Safety Quantification for Nonlinear and Time-Delay Systems using Occupation Measures

Author: Jared Miller

Committee: Octavia Camps Didier Henrion (LAAS-CNRS) Bahram Shafai Eduardo Sontag Mario Sznaier

April 3, 2023

Safety Example

1

Safety Example (Barrier/Density Function)

Safety Example (Distance Estimate)

Safety Example

Safety Quantification 5 in

60 mph

Motivation: Epidemic

Adapted from CDC

Image credit to Mayo Clinic News Network

Problems Covered

Pose safety quantification problems

Want convex, convergent, bisection-free algorithms

Formulate using convex linear programs in measures

Increasing-quality bounds using Semidefinite Programming

Peak estimation background

- 1. Survey of Thesis Work
- 2. Peak Value-at-Risk Estimation
- 3. Time-Delay Systems

Wrap-up

Peak Estimation Background

Peak Estimation Background

Find extreme value of p(x) along trajectories

Occupation Measure

Time trajectories spend in set

Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$

Connection to Measures

Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_0^* : & \langle v(0,x), \mu_0^* \rangle = v(0,x_0^*) \\ \mu_p^* : & \langle v(t,x), \mu_p^* \rangle = v(t_p^*,x_p^*) \\ \mu^* : & \langle v(t,x), \mu^* \rangle = \int_0^{t_p^*} v(t,x^*(t \mid x_0^*)) dt \end{split}$$

Lie derivative (instantaneous change along f) $\forall v \in C^1$:

$$\mathcal{L}_{f}v = \partial_{t}v(t,x) + f(t,x) \cdot \nabla_{x}v(t,x)$$
 (1a)

Conservation law: final = initial + accumulated change

$$\langle \mathbf{v}(t, \mathbf{x}), \mu_{p} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0} \rangle + \langle \mathcal{L}_{f} \mathbf{v}(t, \mathbf{x}), \mu \rangle$$
(1b)
$$\mu_{p} = \delta_{0} \otimes \mu_{0} + \mathcal{L}_{f}^{\dagger} \mu$$
(1c)

Liouville 'represents' dynamics $\dot{x}(t) = f(t, x(t))$

Infinite-dimensional Linear Program (Cho, Stockbridge, 2002)

$$p^* = \sup \langle p(x), \mu_p \rangle$$
 (2a)

$$\langle 1, \mu_0
angle = 1$$
 (2b)

$$\langle v(t,x), \mu_p \rangle = \langle v(0,x), \mu_0 \rangle + \langle \mathcal{L}_f v(t,x), \mu \rangle \quad \forall v \quad (2c)$$

$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X) \tag{2d}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{2e}$$

Instance of Optimal Control Program (Lewis and Vinter, 1980) $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle \leq p^*$ $P^* = p^*$ if compactness, Lipschitz properties hold

Moments for Peak Estimation

Moment: $y_{\alpha} = \langle x^{\alpha}, \nu \rangle \ \forall \alpha \in \mathbb{N}^{n}$

Moment matrix $\mathbb{M}[y]_{\alpha\beta} = y_{\alpha+\beta}$ is PSD

	<i>У</i> 00	<i>Y</i> 10	<i>Y</i> 01	<i>Y</i> 20	y 11	<i>y</i> ₀₂	
$\mathbb{M}_2[y] =$	У10 У01	У ₂₀ У11	У11 У02	У ₃₀ У ₂₁	У ₂₁ У ₁₂	У ₁₂ У ₀₃	<u>≻</u> 0
	У ₂₀ У11	У ₃₀ У ₂₁	У ₂₁ У12	У ₄₀ У31	У ₃₁ У ₂₂	у ₁₁ у ₁₃	
	y ₀₂	<i>Y</i> ₁₂	<i>Y</i> 03	<i>y</i> ₂₂	<i>y</i> ₁₃	<i>y</i> ₀₄	

Liouville induces affine relation in $(\mu^0,\mu^p,\mu)
ightarrow (y^0,y^p,y)$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$ Max. PSD size: $\binom{(n+1)+(d+\lfloor \deg f/2 \rfloor)}{n+1}$ (Fantuzzi, Goluskin, 2020)

Survey of Thesis Work

Distance Estimation Problem

Unsafe set X_{μ} , point-set distance $c(x; X_{\mu}) = \inf_{y \in X_{\mu}} c(x, y)$ $P^* = \inf_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$ $\dot{x}(t) = f(t, x(t))$ $\forall t \in [0, T], x(0) = x_0.$

L₂ bound of 0.2831

Distance Program (Measures)

