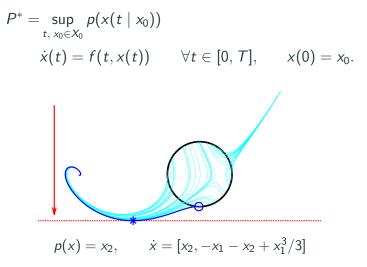
- Lyapunov-Krasovskii
- Razumikhin
- Hanalay
- ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2) SOS Barrier (Papachristodoulou and Peet, 2010) Fixed-terminal-time OCP with gridding (Barati 2012) Riesz Operators (Magron and Prieur, 2020)

Peak Estimation (ODE)

Peak Estimation Background

Find supremal value of p(x) along ODE trajectories



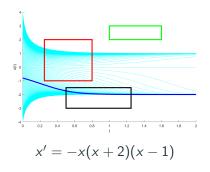
Occupation Measures

Time trajectories spend in set

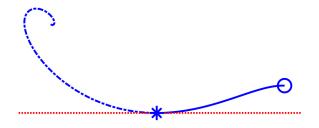
Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$



Connection to Measures



Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_0^* : & \langle v(0,x), \mu_0^* \rangle = v(0,x_0^*) \\ \mu_p^* : & \langle v(t,x), \mu_p^* \rangle = v(t_p^*,x_p^*) \\ \mu^* : & \langle v(t,x), \mu^* \rangle = \int_0^{t_p^*} v(t,x^*(t \mid x_0^*)) dt \end{split}$$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \sup \langle p(x), \mu_p \rangle$$
 (1a)

$$\langle 1, \mu_0
angle = 1$$
 (1b)

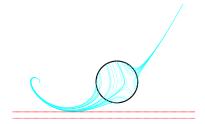
$$\langle v(t,x), \mu_{p} \rangle = \langle v(0,x), \mu_{0} \rangle + \langle \mathcal{L}_{f} v(t,x), \mu \rangle \quad \forall v \quad (1c)$$

$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X) \tag{1d}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{1e}$$

Test functions $v(t,x) \in C^1([0,T] \times X)$ Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$ $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle$

Peak Estimation Example Bounds



Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Peak Estimation (Delayed)

History $x_h(t)$ resides in a class of functions \mathcal{H} Graph-constrained $\mathcal{H} : (t, x_h(t))$ contained in $H_0 \subset [-\tau, 0] \times X$

$$P^* = \sup_{\substack{t^*, x_h \\ x \in T}} p(x(t^*))$$

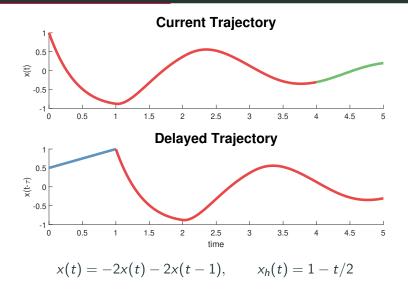
$$\dot{x} = f(t, x(t), x(t - \tau)) \qquad t \in [0, t^*]$$

$$x(t) = x_h(t) \qquad t \in [-\tau, 0]$$

$$x_h(\cdot) \in \mathcal{H}$$

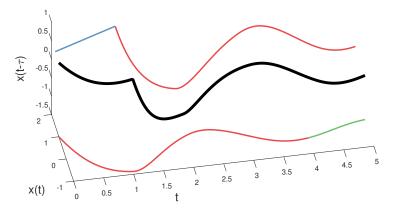
Represent $x(t \mid x_h) : t \in [- au, t^*]$ as occupation measure

Time-Delay Visualization



Time-Delay Embedding

Delay Embedding



Black curve: $(t, x(t), x(t - \tau))$

Tuple of measures for the delayed case

History Initial Peak Occupation Start Occupation End Time-Slack $\mu_{h} \in \mathcal{M}_{+}(H_{0})$ $\mu_{0} \in \mathcal{M}_{+}(X_{0})$ $\mu_{p} \in \mathcal{M}_{+}([0, T] \times X)$ $\bar{\mu}_{0} \in \mathcal{M}_{+}([0, T - \tau] \times X^{2})$ $\bar{\mu}_{1} \in \mathcal{M}_{+}([T - \tau, T] \times X^{2})$ $\nu \in \mathcal{M}_{+}([0, T] \times X)$

