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Safety /Risk Quantification

e.g. closest distance, max mean/CVAR current

Extremely context-dependent



Quantifying Risk

Many ways to quantify risk of state function p(x)

e Probability of entering unsafe set

e Mean of p

e 90% quantile of p

e Mean value above 90% quantile of p

e Other risk measures of p

Find peak (time-windowed) risk of p



Time-Windowed Risk Motivation: Signal

Oscillations near instanataneous peak (t = 2)
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Time-Windowed Risk Example

Instantaneous maximal risks may not give full picture
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Time-Windowed Risk Example

Signal p(t) in time window [1.25, 2.75]

Choose a time window h
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Time-Windowed Risk Problem

Given R and h, choose optimal t*, xj:

I
o R(5 [ pxe)ar)
t*, X h t*—h
s.t. x(t) follows £Vt € [0, min(t", 7x)]
x(0) = x
t"e[h, T], x5 € Xo

Integral in objective collapses (marginalizes) time

CDC focus: R is mean



Solution Approach

Original risk estimation problem is nonconvex
Lift to convex but infinite-dimensional LP

Truncate infinite LP to computationally solve



How do we solve infinite LPs?

Discretization necessary to solve on computer

More complexity: more accurate solutions

Method | Increasing Complexity
Gridding | # Grid Points
Basis Functions | # Functions
Random Sampling | # Samples
* Sum-of-Squares (SOS) | Polynomial Degree
Your Favorite Method | Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

Infeasibility: unsolvable problem or not enough compute?



Occupation Measures (stochastic)

% StOChaStiC kernel from {,ut} . dz = —0.10z(¢)dt + 0.7071z(t)dw
Set — Avg. time spent in the set

Average: 1o and stoch. dynamics

Averaged value of v € C:
fo Eyox,[v(t, x)]dt Box: set in (t, x)



Martingale Relation

End = Start + Accumulated Change (in E)
Vvel: Elv(t+s,x) | pers] = E[v(t, x) | ]

t+s
+/ E[Lv(t',x) | pe]dt’
tl

=t

Relation between measures (p¢, ptrrs, 1t) for all v € C

<V(t + va)ap“t-l-s(x)) = <V(t,X),Mt(X)> + <,CV,[L>

Compress notation using adjoint £ (implicitly express Vv)
fieys = pie + L
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Augmented Time Coordinate

We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

Active time te[0,T] t=1

I
o

Stopping time se[h T] S

Temporal support sets 2:

Q_: te[0,s—h| Qy: te[s—hs]

Risk evaluated in €2, similar process in discrete-time
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Two Time Coordinates?

Curves (t, p(t),s): time intervals [0,s — h], [s — h,s], [s, T]
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Measures for Risk Estimation

Mean-type risk estimation measures (with constant state s)

po(s, x) € My ([h, T] x Xo) Initial

pr(s,x) € My ([h, T] x X) Terminal
pa(s, t,x) € Mo(Q24 x X) Risk Occ.
p—(s, t,x) € M (Q2_ x X) Past Occ.

Time-windowed risk evaluation: # [ p(x(t'))dt’ — +pupi

13



Time-Duplication Map

The last technical detail needed: a time-duplicating map ¢
@ (s, x) — (s,s,x)
For all test functions w(s, t,x) € C([h, T] x [0, T] x X)
(wis, t,x), pppi-(s, t,x)) = (W(s, 5, %), 1= (8, X))

Relaxed occupation measure of L : (o, Papir, pig + p1—)
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Time-Windowed Mean Estimation

Non-conservative infinite LP with generator £ : (£, s = 0)

p* = sup (p,py)/h

st Quplr = 00 ® po+ LT (1 + p1y)
(1, p0) =1
(Lpy)=nh

Mean-type time-windowed support constraints

Constraint (1, . ) = h imposes that h time units elapse

CVaR modification: supmean(v) : e + ) = (pup)/h
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Moving Average of p

o o
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Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated
(p(x) = x2)
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Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak

instantaneous p (with € = 0.15)

Moving CVaR of p
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time (t)
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Take-aways