Infinite Dimensional Linear Program (Convergent)

$$p^* = \inf \langle c(x,y), \eta(x,y) \rangle$$
 (3a)

$$\langle 1, \mu_0 \rangle = 1$$
 (3b)

$$\langle \mathbf{v}(t,x), \mu_p \rangle = \langle \mathbf{v}(0,x), \mu_0 \rangle + \langle \mathcal{L}_f \mathbf{v}(t,x), \mu \rangle \quad \forall \mathbf{v} \quad (3c)$$

$$\langle w(x), \eta(x, y) \rangle = \langle w(x), \mu_{P}(t, x) \rangle$$
 $\forall w$ (3d)

$$\eta \in \mathcal{M}_+(X \times X_u) \tag{3e}$$

$$\mu_{\rho}, \ \mu \in \mathcal{M}_{+}([0, T] \times X)$$
(3f)

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{3g}$$

Probability measures: (μ_0, μ_p, η)

Near-optimal trajectories if moment-matrix pprox rank-1

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Safety of Shapes

Points on shape S with orientation ω (e.g., rigid body motion)

 L_2 bound of 0.1465, rotating square

Distance with Bounded Uncertainty

Dynamics $\dot{x}(t) = f(t, x(t), w(t))$ with $w(t) \in W$ Young measure $\mu(t, x, w)$, Liouville term $\langle \mathcal{L}_f v(t, x, w), \mu \rangle$

 L_2 bound of 0.1691, $w(t) \in [-1, 1]$

Hybrid Systems

Continuous dynamics with discrete jumps/transitions

 $R_{\text{left} \rightarrow \text{bottom}} = [1 - x_2; x_1], \qquad R_{\text{right} \rightarrow \text{top}} = [x_2; x_1]$

Sampling: Flow System

Data $\mathcal{D} = \{(t_j, x_j, \dot{x}_j)\}_j$ under mixed L_∞ -bounded noise

 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3]$

Given data \mathcal{D} , budget ϵ , system model $\{f_0, f_\ell\}$ Parameterize ground truth F by functions in dictionary

$$\dot{x}(t)=f(t,x,w)=f_0(t,x)+\sum_{\ell=1}^L w_\ell f_\ell(t,x)$$

Ground truth satisfies corruption $J(w^*) \leq \epsilon$

$$L_\infty$$
 example: $J(w) = \max_j \|f(t_j, x_j, w) - \dot{x}_j\|_\infty$

Distance Estimation Example (Flow)

Input-affine + Semidefinite Representable uncertainty

 $\mathcal{L}_f v(t, x, w) \leq 0 \qquad \forall (t, x, w) \in [0, T] \times X \times W$

PSD Size $8568 \rightarrow 56$ (L = 10) using robust counterparts

How much data corruption is needed to crash?

$$Q^{*} = \inf_{t^{*}, x_{0}, w} \left[\sup_{t \in [0, t^{*}]} J(w(t)) \right]$$
$$\dot{x}(t) = f(t, x(t), w(t)) \qquad \forall t \in [0, t^{*}]$$
$$x(t \mid x_{0}, w(\cdot)) \in X_{u}$$
$$w(\cdot) \in W, \ t^{*} \in [0, T], \ x_{0} \in X_{0}$$

Model safe if $Q^* > \epsilon$

Example Crash-Bounds

Two trajectories have same distance, different crash-bounds

Green-Top $Q^* = 0.316$, Yellow-Bottom $Q^* = 0.622$

Peak-Minimizing Control

Add state $\dot{z} = 0$ (Molina, Rapaport, Ramírez 2022)

$$Q_{z}^{*} = \inf_{t^{*}, x_{0}, z, w} z$$
(4a)

$$\dot{x}(t) = f(t, x(t), w(t)) \quad \forall t \in [0, t^{*}]$$
(4b)

$$\dot{z}(t) = 0 \quad \forall t \in [0, t^{*}]$$
(4c)

$$J(w(t)) \leq z \quad \forall t \in [0, t^{*}]$$
(4d)

$$x(t^{*} \mid x_{0}, w(\cdot)) \in X_{u}$$
(4e)

$$w(\cdot) \in W, t^{*} \in [0, T]$$
(4f)

$$x_{0} \in X_{0}, z \in [0, J_{max}]$$
(4g)

Equivalent formulation, $Q^* = Q_z^*$

Data-Driven Flow Crash-Bound

CasADi matches degree-4 moment-SOS crash bound

Terminal measure $\mu_p \in \mathcal{M}_+([0, T] \times X_u)$

True $\epsilon = 0.5 < 0.5499$, distance ≈ 0.2014

Flow Crash-Subvalue

Piecewise-polynomial subvalue for crash-safety

Based on Joint+Marginal optimization (Lasserre, 2010)

Bound of 0.3399 \leq 0.5499, but valid everywhere in X

Peak Value-at-Risk Estimation

with M. Tacchi, M. Sznaier, A. Jasour

Stochastic Differential Equation

Multivariate SDE dx = f(t, x)dt + g(t, x)dw (Itô)

Drift f and Diffusion g

Geometric Brownian Motion

Value-at-Risk (Quantile)

