# Peak Time-Windowed Mean Estimation using Convex Optimization

#### Jared Miller

Niklas Schmid Matteo Tacchi Didier Henrion Roy S. Smith December 16, 2024 IEEE CDC



# Safety/Risk Quantification

e.g. closest distance, max mean/CVAR current

Extremely context-dependent

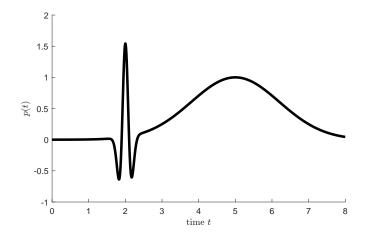
Many ways to quantify risk of state function p(x)

- Probability of entering unsafe set
- Mean of p
- 90% quantile of p
- Mean value above 90% quantile of p
- Other risk measures of p

Find peak (time-windowed) risk of p

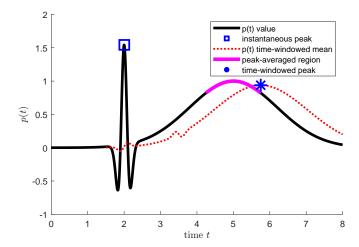
# Time-Windowed Risk Motivation: Signal

Oscillations near instanataneous peak (t = 2)



# Time-Windowed Risk Example

#### Instantaneous maximal risks may not give full picture



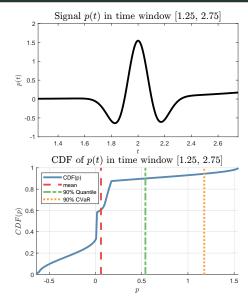
Large time-windowed avg. current on wire pprox overheating

# **Time-Windowed Risk Example**

Choose a time window h

Form a prob. dist.  $\zeta(t)$ from  $\{p(x(t'))\}_{t'=t-h}^{t}$ 

Analyze risk of  $R(\zeta(t))$ 



Given R and h, choose optimal  $t^*, x_0^*$ :

$$P^{*} = \sup_{t^{*}, x_{0}^{*}} R\left(\frac{1}{h}\int_{t^{*}-h}^{t^{*}} p(x(t'))dt'\right)$$
  
s.t.  $x(t)$  follows  $\mathcal{L} \quad \forall t \in [0, \min(t^{*}, \tau_{X})]$   
 $x(0) = x_{0}^{*}$   
 $t^{*} \in [h, T], x_{0}^{*} \in X_{0}$ 

Integral in objective collapses (marginalizes) time CDC focus: *R* is **mean**  Original risk estimation problem is nonconvex

Lift to convex but infinite-dimensional LP

Truncate infinite LP to computationally solve

Discretization necessary to solve on computer

More complexity: more accurate solutions

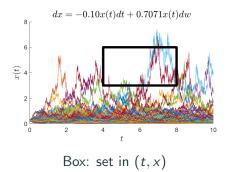
| Method                 | Increasing Complexity   |  |
|------------------------|-------------------------|--|
| Gridding               | # Grid Points           |  |
| <b>Basis Functions</b> | # Functions             |  |
| Random Sampling        | # Samples               |  |
| ★ Sum-of-Squares (SOS) | Polynomial Degree       |  |
| Your Favorite Method   | Some Accuracy Parameter |  |

Runtime usually exponential in dimension, complexity Infeasibility: unsolvable problem or not enough compute?  $\mu$ : stochastic kernel from  $\{\mu_t\}$ 

Set  $\mapsto$  Avg. time spent in the set

Average:  $\mu_0$  and stoch. dynamics

Averaged value of  $v \in C$ :  $\langle v, \mu \rangle = \int_0^T \mathbb{E}_{x \sim X_t}[v(t, x)]dt$ 



# **Martingale Relation**

 $\mathsf{End} = \mathsf{Start} + \mathsf{Accumulated Change} (\mathsf{in } \mathbb{E})$ 

$$\begin{aligned} \forall \mathbf{v} \in \mathcal{C} : \ \mathbb{E}[\mathbf{v}(t+s,x) \mid \mu_{t+s}] &= \mathbb{E}[\mathbf{v}(t,x) \mid \mu_t] \\ &+ \int_{t'=t}^{t+s} \mathbb{E}[\mathcal{L}\mathbf{v}(t',x) \mid \mu_{t'}] dt' \end{aligned}$$

