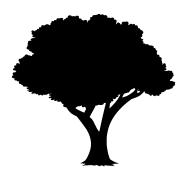
Safety Quantification for Nonlinear and Time-Delay Systems using Occupation Measures

Author: Jared Miller

Committee: Octavia Camps Didier Henrion (LAAS-CNRS) Bahram Shafai Eduardo Sontag Mario Sznaier

April 3, 2023

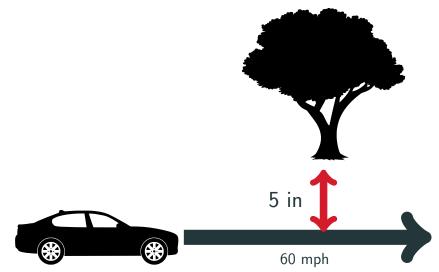
Safety Example



1

Safety Example (Barrier/Density Function)

Safety Example (Distance Estimate)

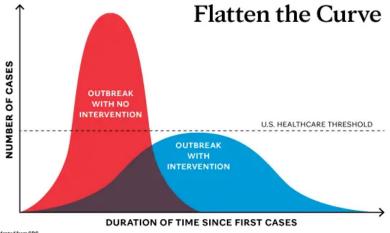


Safety Example

Safety Quantification 5 in

60 mph

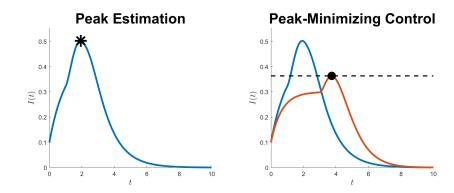
Motivation: Epidemic



Adapted from CDC

Image credit to Mayo Clinic News Network

Problems Covered



Pose safety quantification problems

Want convex, convergent, bisection-free algorithms

Formulate using convex linear programs in measures

Increasing-quality bounds using Semidefinite Programming

Peak estimation background

- 1. Survey of Thesis Work
- 2. Peak Value-at-Risk Estimation
- 3. Time-Delay Systems

Wrap-up

Peak Estimation Background

Peak Estimation Background

Find extreme value of p(x) along trajectories

$$P^* = \sup_{\substack{t, x_0 \in X_0}} p(x(t \mid x_0))$$

$$\dot{x}(t) = f(t, x(t)) \quad \forall t \in [0, T], \quad x(0) = x_0.$$

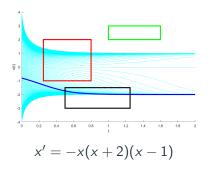
Occupation Measure

Time trajectories spend in set

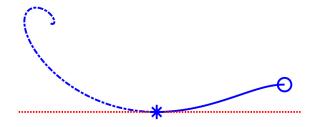
Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$



Connection to Measures



Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_0^* : & \langle v(0,x), \mu_0^* \rangle = v(0,x_0^*) \\ \mu_p^* : & \langle v(t,x), \mu_p^* \rangle = v(t_p^*,x_p^*) \\ \mu^* : & \langle v(t,x), \mu^* \rangle = \int_0^{t_p^*} v(t,x^*(t \mid x_0^*)) dt \end{split}$$

Lie derivative (instantaneous change along f) $\forall v \in C^1$:

$$\mathcal{L}_{f}v = \partial_{t}v(t,x) + f(t,x) \cdot \nabla_{x}v(t,x)$$
 (1a)

Conservation law: final = initial + accumulated change

$$\langle \mathbf{v}(t, \mathbf{x}), \mu_{p} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0} \rangle + \langle \mathcal{L}_{f} \mathbf{v}(t, \mathbf{x}), \mu \rangle$$
(1b)
$$\mu_{p} = \delta_{0} \otimes \mu_{0} + \mathcal{L}_{f}^{\dagger} \mu$$
(1c)

Liouville 'represents' dynamics $\dot{x}(t) = f(t, x(t))$

Infinite-dimensional Linear Program (Cho, Stockbridge, 2002)

$$p^* = \sup \langle p(x), \mu_p \rangle$$
 (2a)

$$\langle 1, \mu_0
angle = 1$$
 (2b)

$$\langle v(t,x), \mu_p \rangle = \langle v(0,x), \mu_0 \rangle + \langle \mathcal{L}_f v(t,x), \mu \rangle \quad \forall v \quad (2c)$$

$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X) \tag{2d}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{2e}$$

Instance of Optimal Control Program (Lewis and Vinter, 1980) $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle \leq p^*$ $P^* = p^*$ if compactness, Lipschitz properties hold

Moments for Peak Estimation

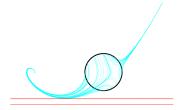
Moment: $y_{\alpha} = \langle x^{\alpha}, \nu \rangle \ \forall \alpha \in \mathbb{N}^{n}$