 ϵ -VaR of univariate measure $\omega(q)$ is unique number with

VaR = 1.282 for unit normal distribution at $\epsilon = 10\%$
Maximal Value at Risk

Red + Black areas = 10% probability

Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, $\Delta t = 10^{-3}$

Maximize VaR of p(x) along SDE trajectories

 $p_{\#}\mu_{t^*}$: distribution of p(x(t)) at time t^*

$$P^* = \sup_{t^* \in [0,T]} VaR_{\epsilon}(p_{\#}\mu_{t^*})$$
(5a)
$$dx = f(t,x)dt + g(t,x)dw$$
(5b)
$$stopping time of min(t^*, exit from X)$$
(5c)

stopping time of min(t^{\prime} , exit from X) (5c) $x(0) \sim \mu_0.$ (5d) Concentration inequalities can upper-bound VaR

$$VaR_{\epsilon}(\omega) \leq \operatorname{stdev}(\omega)r + \operatorname{mean}(\omega)$$

Coherent Risk Measures (e.g., CVaR) can also bound VaR

Apply concentration inequalities to get upper bound $P_r^* \ge P^*$ Objective upper-bounds VaR w.r.t. time- t^* distribution μ_{t^*}

$$P_{r}^{*} = \sup_{t^{*} \in [0,T]} r \sqrt{\langle p^{2}, \mu_{t^{*}} \rangle - \langle p, \mu_{t^{*}} \rangle^{2}} + \langle p, \mu_{t^{*}} \rangle$$
(6a)
$$dx = f(t,x)dt + g(t,x)dw$$
(6b)
$$stopping time of min(t^{*}, exit from X)$$
(6c)
$$x(0) \sim \mu_{0}.$$
(6d)

Max-Mean: $\epsilon = 0.5$, r = 0 (Cho, Stockbridge, 2002)

Occupation measure μ , terminal measure $\mu_{ au}$

Second-Order Cone Program in measures (3d SOC)

$$p_r^* = \sup r \sqrt{\langle p^2, \mu_\tau \rangle - \langle p, \mu_\tau \rangle^2} + \langle p, \mu_\tau \rangle$$
 (7a)

$$\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger} \mu \tag{7b}$$

$$\mu_{ au}, \ \mu \in \mathcal{M}_+([0, T] imes X)$$
 (7c)

Generator $\mathcal{L}v = \partial_t v + f \cdot \nabla_x v + g^T (\nabla^2_{xx} v)g/2$ (Dynkin's) Results in upper-bound $p_r^* \ge P_r^* \ge P^*$, use moments

Chance-Peak Examples

Two-State

Stochastic Flow system from Prajna, Rantzer with T = 5

$$dx = \begin{bmatrix} x_2 \\ -x_1 - x_2 - \frac{1}{2}x_1^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} dw.$$

Maximize $-x_2$ with d = 6 (dashed=50%, solid=85% [ours])

Three-State

Stochasic Twist system with T = 5

$$dx = \begin{bmatrix} -2.5x_1 + x_2 - 0.5x_3 + 2x_1^3 + 2x_3^3 \\ -x_1 + 1.5x_2 + 0.5x_3 - 2x_2^3 - 2x_3^3 \\ 1.5x_1 + 2.5x_2 - 2x_3 - 2x_1^3 - 2x_2^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0 \\ 0.1 \end{bmatrix} dw.$$

Maximize x_3 with d = 6 (translucent=50%, solid=85%) 40

Two-State Switching

Switching subsystems at T = 5

$$dx = \left\{ \begin{bmatrix} -2.5x_1 - 2x_2 \\ -0.5x_1 - x_2 \end{bmatrix}, \begin{bmatrix} -x_1 - 2x_2 \\ 2.5x_1 - x_2 \end{bmatrix} \right\} dt + \begin{bmatrix} 0 \\ 0.25x_2 \end{bmatrix} dw$$

Maximize $-x_2$ with d = 6 (dashed=50%, solid=85%)

Two-State Distance

Half-circle unsafe set X_u

Based on distance estimation program

Minimize L_2 distance to X_u with d = 6 (dashed=50%, solid=85%)

Time-Delay Peak Estimation

with M. Korda, V. Magron, M. Sznaier

Time-Delay Examples

Delay between state change and its effect on system

$$\dot{x}(t) = f(t, x(t), x(t - \tau)) \qquad \forall t \in [0, T]$$

 $x(s) = x_h(s) \qquad \forall s \in [-\tau, 0]$

System	Delay
Epidemic	Incubation Period
Population	Gestation Time
Traffic	Reaction Time
Congestion	Queue Time
Fluid Flow	Moving in Pipe

Dependence on History

$$x'(t) = -2x(t) - 2x(t-1)$$

All trajectories pass through (t, x) = (0, 1)Initial history determines behavior, not just initial point