Relation between measures  $(\mu_t, \mu_{t+s}, \mu)$  for all  $v \in C$ 

$$\langle \mathbf{v}(t+s,x), \mu_{t+s}(x) \rangle = \langle \mathbf{v}(t,x), \mu_t(x) \rangle + \langle \mathcal{L}\mathbf{v}, \mu \rangle$$

Compress notation using adjoint  $\mathcal{L}^{\dagger}$  (implicitly express  $\forall v$ )

$$\mu_{t+s} = \mu_t + \mathcal{L}^\dagger \mu$$

We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

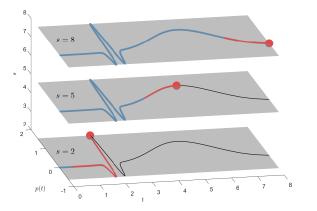
| Active time   | $t \in [0, T]$ | $\dot{t}=1$   |
|---------------|----------------|---------------|
| Stopping time | $s \in [h, T]$ | $\dot{s} = 0$ |

Temporal support sets  $\Omega_{\pm}$ :

 $\Omega_-: t \in [0, s-h]$   $\Omega_+: t \in [s-h, s]$ 

Risk evaluated in  $\Omega_+$ , similar process in discrete-time

## **Two Time Coordinates?**



Curves (t, p(t), s): time intervals [0, s - h], [s - h, s], [s, T]

Mean-type risk estimation measures (with constant state s)

| $\mu_0(s,x)\in \mathcal{M}_+([h,T]\times X_0)$        | Initial   |
|-------------------------------------------------------|-----------|
| $\mu_{\tau}(s,x) \in \mathcal{M}_{+}([h,T] \times X)$ | Terminal  |
| $\mu_+(s,t,x)\in\mathcal{M}_+(\Omega_+	imes X)$       | Risk Occ. |
| $\mu(s,t,x)\in \mathcal{M}_+(\Omega	imes X)$          | Past Occ. |

Time-windowed risk evaluation:  $\frac{1}{h}\int_{s-h}^{s} p(x(t'))dt' \rightarrow \frac{1}{h}p_{\#}\mu_{+}$ 

The last technical detail needed: a time-duplicating map  $\varphi$ 

$$\varphi:(s,x)\mapsto(s,s,x)$$

For all test functions  $\omega(s, t, x) \in C([h, T] \times [0, T] \times X)$ 

$$\langle \omega(s,t,x), \varphi_{\#} \mu_{\tau}(s,t,x) \rangle = \langle \omega(s,s,x), \mu_{\tau}(s,x) \rangle$$

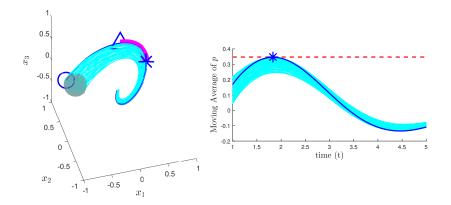
Relaxed occupation measure of  $\hat{\mathcal{L}}$  :  $(\mu_0, \varphi_{\#}\mu_{\tau}, \mu_+ + \mu_-)$ 

Non-conservative infinite LP with generator  $\hat{\mathcal{L}}$  :  $(\mathcal{L}, \dot{s} = 0)$ 

$$\begin{split} p^* &= \sup \quad \langle p, \mu_+ \rangle / h \\ \text{s.t. } \varphi_{\#} \mu_{\tau} &= \delta_0 \otimes \mu_0 + \hat{\mathcal{L}}^{\dagger} (\mu_- + \mu_+) \\ \langle 1, \mu_0 \rangle &= 1 \\ \langle 1, \mu_+ \rangle &= h \\ \text{Mean-type time-windowed support constraints} \end{split}$$

