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Scope

Safety/Risk Quantification

e.g. closest distance, max mean/CVAR current

Extremely context-dependent
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Quantifying Risk

Many ways to quantify risk of state function p(x)

• Probability of entering unsafe set

• Mean of p

• 90% quantile of p

• Mean value above 90% quantile of p

• Other risk measures of p

Find peak (time-windowed) risk of p
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Time-Windowed Risk Motivation: Signal

Oscillations near instanataneous peak (t = 2)
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Time-Windowed Risk Example

Instantaneous maximal risks may not give full picture
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Time-Windowed Risk Example

Choose a time window h

Form a prob. dist. ζ(t)

from {p(x(t ′))}tt′=t−h

Analyze risk of R(ζ(t))
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Time-Windowed Risk Problem

Given R and h, choose optimal t∗, x∗0 :

P∗ = sup
t∗, x∗0

R

(
1

h

∫ t∗

t∗−h

p(x(t ′))dt ′
)

s.t. x(t) follows L ∀t ∈ [0,min(t∗, τX )]

x(0) = x∗0

t∗ ∈ [h,T ], x∗0 ∈ X0

Integral in objective collapses (marginalizes) time

CDC focus: R is mean
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Solution Approach

Original risk estimation problem is nonconvex

Lift to convex but infinite-dimensional LP

Truncate infinite LP to computationally solve
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How do we solve infinite LPs?

Discretization necessary to solve on computer

More complexity: more accurate solutions

Method Increasing Complexity

Gridding # Grid Points

Basis Functions # Functions

Random Sampling # Samples

⋆ Sum-of-Squares (SOS) Polynomial Degree

Your Favorite Method Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

Infeasibility: unsolvable problem or not enough compute?
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Occupation Measures (stochastic)

µ: stochastic kernel from {µt}

Set 7→ Avg. time spent in the set

Average: µ0 and stoch. dynamics

Averaged value of v ∈ C:
⟨v , µ⟩ =

∫ T

0
Ex∼Xt [v(t, x)]dt Box: set in (t, x)
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Martingale Relation

End = Start + Accumulated Change (in E)

∀v ∈ C : E[v(t + s, x) | µt+s ] = E[v(t, x) | µt ]

+

∫ t+s

t′=t

E[Lv(t ′, x) | µt′]dt
′

Relation between measures (µt , µt+s , µ) for all v ∈ C

⟨v(t + s, x), µt+s(x)⟩ = ⟨v(t, x), µt(x)⟩+ ⟨Lv , µ⟩

Compress notation using adjoint L† (implicitly express ∀v)

µt+s = µt + L†µ
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Augmented Time Coordinate

We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

Active time t ∈ [0,T ] ṫ = 1

Stopping time s ∈ [h,T ] ṡ = 0

Temporal support sets Ω±:

Ω− : t ∈ [0, s − h] Ω+ : t ∈ [s − h, s]

Risk evaluated in Ω+, similar process in discrete-time
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Two Time Coordinates?

Curves (t, p(t), s): time intervals [0, s − h], [s − h, s], [s,T ]
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Measures for Risk Estimation

Mean-type risk estimation measures (with constant state s)

µ0(s, x) ∈ M+([h,T ]× X0) Initial

µτ (s, x) ∈ M+([h,T ]× X ) Terminal

µ+(s, t, x) ∈ M+(Ω+ × X ) Risk Occ.

µ−(s, t, x) ∈ M+(Ω− × X ) Past Occ.

Time-windowed risk evaluation: 1
h

∫ s

s−h
p(x(t ′))dt ′ → 1

h
p#µ+
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Time-Duplication Map

The last technical detail needed: a time-duplicating map φ

φ :(s, x) 7→ (s, s, x)

For all test functions ω(s, t, x) ∈ C ([h,T ]× [0,T ]× X )

⟨ω(s, t, x), φ#µτ (s, t, x)⟩ = ⟨ω(s, s, x), µτ (s, x)⟩

Relaxed occupation measure of L̂ : (µ0, φ#µτ , µ+ + µ−)
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Time-Windowed Mean Estimation

Non-conservative infinite LP with generator L̂ : (L, ṡ = 0)

p∗ = sup ⟨p, µ+⟩/h
s.t. φ#µτ = δ0 ⊗ µ0 + L̂†(µ− + µ+)

⟨1, µ0⟩ = 1

⟨1, µ+⟩ = h

Mean-type time-windowed support constraints

Constraint ⟨1, µ+⟩ = h imposes that h time units elapse

CVaR modification: supmean(ψ) : ϵψ + ψ̂ = (p#µ+)/h
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Time-Windowed Deterministic Mean (h = 1.5)
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Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)
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Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with ϵ = 0.15)
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Take-aways



Conclusion

Time-windowed risk estimation

Solved using infinite-dimensional LPs/SOCPs in measures

Certified outer-approximations of risk
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Thanks!
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Assumptions for Stochastic LPs

Assumptions used in all presented programs1:

1. Trajectories stop upon the first exit from X (τX ∧ T ).

2. The test function set C = dom(L) satisfies
C ⊆ C ([t0,T ]× X ) with 1 ∈ C and L1 = 0.

3. The set C separates points and is multiplicatively closed.

4. There exists a countable set {vk} ∈ C such that ∀v ∈ C :

(v ,Lv) is contained in the bounded pointwise closure of

the linear span of {(vk ,Lvk)}.