Delay Bifurcation Example

Peak Value vs. Delay

(a) $I_h = 0.1$, peak decreases

$$\begin{bmatrix} S'(t) \\ I'(t) \end{bmatrix} = \begin{bmatrix} -0.4S(t)I(t) \\ 0.4S(t-\tau)I(t-\tau) - 0.1I(t) \end{bmatrix}$$

History $x_h(t)$ resides in a class of functions \mathcal{H}

Graph-constrained \mathcal{H} : $(t, x_h(t))$ contained in $H_0 \subset [-\tau, 0] \times X$

$$P^* = \sup_{\substack{t^*, x_h}} p(x(t^*))$$

$$\dot{x} = f(t, x(t), x(t - \tau)) \qquad t \in [0, t^*]$$

$$x(t) = x_h(t) \qquad t \in [-\tau, 0]$$

$$x_h(\cdot) \in \mathcal{H}$$

Represent $x(t \mid x_h) : t \in [-\tau, t^*]$ as occupation measure

Time-Varying Preview

Order 5 bound: 0.71826

Existing Methods (very brief)

Certificates of Stability

- Lyapunov-Krasovskii
- Razumikhin
- LMI, Wirtinger
- ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2) Fixed-terminal-time OCP with gridding (Barati 2012) SOS Barrier (Papachristodoulou and Peet, 2010) Riesz Operators (Magron and Prieur, 2020)

Time-Delay Measure Program

Time-Delay Visualization

Time-Delay Embedding

Delay Embedding

Black curve: $(t, x(t), x(t - \tau))$

Tuple of measures for the delayed case

Peak Initial History Occupation Start Occupation End Time-Slack $\mu_{p} \in \mathcal{M}_{+}([0, T] \times X)$ $\mu_{0} \in \mathcal{M}_{+}(X_{0})$ $\mu_{h} \in \mathcal{M}_{+}(H_{0})$ $\bar{\mu}_{0} \in \mathcal{M}_{+}([0, T - \tau] \times X^{2})$ $\bar{\mu}_{1} \in \mathcal{M}_{+}([T - \tau, T] \times X^{2})$ $\nu \in \mathcal{M}_{+}([0, T] \times X)$

Initial Conditions

Liouville: Dynamics

Consistency: Time-delay overlaps

Point evaluation $\langle 1, \mu_0
angle = 1$ at time $t = 0^+$

History $(t, x_h(t))$ defines a curve $[-\tau, 0]$, point at $x_h(0)$ t-marginal of μ_h should be the Lebesgue measure in $[-\tau, 0]$ Treat $x(t - \tau) = x_1$ as an external input $\dot{x}_0 = f(t, x_0, x_1)$ Sum $\bar{\mu} = \bar{\mu}_0 + \bar{\mu}_1$ in times $[0, T - \tau] \cap [T - \tau, T] = [0, T]$ Based on the delay embedding $(t, x(t), x(t - \tau))$ For all test functions $v \in C^1([0, T] \times X)$:

$$\langle \mathbf{v}, \mu_{\mathbf{p}} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0}(\mathbf{x}) \rangle + \langle \mathcal{L}_{f(t, x_{0}, x_{1})} \mathbf{v}(t, x_{0}), \overline{\mu}(t, x_{0}, x_{1}) \rangle$$

Consistency Issue

Consistency Fix

Early stopping in delayed time

Consistency Constraint

Inspired by changing limits of integrals $t' \leftarrow t - \tau$

$$\begin{pmatrix} \int_0^{t^*} + \int_{t^*}^{\min(\tau, t^* + \tau)} \end{pmatrix} \phi(t, x(t - \tau)) dt \\ = \left(\int_{-\tau}^0 + \int_0^{\min(t^*, \tau - \tau)} \right) \phi(t' + \tau, x(t')) dt'.$$

Shift-push $S^{\tau}_{\#}$ with $\langle \phi, S^{\tau}_{\#} \mu \rangle = \langle S^{\tau} \phi, \mu \rangle = \langle \phi(t + \tau, x), \mu \rangle$

Consistency constraint with time-slack ν

$$\pi_{\#}^{tx_1}(\bar{\mu}_0 + \bar{\mu}_1) + \nu = S_{\#}^{\tau}(\mu_h + \pi_{\#}^{tx_0}\bar{\mu}_0).$$

Linear program for time-delay peak estimation

$$p^{*} = \sup \langle p, \mu_{p} \rangle$$
(8a)
History-Validity(μ_{0}, μ_{h}) (8b)
Liouville($\mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}$) (8c)
Consistency($\mu_{h}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (8d)
Measure Definitions for ($\mu_{h}, \mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (8e)

Largest measures $\bar{\mu}_0, \bar{\mu}_1$ have 2n + 1 variables

Time-Delay Examples

Delay Comparision

Delayed Flow System

61

Time-Varying System (Reprise)