Moment matrix $\mathbb{M}[y]_{\alpha\beta} = y_{\alpha+\beta}$ is PSD

	<i>У</i> 00	<i>Y</i> 10	<i>Y</i> 01	<i>Y</i> 20	<i>Y</i> 11	<i>y</i> ₀₂	
$\mathbb{M}_2[y] =$	У10 У01	У ₂₀ У11	У11 У02	У ₃₀ У ₂₁	У ₂₁ У ₁₂	у ₁₂ у ₀₃	<u>≻</u> 0
	У20 У11 У02	У ₃₀ У21 У12	У21 У12 У03	У40 У31 У22	У ₃₁ У22 У13	У11 У13 У04	

Liouville induces affine relation in $(\mu^0,\mu^p,\mu)
ightarrow (y^0,y^p,y)$

Peak Estimation Example Bounds



Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$ Max. PSD size: $\binom{(n+1)+(d+\lfloor \deg f/2 \rfloor)}{n+1}$ (Fantuzzi, Goluskin, 2020)

Survey of Thesis Work

Distance Estimation Problem

Unsafe set X_{μ} , point-set distance $c(x; X_{\mu}) = \inf_{y \in X_{\mu}} c(x, y)$ $P^* = \inf_{t, x_0 \in X_0} c(x(t \mid x_0); X_u)$ $\dot{x}(t) = f(t, x(t))$ $\forall t \in [0, T], x(0) = x_0.$

L₂ bound of 0.2831

Distance Program (Measures)

Infinite Dimensional Linear Program (Convergent)

$$p^* = \inf \langle c(x,y), \eta(x,y) \rangle$$
 (3a)

$$\langle 1, \mu_0 \rangle = 1$$
 (3b)

$$\langle \mathbf{v}(t,x), \mu_p \rangle = \langle \mathbf{v}(0,x), \mu_0 \rangle + \langle \mathcal{L}_f \mathbf{v}(t,x), \mu \rangle \quad \forall \mathbf{v} \quad (3c)$$

$$\langle w(x), \eta(x, y) \rangle = \langle w(x), \mu_{P}(t, x) \rangle$$
 $\forall w$ (3d)

$$\eta \in \mathcal{M}_+(X \times X_u) \tag{3e}$$

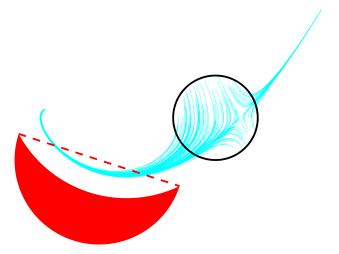
$$\mu_{\rho}, \ \mu \in \mathcal{M}_{+}([0, T] \times X)$$
(3f)

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{3g}$$

Probability measures: (μ_0, μ_p, η)

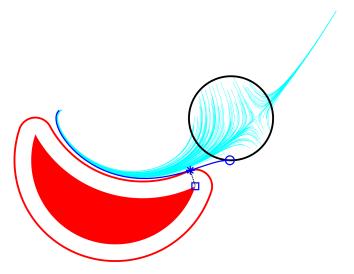
Near-optimal trajectories if moment-matrix pprox rank-1

Distance Example (Flow Moon)



Collision if X_u was a half-circle

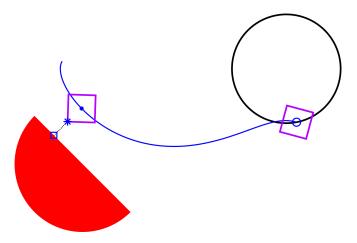
Distance Example (Flow Moon)



 L_2 bound of 0.1592

Safety of Shapes

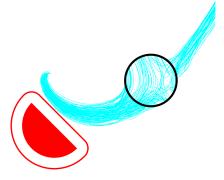
Points on shape S with orientation ω (e.g., rigid body motion)



 L_2 bound of 0.1465, rotating square

Distance with Bounded Uncertainty

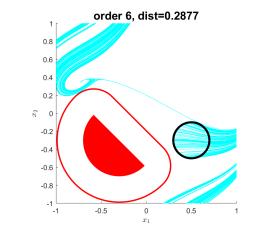
Dynamics $\dot{x}(t) = f(t, x(t), w(t))$ with $w(t) \in W$ Young measure $\mu(t, x, w)$, Liouville term $\langle \mathcal{L}_f v(t, x, w), \mu \rangle$



 L_2 bound of 0.1691, $w(t) \in [-1, 1]$

Hybrid Systems

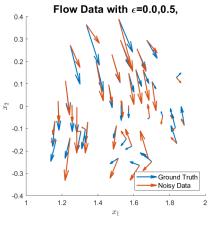
Continuous dynamics with discrete jumps/transitions



 $R_{\text{left} \rightarrow \text{bottom}} = [1 - x_2; x_1], \qquad R_{\text{right} \rightarrow \text{top}} = [x_2; x_1]$