History-Validity: initial conditions

Liouville: Dynamics

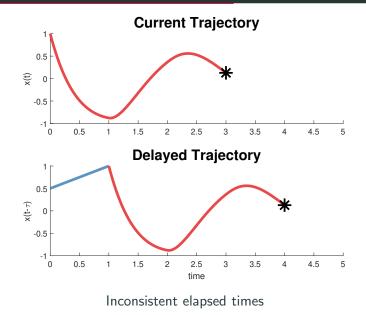
Consistency: Time-delay overlaps

History $(t, x_h(t))$ defines a curve $[-\tau, 0]$, point at $x_h(0)$ Point evaluation $\langle 1, \mu_0 \rangle = 0$ *t*-marginal of μ_h should be the Lebesgue measure in $[-\tau, 0]$ Sum $\bar{\mu} = \bar{\mu}_0 + \bar{\mu}_1$ is a relaxed occupation measure of the delay embedding $(t, x(t), x(t - \tau))$

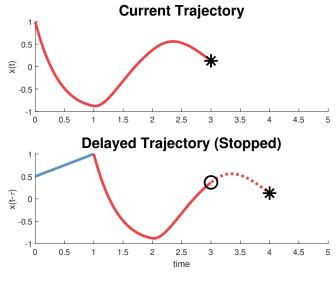
For all test functions $v \in C^1([0, T] \times X)$:

$$\langle \mathbf{v}, \mu_{p} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0}(\mathbf{x}) \rangle + \langle \mathbf{v}(t, \mathbf{x}_{0}), \overline{\mu}_{0}(t, \mathbf{x}_{0}, \mathbf{x}_{1}) + \overline{\mu}_{1}(t, \mathbf{x}_{0}, \mathbf{x}_{1}) \rangle$$

Consistency Issue



Consistency Fix



Early stopping in delayed time

Consistency Constraint

Inspired by changing limits of integrals

$$\begin{pmatrix} \int_0^{t^*} + \int_{t^*}^{\min(\tau, t^* + \tau)} \end{pmatrix} \phi(t, x(t - \tau)) dt \\ = \left(\int_{-\tau}^0 + \int_0^{\min(t^*, \tau - \tau)} \right) \phi(t' + \tau, x(t')) dt'.$$

Shift-push $S^{\tau}_{\#}$ with $\langle \phi, S^{\tau}_{\#} \mu \rangle = \langle S^{\tau} \phi, \mu \rangle = \langle \phi(t + \tau, x), \mu \rangle$

Consistency constraint with time-slack $\boldsymbol{\nu}$

$$\pi_{\#}^{tx_1}(\bar{\mu}_0 + \bar{\mu}_1) + \nu = S_{\#}^{\tau}(\mu_h + \pi_{\#}^{tx_0}\bar{\mu}_0).$$

Linear program for time-delay peak estimation

$$p^{*} = \sup \langle p, \mu_{p} \rangle$$
(2a)
History-Validity(μ_{0}, μ_{h}) (2b)
Liouville($\mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}$) (2c)
Consistency($\bar{\mu}_{h}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (2d)
Measure Definitions for ($\mu_{h}, \mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (2e)

Computational Complexity

Use moment-SOS hierarchy (Archimedean assumption) Degree d, dynamics degree $\widetilde{d} = d + \lfloor \deg f/2 \rfloor$

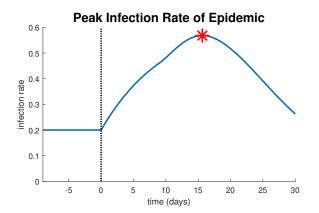
Bounds: $p_d^* \ge p_{d+1}^* \ge ... = p^* \ge P^*$