Order 5 bound: 0.71826

Noted importance of safety quantification

Extended occupation measure methods for peak estimation

Performed data-driven analysis using robust counterparts

Adapted to non-ODE systems (Hybrid, SDE, Time-Delay)
- No-relaxation-gap for chance-peak and time-delay system
- High-order concentration inequalities
- Other time-delay models
- Lévy processes, Poisson jumps
- Distance-maximizing control
- Increased scalability, robotic systems
- Real-time computation

Safety is Important

Quantify using Peak Estimation

Published:

 J. Miller, D. Henrion, and M. Sznaier, "Peak Estimation Recovery and Safety Analysis," *IEEE Control Systems Letters*, vol. 5, no. 6, pp. 1982–1987, 2021 [link]

Conditionally Accepted:

 J. Miller and M. Sznaier, "Bounding the Distance to Unsafe Sets with Convex Optimization," (Conditionally accepted by IEEE Transactions on Automatic Control in 2022) [link]

Conference Proceedings

- J. Miller and M. Sznaier, "Bounding the Distance of Closest Approach to Unsafe Sets with Occupation Measures," in 2022 61st IEEE Conference on Decision and Control (CDC), pp. 5008–5013, 2022. [link]
- J. Miller and M. Sznaier, "Facial Input Decompositions for Robust Peak Estimation under Polyhedral Uncertainty," *IFACPapersOnLine*, vol. 55, no. 25, pp. 55–60, 2022. [link]. IFAC Young Author Award (ROCOND)
- J. Miller, D. Henrion, M. Sznaier, and M. Korda, "Peak Estimation for Uncertain and Switched Systems," in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 3222–3228, 2021. [link]. Outstanding Student Paper Award (CDC 2021)

Preprints

- J. Miller, M. Korda, V. Magron, and M. Sznaier "Peak Estimation of Time Delay Systems using Occupation Measures, " 2023. [link]
- J. Miller, M. Tacchi, M. Sznaier, and A. Jasour, "Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures," 2023. [link]
- 3. J. Miller and M. Sznaier, "Peak Estimation of Hybrid Systems with Convex Optimization, " 2023. [link]
- J. Miller and M. Sznaier "Quantifying the Safety of Trajectories using Peak-Minimizing Control," 2023. [link]
- J. Miller and M. Sznaier, "Analysis and Control of Input-Affine Dynamical Systems using Infinite-Dimensional Robust Counterparts," 2023. [link]

- Parents (Wayne and Debbie) and Family
- Mario Sznaier, Octavia Camps, RSL
- Didier Henrion, POP and MAC groups at LAAS-CNRS
- Roy Smith, IfA at ETH Zurich
- Jesús A. De Loera, ICERM
- Fred Leve, Air Force Office of Scientific Research
- Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.
- National Science Foundation, Office of Naval Research

Last but not least

The Warden

Thank you again for your attention

Thank you again for your attention

Cookies in Dana 429 (RSL)

Bonus: Data-Driven Program

Auxiliary Evaluation along Optimal Trajectory

Optimal v(t, x) should be constant until peak is achieved

Polytopic region for L_{∞} -bounded noise

2 linear constraints for each coordinate i, sample j

$$-\epsilon \leq f_0(t_j, x_j)_i + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j)_i - (\dot{x}_j)_i \leq \epsilon$$

Intersection of ellipsoids for L_2 -bounded noise

$$\|f_0(t_j, x_j) + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j) - (\dot{x}_j)\|_2 \le \epsilon$$

Robust Counterpart Theory

Semidefinite-representable uncertainty set

$$W = \bigcap_{s} \{ \exists \lambda_{s} \in \mathbb{R}^{q_{s}} : A_{s}w + G_{s}\lambda_{s} + e_{s} \in K_{s} \}$$

Lie constraint (based on Ben-Tal, Nemirovskii, 2009)

 $\mathcal{L}_f v(t, x, w) \leq 0$ $\forall (t, x, w) \in [0, T] \times X \times W.$

Nonconservative robust counterpart with multipliers ζ

$$\begin{split} \mathcal{L}_{f_0} v(t,x) + \sum_{s=1}^{N_s} e_s^T \zeta_s(t,x) &\leq 0 & \forall [0,T] \times X \\ G_s^T \zeta_s(t,x) &= 0 & \forall s = 1..N_s \\ \sum_{s=1}^{N_s} (A_s^T \zeta_s(t,x))_\ell + f_\ell(t,x) \cdot \nabla_x v(t,x) &= 0 & \forall \ell = 1..L \\ \zeta_s(t,x) \in K_s^* & \forall s = 1..N_s \end{split}$$

Peak Decomposed Program

Example: Polytopic uncertainty $W = \{w \mid Aw \le b\}$ Only the Lie Derivative constraint changes

$$d^* = \min_{\gamma \in \mathbb{R}} \gamma$$

$$\gamma \ge v(0, x) \qquad \forall x \in X_0$$

$$\mathcal{L}_{f_0} v(t, x) + b^T \zeta(t, x) \le 0 \qquad \forall (t, x) \in [0, T] \times X$$

$$(A^T)_{\ell} \zeta(t, x) = (f_{\ell} \cdot \nabla_x) v(t, x) \qquad \forall \ell = 1..L$$