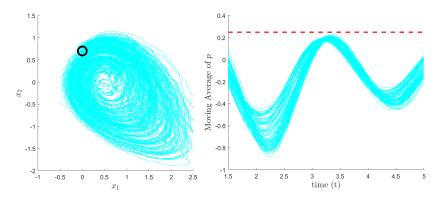
Constraint  $\langle 1, \mu_+ \rangle = h$  imposes that h time units elapse CVaR modification: sup mean $(\psi)$ :  $\epsilon \psi + \hat{\psi} = (p_{\#}\mu_+)/h$ 

# Time-Windowed Deterministic Mean (h = 1.5)



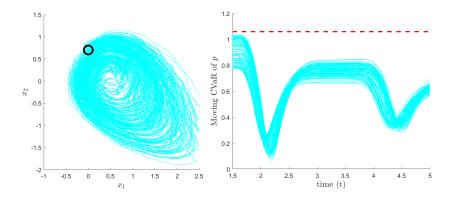
# Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated  $(p(x) = x_2)$ 



# Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with  $\epsilon = 0.15$ )





#### Time-windowed risk estimation

#### Solved using infinite-dimensional LPs/SOCPs in measures

#### Certified outer-approximations of risk

# Thanks!



# **Bonus Slides**

Assumptions used in all presented programs<sup>1</sup>:

- 1. Trajectories stop upon the first exit from  $X (\tau_X \wedge T)$ .
- 2. The test function set  $C = dom(\mathcal{L})$  satisfies  $C \subseteq C([t_0, T] \times X)$  with  $1 \in C$  and  $\mathcal{L}1 = 0$ .
- 3. The set  $\ensuremath{\mathcal{C}}$  separates points and is multiplicatively closed.
- There exists a countable set {v<sub>k</sub>} ∈ C such that ∀v ∈ C : (v, Lv) is contained in the bounded pointwise closure of the linear span of {(v<sub>k</sub>, Lv<sub>k</sub>)}.

<sup>&</sup>lt;sup>1</sup>Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SICON 40.6 (2002): 1965-1982.

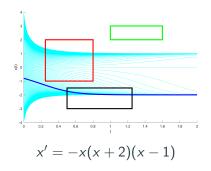
# **Occupation Measure (Deterministic)**

Time trajectories spend in set

Test function  $v(t,x) \in C([0,T] \times X)$ 

Single trajectory:  $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$ 

Averaged trajectory:  $\langle v, \mu \rangle = \int_X \left( \int_0^T v(t, x) dt \right) d\mu_0(x)$ 



# **Unsafe Probability using Measures**

Maximize prob.  $\langle 1, \mu_p \rangle$  of ending in  $X_u$  (with  $\mu_p + \mu_c = \mu_\tau$ )

$$p^{*}(t_{0}, X_{0}) = \sup \langle 1, \mu_{p} \rangle$$
  
s.t. 
$$\mu_{p} + \mu_{c} = \delta_{t_{0}} \otimes \mu_{0} + \mathcal{L}^{\dagger} \mu$$
$$\langle 1, \mu_{0} \rangle = 1$$
$$\mu_{0} \in \mathcal{M}_{+}(X_{0})$$
$$\mu, \ \mu_{c} \in \mathcal{M}_{+}([t_{0}, T] \times X)$$
$$\mu_{p} \in \mathcal{M}_{+}([t_{0}, T] \times X_{u})$$

Relaxed occupation measure  $(\mu_0, \mu_u + \mu_c, \mu)$ ,

Strongly dual to previous continuous-function program

$$d_{\mathbb{E}}^* = \min \quad \int_X v(0, x) \ d\mu_0(x) \tag{2a}$$

s.t. 
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (2b)

$$v(t,x) - p(x) \in \Sigma[[0,T] \times X]$$
 (2c)

$$v \in \mathbb{R}[t, x]$$
 (2d)