Conclusion

Time-windowed risk estimation
Solved using infinite-dimensional LPs/SOCPs in measures

Certified outer-approximations of risk
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Assumptions for Stochastic LPs

Assumptions used in all presented programs!:

1. Trajectories stop upon the first exit from X (7x A T).
2. The test function set C = dom(L) satisfies
C C C([to, T] x X) with 1 € C and L1 = 0.
3. The set C separates points and is multiplicatively closed.
4. There exists a countable set {v,} € C such that Vv € C :

(v, Lv) is contained in the bounded pointwise closure of
the linear span of {(vk, Lvk)}.

LCho, Moon Jung, and Richard H. Stockbridge. " Linear programming formulation for
optimal stopping problems.” SICON 40.6 (2002): 1965-1982.



Occupation Measure (Deterministic)

Time trajectories spend in set

Test function ]
v(t,x) € C([0, T] x X)

v(t, x(t | xo))dt

Single trajectory \Ii}
fo ) A

Averaged trajectory: (v, pu) = X' =—x(x+2)(x—1)

Ix (fo (t,x dt) dpio(x)



Unsafe Probability using Measures

Maximize prob. (1, ,) of ending in X, (with p, + e = 1)

p(to, Xo) =sup (1, 1)
St fp o+ fie = 0g ® pio + LT
(L o) =1
fo € M (Xo)
f, pe € My ([to, T] x X)
pp € My([to, T] x X,)

Relaxed occupation measure (po, fty + fic, (1),

Strongly dual to previous continuous-function program



SOS Expectation-Peak

di =min /X v(0, x) dpo(x) (
st. — Lv(t,x) € X[[0, T] x X] (2b
v(t,x) — p(x) € X[[0, T] x X] (
v e R[t, x| (



SOS Concentration-Peak

Second-order cone L" : {(u,q) € R" x R>o | g > ||ul|2}

d’ =min wu +2u3 —i—/x v(0, x0)d o(x0) (3a)
st.  — Lv(t,x) € Z[[0, 7E] x X] (3b)
v(t,x) + u p*(x) — 22 p(x) — p(x) (3¢)

€ X[[0, T] x X]
([ur + us, —(r/2), up], us) € L3 (3d)

uc R veR[tx]



SOS CVaR-Peak

d*=min u+ /x v(0, x) dpuo(x) (42)
st. — Lv(t,x) € £[[0, T] x X] (4b)
v(t,x) — w(p(x)) € [0, T] x X] (4c)
u+ ew(q) — q € X[Pmin; Pmax) (4d)
w(q) € Z[Pmin: Pra] (4e)
ue R, veR[tx] (4f)



Time-Delay Approach (Bad, Don’t Do This)

Embed as non-Markovian stochastic process:
Pr=sup  R(5(t"))
s.t.  x(t) follows £ VYt € [0, min(t", 7x)]
dp = [p(x(t)) — p(x(t — h))](1/h)dt
B(h) = (1/h) [y p(x(t"))dt’

x(0) = x
t*e[h T], x5 €Xo

Could introduce relaxation gap, requires 2n + 2 states



SOS Time-Window Mean

di = miny + hg (5a)
st. v —v(s,0,x) € X[[h, T] x Xo] (5b)
v(t,t,x) € X[[h, T] x X]<k (5¢)
& —p(x)/h— Lv(s, t,x) € £[Q x X] (5d)
— Lsv(s, t,x) € X[Q_ x X] )
v € R[s, t,x] )
7§ ER (5g)



SOS Time-Window CVAR

di= min y+h{+h (6a)
st. v —v(s,0,x) € X[[h, T] x X (6b)
v(t, t,x) € X[[h, T] x X] (6¢)
¢ —w(p(x))/h— Lv(s, t,x) € X[Q, x X] (6d)
— Lev(s, t,x) € X[Q_ x X] (6e)
w(q), ew(q) + B € Z[[Pmin, Pmax] (6f)
v € R[s, t, x] (6g)
w € R[q] (6h)
1,68 ER (61)



Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)
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Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with € = 0.15)
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