Size of Moment Matrices Peak Estimation

Timing scales approximately as $(2n+1)^{6\tilde{d}}$ or $\tilde{d}^{4(2n+1)}$

Examples

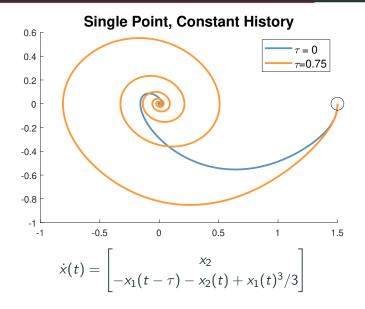
SIR Peak Estimation Example



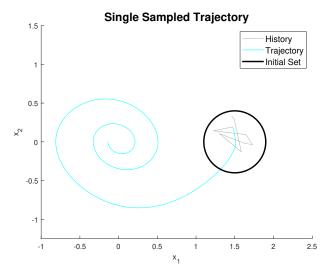
Upper bound $I_{max} \ge 56.9\%$ with order 3 LMI

Recovery: $t_* = 15.6$ days, $(S^*, I^*) = (56.9\%, 5.61\%)$

Delay Comparision

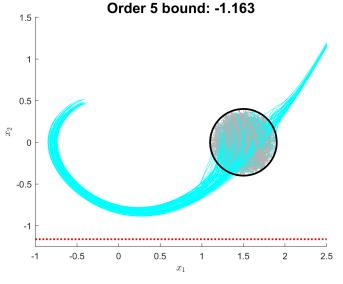


Single History Plot



Random history in $\{x \mid (x_1 - 1.5)^2 + x_2^2 \le 0.4^2\}$

Peak Estimate with Multiple Histories



Minimize x_2 on the delayed Flow system

Distance Estimate with Multiple Histories

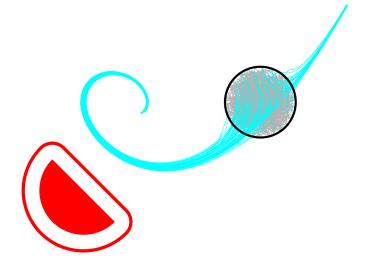
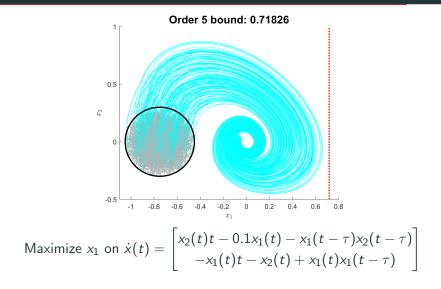


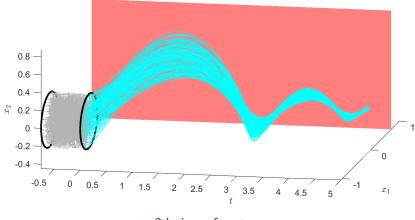
Figure 2: Minimize $c(x; X_u)$ on the delayed Flow system

Time-Varying System



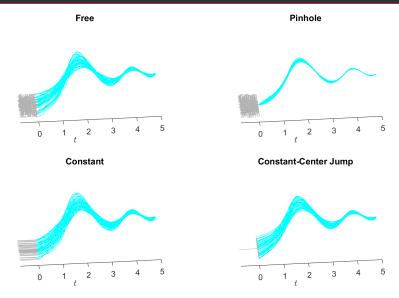
Time-Varying System (Cont.)

Order 5 bound: 0.71826



3d view of system

Time-Varying Histories



History restrictions and trajectories of system

Posed peak estimation problem for delayed system

Defined measure-valued solutions

Solved sequence of SDPs to get peak bounds

- Conditions for no conservatism
- Improve scaling/computational complexity
- Better bounds and conditioning
- Other delay structures (e.g. discrete-time, proportional)
- Reachable set estimation

Thank you for your attention