1Cho, Moon Jung, and Richard H. Stockbridge. ”Linear programming formulation for

optimal stopping problems.” SICON 40.6 (2002): 1965-1982.



Occupation Measure (Deterministic)

Time trajectories spend in set

Test function

v(t, x) ∈ C ([0,T ]× X )

Single trajectory:

⟨v , µ⟩ =
∫ T

0
v(t, x(t | x0))dt

Averaged trajectory: ⟨v , µ⟩ =∫
X

(∫ T

0
v(t, x)dt

)
dµ0(x)

x ′ = −x(x + 2)(x − 1)



Unsafe Probability using Measures

Maximize prob. ⟨1, µp⟩ of ending in Xu (with µp + µc = µτ )

p∗(t0,X0) = sup ⟨1, µp⟩
s.t. µp + µc = δt0 ⊗ µ0 + L†µ

⟨1, µ0⟩ = 1

µ0 ∈ M+(X0)

µ, µc ∈ M+([t0,T ]× X )

µp ∈ M+([t0,T ]× Xu)

Relaxed occupation measure (µ0, µu + µc , µ),

Strongly dual to previous continuous-function program



SOS Expectation-Peak

d∗
E =min

∫
X

v(0, x) dµ0(x) (2a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (2b)

v(t, x)− p(x) ∈ Σ[[0,T ]× X ] (2c)

v ∈ R[t, x ] (2d)



SOS Concentration-Peak

Second-order cone Ln : {(u, q) ∈ Rn × R≥0 | q ≥ ∥u∥2}

d∗
r =min u1 + 2u3 +

∫
X0

v(0, x0)dµ0(x0) (3a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (3b)

v(t, x) + u1 p
2(x)− 2 u2 p(x)− p(x) (3c)

∈ Σ[[0,T ]× X ]

([u1 + u3,−(r/2), u2], u3) ∈ L3 (3d)

u ∈ R3, v ∈ R[t, x ]



SOS CVaR-Peak

d∗
c =min u +

∫
X

v(0, x) dµ0(x) (4a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (4b)

v(t, x)− w(p(x)) ∈ Σ[[0,T ]× X ] (4c)

u + ϵw(q)− q ∈ Σ[pmin, pmax ] (4d)

w(q) ∈ Σ[pmin, pmax ] (4e)

u ∈ R, v ∈ R[t, x ] (4f)



Time-Delay Approach (Bad, Don’t Do This)

Embed as non-Markovian stochastic process:

P∗ = sup
t∗, x∗0

R (β(t∗))

s.t. x(t) follows L ∀t ∈ [0,min(t∗, τX )]

dβ = [p(x(t))− p(x(t − h))](1/h)dt

β(h) = (1/h)
∫ h

0
p(x(t ′))dt ′

x(0) = x∗0

t∗ ∈ [h,T ], x∗0 ∈ X0

Could introduce relaxation gap, requires 2n + 2 states



SOS Time-Window Mean

d∗
k = min

v ,γ,ξ
γ + hξ (5a)

s.t. γ − v(s, 0, x) ∈ Σ[[h,T ]× X0] (5b)

v(t, t, x) ∈ Σ[[h,T ]× X ]≤2k (5c)

ξ − p(x)/h − L̂v(s, t, x) ∈ Σ[Ω+ × X ] (5d)

− Lf v(s, t, x) ∈ Σ[Ω− × X ] (5e)

v ∈ R[s, t, x ] (5f)

γ, ξ ∈ R (5g)



SOS Time-Window CVAR

d∗
k = min

v ,γ,ξ,β,w
γ + hξ + β (6a)

s.t. γ − v(s, 0, x) ∈ Σ[[h,T ]× X0] (6b)

v(t, t, x) ∈ Σ[[h,T ]× X ] (6c)

ξ − w(p(x))/h − L̂v(s, t, x) ∈ Σ[Ω+ × X ] (6d)

− Lf v(s, t, x) ∈ Σ[Ω− × X ] (6e)

w(q), ϵw(q) + β ∈ Σ[[pmin, pmax]] (6f)

v ∈ R[s, t, x ] (6g)

w ∈ R[q] (6h)

γ, ξ, β ∈ R (6i)



Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)



Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with ϵ = 0.15)
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