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$

$$v(t, x) \in C^1([0, T] \times X)$$

$$\zeta_k(t, x) \in C_+([0, T] \times X) \qquad \forall k = 1..m$$

Peak Estimation Example (Flow)

74

Peak Estimation Example (Flow)

Consistency sets

$$Z = [0, J_{\max}] \qquad \Omega = \{(w, z) \in W \times Z : J(w) \le z\}.$$

Optimal Control Problem with auxiliary $v(t, x, z) \in C^1$

$$d^* = \sup_{\gamma \in \mathbb{R}, v} \gamma$$

$$v(0, x, z) \ge \gamma \qquad \forall (x, z) \in X_0 \times Z$$

$$v(t, x, z) \le z \qquad \forall (t, x, z) \in [0, T] \times X_u \times Z$$

$$\mathcal{L}_f v(t, x, z, w) \ge 0 \quad \forall (t, x, z, w) \in [0, T] \times X \times \Omega$$

Exploit affine structure of $J(w) = \|\Gamma w - h\|_{\infty}$

Nonconservatively robustified Lie constraint

$$\begin{aligned} d^* &= \sup_{\gamma \in \mathbb{R}, \ v} \ \gamma \\ & v(0, x, z) \geq \gamma & \forall (x, z) \in X_0 \times Z \\ & v(t, x, z) \leq z & \forall (t, x, z) \in [0, T] \times X_u \times Z \\ & \mathcal{L}_{f_0} v - (z\mathbf{1} + h)^T \zeta \geq 0 & \forall (t, x, z) \in [0, T] \times X \times [0, J_{\max}] \\ & (\Gamma^T)_{\ell} \zeta + f_{\ell} \cdot \nabla_x v = 0 & \forall \ell = 1..L \\ & \zeta_j \in C_+([0, T] \times X \times Z) & \forall j = 1..2nT. \end{aligned}$$

Every $c \in \mathbb{R}$ satisfies $c^2 \ge 0$ Sufficient: $q(x) \in \mathbb{R}[x]$ nonnegative if $q(x) = \sum_i q_i^2(x)$ Exists $v(x) \in \mathbb{R}[x]^s$, *Gram* matrix $Z \in \mathbb{S}^s_+$ with $q = v^T Z v$ Sum-of-Squares (SOS) cone $\Sigma[x]$

$$x^{2}y^{4} - 6x^{2}y^{2} + 10x^{2} + 2xy^{2} + 4xy - 6x + 4y^{2} + 1$$

=(x + 2y)² + (3x - 1 - xy²)²

Motzkin Counterexample (nonnegative but not SOS)

$$x^2y^4 + x^4y^2 - x^2y^2 + 1$$

Putinar Positivestellensatz (Psatz) nonnegativity certificate over set $\mathbb{K} = \{x \mid g_i(x) \ge 0, h_j(x) = 0\}$:

$$q(x) = \sigma_0(x) + \sum_i \sigma_i(x)g_i(x) + \sum_j \phi_j(x)h_j(x)$$
(9a)
$$\exists \sigma_0(x) \in \Sigma[x], \quad \sigma_i(x) \in \Sigma[x], \quad \phi_j \in \mathbb{R}[x].$$
(9b)

Psatz at degree 2*d* is an SDP, monomial basis: $s = \binom{n+d}{d}$ Archimedean: $\exists R \ge 0$ where $R - ||x||_2^2$ has Psatz over \mathbb{K}

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^*, x_0^*, t_p^*)$:

- x_p^* location on trajectory of closest approach
- y^* location on unsafe set of closest approach
- x_0^* initial condition to produce x_p^*
- t_p^* time to reach x_p^* from x_0^*

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\mu_0^*: \qquad \delta_{x=x_0^*} \\ \mu_p^*: \qquad \delta_{t=t_p^*} \otimes \delta_{x=x_p^*} \\ \eta^*: \qquad \delta_{x=x_p^*} \otimes \delta_{y=y^*}$$

Occupation Measure $\forall v(t, x) \in C([0, T] \times X)$

$$\mu^*$$
: $\langle v(t,x), \mu \rangle = \int_0^{t_\rho^*} v(t,x^*(t \mid x_0^*)) dt$

Hybrid Systems

State guards and transitions

 L_2 bound 0.0891: uncontrolled to boundary, controlled to sphere

Bonus: Chance-Peak

Reformulate as infinite-dimensional second-order cone program SOC set $Q^3 = \{(s, \kappa) \in \mathbb{R}^3 \times \mathbb{R}_{\geq 0} \mid \|s\|_2 \leq \kappa\}$

$$p_r^* = \sup_{z \in \mathbb{R}} rz + \langle p, \mu_\tau \rangle$$
 (10a)

$$\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger} \mu \tag{10b}$$

$$s = [1 - \langle p^2, \mu_\tau \rangle, \ 2z, \ 2\langle p, \mu_\tau \rangle]$$
(10c)

$$(s, 1 + \langle p^2, \mu_\tau \rangle) \in Q^3$$
 (10d)

$$\mu, \ \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X).$$
(10e)