Second-order cone  $\mathbb{L}^n$  :  $\{(u,q) \in \mathbb{R}^n \times \mathbb{R}_{\geq 0} \mid q \geq \|u\|_2\}$ 

$$d_r^* = \min \quad u_1 + 2u_3 + \int_{X_0} v(0, x_0) d\mu_0(x_0)$$
 (3a)

s.t. 
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (3b)

$$v(t,x) + u_1 p^2(x) - 2 u_2 p(x) - p(x)$$
 (3c)  
 $\in \Sigma[[0, T] \times X]$ 

$$([u_1 + u_3, -(r/2), u_2], u_3) \in \mathbb{L}^3$$
 (3d)  
 $u \in \mathbb{R}^3, v \in \mathbb{R}[t, x]$ 

$$d_c^* = \min \quad u + \int_X v(0, x) \ d\mu_0(x)$$
 (4a)

s.t. 
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (4b)

$$v(t,x) - w(p(x)) \in \Sigma[[0,T] \times X]$$
(4c)

$$u + \epsilon w(q) - q \in \Sigma[p_{\min}, p_{\max}]$$
(4d)

$$w(q) \in \Sigma[p_{min}, p_{max}]$$
 (4e)

$$u \in \mathbb{R}, v \in \mathbb{R}[t, x]$$
 (4f)

Embed as non-Markovian stochastic process:

$$P^* = \sup_{t^*, x_0^*} R(\beta(t^*))$$
  
s.t.  $x(t)$  follows  $\mathcal{L} \quad \forall t \in [0, \min(t^*, \tau_X)]$   
 $d\beta = [p(x(t)) - p(x(t-h))](1/h)dt$   
 $\beta(h) = (1/h) \int_0^h p(x(t'))dt'$   
 $x(0) = x_0^*$   
 $t^* \in [h, T], x_0^* \in X_0$ 

Could introduce relaxation gap, requires 2n + 2 states

$$d_k^* = \min_{\nu,\gamma,\xi} \gamma + h\xi \tag{5a}$$

s.t. 
$$\gamma - v(s, 0, x) \in \Sigma[[h, T] \times X_0]$$
 (5b)

$$v(t,t,x) \in \Sigma[[h,T] \times X]_{\leq 2k}$$
(5c)

$$\xi - p(x)/h - \hat{\mathcal{L}}v(s, t, x) \in \Sigma[\Omega_+ \times X]$$
 (5d)

$$-\mathcal{L}_{f}v(s,t,x)\in\Sigma[\Omega_{-}\times X]$$
(5e)

$$v \in \mathbb{R}[s, t, x]$$
 (5f)

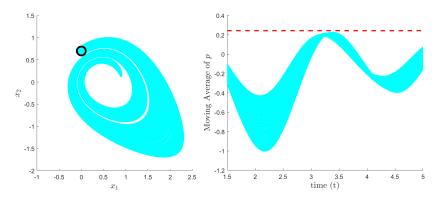
$$\gamma, \xi \in \mathbb{R} \tag{5g}$$

# SOS Time-Window CVAR

$$\begin{aligned} d_k^* &= \min_{v,\gamma,\xi,\beta,w} \gamma + h\xi + \beta \end{aligned} \tag{6a} \\ \text{s.t.} \quad \gamma - v(s,0,x) \in \Sigma[[h,T] \times X_0] \qquad (6b) \\ v(t,t,x) \in \Sigma[[h,T] \times X] \qquad (6c) \\ \xi - w(p(x))/h - \hat{\mathcal{L}}v(s,t,x) \in \Sigma[\Omega_+ \times X] \qquad (6d) \\ - \mathcal{L}_f v(s,t,x) \in \Sigma[\Omega_- \times X] \qquad (6e) \\ w(q), \ \epsilon w(q) + \beta \in \Sigma[[p_{\min}, p_{\max}]] \qquad (6f) \\ v \in \mathbb{R}[s,t,x] \qquad (6g) \\ w \in \mathbb{R}[q] \qquad (6h) \\ \gamma,\xi,\beta \in \mathbb{R} \qquad (6i) \end{aligned}$$

## Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated  $(p(x) = x_2)$ 



## Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with  $\epsilon = 0.15$ )