Moment-SOS: $p_d^* \ge p_{d+1}^* \ge \ldots \ge p_r^* = P_r^* \ge P^*$

Bonus: Time Delay

Use moment-SOS hierarchy (Archimedean assumption) Degree *d*, dynamics degree $\tilde{d} = d + \max(\lfloor \deg f/2 \rfloor, \deg g - 1)$ Bounds: $p_d^* \ge p_{d+1}^* \ge \ldots \ge p_r^* = P_r^* \ge P^*$

Measure
$$\mu_p(t, x) \quad \mu(t, x)$$

PSD Size $\binom{1+n+d}{d} \quad \binom{1+n+\tilde{d}}{\tilde{d}}$

Timing scales approximately as $(1+n)^{6\widetilde{d}}$ or $\widetilde{d}^{4(n+1)}$

Propagation of Continuity

$$x'(t) = -2x(t) - 2x(t-1)$$

Continuity increases every τ_r time steps

Computational Complexity

Use moment-SOS hierarchy (Archimedean assumption) Degree d, dynamics degree $\widetilde{d} = d + \lfloor \deg f/2 \rfloor$

Bounds: $p_d^* \ge p_{d+1}^* \ge ... = p^* \ge P^*$

Size of Moment Matrices Peak Estimation

Timing scales approximately as $(2n+1)^{6 ilde{d}}$ or $ilde{d}^{4(2n+1)}$

SIR Peak Estimation Example

Upper bound $I_{max} \ge 56.9\%$ with order 3 LMI

Recovery: $t_* = 15.6$ days, $(S^*, I^*) = (56.9\%, 5.61\%)$

Time-Varying System

Time-Varying Histories

History restrictions and trajectories of system

Joint+Component Consistency

 (t, x_0) marginal of $\bar{\mu}$

For all test functions $\phi_0 \in C([0, T] \times X)$

$$\begin{split} \langle \phi_0(t, x_0), \bar{\mu} \rangle &= \int_0^T \phi_0(t, x(t \mid x_h)) dt \\ &= \left(\int_0^{T-\tau} + \int_{T-\tau}^T \right) \phi_0(t, x(t \mid x_h)) dt \\ &= \langle \phi_0(t, x), \nu_0 + \nu_1 \rangle \end{split}$$

Joint+Component Consistency (cont.)

 (t, x_1) marginal of $\bar{\mu}$

For all test functions $\phi_1 \in C([0, T] \times X)$

$$egin{aligned} &\langle \phi_1(t,x_1),ar{\mu}
angle &= \int_0^T \phi_1(t,x(t- au\mid x_h))dt \ &= \int_{- au}^{T- au} \phi_1(t+ au,x(t\mid x_h))dt \ &= \int_{- au}^0 \phi_1(t+ au,x_h(t))dt + \langle \phi_1(t+ au,x),
u_0
angle \end{aligned}$$

Joint+Component Experiment

Table 1: Objective values for Flow experiment

degree <i>d</i>	1	2	3	4	5
Joint+Component	1.25	1.223	1.1937	1.1751	1.1636
Standard	1.25	1.2183	1.1913	1.1727	1.1630

Table 2: Time (seconds) to obtain SDP bounds in Table 1

degree <i>d</i>	1	2	3	4	5
Joint+Component	0.782	0.991	5.271	31.885	336.509
Standard	0.937	1.190	9.508	105.777	552.496

Bonus: Measure Background
Nonnegative Borel Measure μ

Assigns each set $A \subseteq X$ a 'size' $\mu(A) \ge 0$ (Measure)

Mass $\mu(X) = \langle 1, \mu \rangle = 1$: Probability distribution

 $\mu \in \mathcal{M}_+(X)$: space of measures on X $f \in C(X)$: continuous function on XPairing by Lebesgue integration $\langle f, \mu \rangle = \int_X f(x) d\mu(x)$

Dirac delta
$$\delta_{x'}(A) = egin{cases} 1 & x' \in A \ 0 & x'
ot \in A \end{cases}$$

Probability: $\delta_{x'}(X) = 1, \ \langle f(x), \delta_{x'} \rangle = f(x')$ $\mu(A) = 1$: Solid Box $\mu(A) = 0$: Dashed Box

Rank-1 atomic measure

$$\mu = c\delta_{x'} \qquad \qquad c > 0$$

Rank-2 atomic measure

$$\mu = c_1 \delta_{x'_1} + c_2 \delta_{x'_2}$$
 $c > 0, \ x'_1 \neq x'_2$

Rank-r atomic measure

$$\mu = \sum_{i=1}^{r} c_i \delta_{x'_i} \qquad c > 0, \ \{x'_i\}_{i=1}^{r} \text{distinct}$$

Example of Measure Optimization

Optimum $\mathbb{E}_{\mu}[f] = \langle f, \mu \rangle$ at $\mu = \delta_{\mathsf{x}^*}$

Measure Optimization

Nonconvex problems could be convex in measures

$$\min_{x\in K} p(x) o \min_{\mu\in \mathcal{M}_+(K)} \langle p,\mu
angle, \quad \langle 1,\mu
angle = 1$$

 $f(\frac{1}{2}(1+(-1))) = 1$, but $\frac{1}{2}(f(1)+f(-1)) = 0$

Bonus: Approximating Measure LPs

Measure LPs are infinite-dimensional

Linear Matrix Inequality: convex problem

$$\max_{y} b^{T} y \qquad C + \sum_{i=1}^{m} A_{i} y_{i} \geq 0$$

Solve LMIs through (interior point, ADMM, etc.) Approximate infinite LPs by finite-dimensional LMIs Monomial $x^{\alpha} = \prod_{i} x_{i}^{\alpha_{i}}$ for power $\alpha \in \mathbb{N}^{n}$ Degree $|\alpha| = \sum_{i} \alpha_{i}$ α -moment of measure $y_{\alpha} = \langle y_{\alpha}, \mu \rangle$

Measure uniquely described by infinite set $\{y_{\alpha}\}_{\alpha \in \mathbb{N}^n}$

When does a sequence $\{y_{\alpha}\}_{\alpha \in \mathcal{A}}$ correspond to a measure μ ?

Linear Functional polynomial \rightarrow moments

$$f(x)
ightarrow \int_X f(x) d\mu = \int_X \sum_{lpha} f_{lpha} x^{lpha} d\mu = \sum_{lpha} f_{lpha} y_{lpha}$$

Bivariate Example

$$2 + x_1 x_2 - 3x_1^2 + x_1 x_2^3 \rightarrow 2 + y_{11} - 3y_{20} + y_{13}$$

Moment Matrices

Squares $f(x)^2$ are nonnegative (real) $f(x)^2 \ge 0$ implies that $\langle f(x)^2, \mu \rangle \ge 0 \quad \forall f \in \mathbb{R}[x]$:

$$\langle f(x)^2, \mu
angle = \int_X \sum_{lpha, eta} (f_lpha x^lpha) (f_eta x^eta) d\mu = \int_X \sum_{lpha, eta} (f_lpha f_eta x^{lpha+eta}) d\mu \ge 0$$

Moment matrix $\mathbb{M}[y] \succeq 0$ has $\mathbb{M}[y]_{\alpha,\beta} = y_{\alpha+\beta}$

$$\langle f(\mathbf{x})^2, \mu \rangle = \mathbf{f}^T \mathbb{M}[\mathbf{y}] \mathbf{f} \ge 0$$

Moments up to degree $2 \times 2 = 4$

$$\mathbb{M}_{2}[y] = \begin{cases} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{11} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} \end{cases}$$

 μ supported on set $K = \{x \mid g_i(x) \ge 0, i = 1...N\}$ $g_i(x)f(x)^2 \ge 0$ implies that $\langle g_i(x)f(x)^2, \mu \rangle \ge 0$

$$\langle g_i(x)f(x)^2,\mu\rangle = \int_X \sum_{lpha,eta,\gamma} (f_lpha f_eta g_\gamma x^{lpha+eta+\gamma}) d\mu \ge 0$$

Localizing matrix $\mathbb{M}[g_i m] \succeq 0$ has $\mathbb{M}[g_i m]_{\alpha,\beta} = \sum_{\gamma} g_{\gamma} m_{\alpha+\beta+\gamma}$ $\langle g_i(x) f(x)^2, \mu \rangle = \mathbf{f}^T \mathbb{M}[g_i y] \mathbf{f} \ge 0$ Polynomial optimization problem example :

$$p^* = \max_{x \in K} p(x) = \max_{\mu \in \mathcal{M}_+(K)} \langle p(x), \mu
angle, \quad \mu(K) = 1$$

Keep moments up to degree *d*:

$$p_d^* = \max_{y} \sum_{|\alpha| \le 2d} p_{\alpha} m_{\alpha}$$
$$\mathbb{M}_d[y], \ \mathbb{M}_{d-\deg(g_i)}[g_i y] \succeq 0$$

Finite-dimensional SDP: $\mathbb{M}_d[y]$ has size $\binom{n+d}{d}$

Bounds $p_d^* \geq p_{d+1}^* \geq p_{d+2}^* \dots$ converge to p^* as $d o \infty$

- 1. Trajectory Program
- 2. Measure LP
- 3. Moment LMI

Increase degree d of LMI to get better bounds

Prove conditions under which $\lim_{d\to\infty} p_d^* o p^* = P^*$