Sampling: Flow System

Data $\mathcal{D} = \{(t_j, x_j, \dot{x}_j)\}_j$ under mixed L_∞ -bounded noise



 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3]$

Given data \mathcal{D} , budget ϵ , system model $\{f_0, f_\ell\}$ Parameterize ground truth F by functions in dictionary

$$\dot{x}(t)=f(t,x,w)=f_0(t,x)+\sum_{\ell=1}^L w_\ell f_\ell(t,x)$$

Ground truth satisfies corruption $J(w^*) \leq \epsilon$

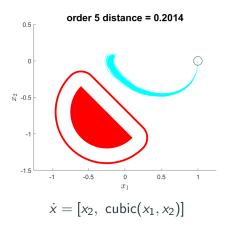
$$L_\infty$$
 example: $J(w) = \max_j \|f(t_j, x_j, w) - \dot{x}_j\|_\infty$

Distance Estimation Example (Flow)

Input-affine + Semidefinite Representable uncertainty

 $\mathcal{L}_f v(t, x, w) \leq 0 \qquad \forall (t, x, w) \in [0, T] \times X \times W$

PSD Size 8568 \rightarrow 56 (L = 10) using robust counterparts



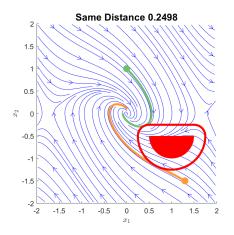
How much data corruption is needed to crash?

$$Q^{*} = \inf_{t^{*}, x_{0}, w} \left[\sup_{t \in [0, t^{*}]} J(w(t)) \right]$$
$$\dot{x}(t) = f(t, x(t), w(t)) \qquad \forall t \in [0, t^{*}]$$
$$x(t \mid x_{0}, w(\cdot)) \in X_{u}$$
$$w(\cdot) \in W, \ t^{*} \in [0, T], \ x_{0} \in X_{0}$$

Model safe if $Q^* > \epsilon$

Example Crash-Bounds

Two trajectories have same distance, different crash-bounds



Green-Top $Q^* = 0.316$, Yellow-Bottom $Q^* = 0.622$

Peak-Minimizing Control

Add state $\dot{z} = 0$ (Molina, Rapaport, Ramírez 2022)

$$Q_{z}^{*} = \inf_{t^{*}, x_{0}, z, w} z$$
(4a)

$$\dot{x}(t) = f(t, x(t), w(t)) \quad \forall t \in [0, t^{*}]$$
(4b)

$$\dot{z}(t) = 0 \quad \forall t \in [0, t^{*}]$$
(4c)

$$J(w(t)) \leq z \quad \forall t \in [0, t^{*}]$$
(4d)

$$x(t^{*} \mid x_{0}, w(\cdot)) \in X_{u}$$
(4e)

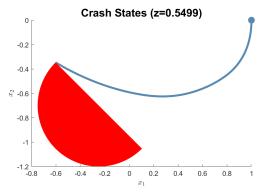
$$w(\cdot) \in W, t^{*} \in [0, T]$$
(4f)

$$x_{0} \in X_{0}, z \in [0, J_{max}]$$
(4g)

Equivalent formulation, $Q^* = Q_z^*$

Data-Driven Flow Crash-Bound

CasADi matches degree-4 moment-SOS crash bound



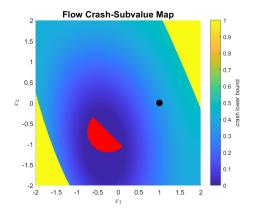
Terminal measure $\mu_p \in \mathcal{M}_+([0, T] \times X_u)$

True $\epsilon = 0.5 < 0.5499$, distance ≈ 0.2014

Flow Crash-Subvalue

Piecewise-polynomial subvalue for crash-safety

Based on Joint+Marginal optimization (Lasserre, 2010)



Bound of 0.3399 \leq 0.5499, but valid everywhere in X

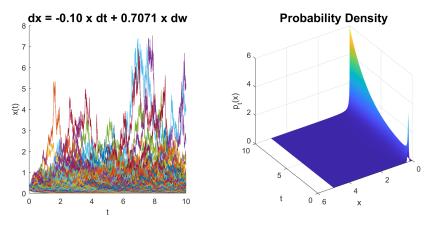
Peak Value-at-Risk Estimation

with M. Tacchi, M. Sznaier, A. Jasour

Stochastic Differential Equation

Multivariate SDE dx = f(t, x)dt + g(t, x)dw (Itô)

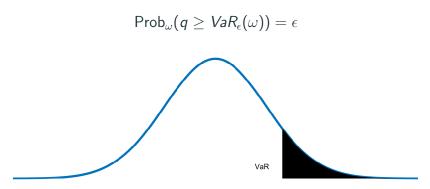
Drift f and Diffusion g



Geometric Brownian Motion

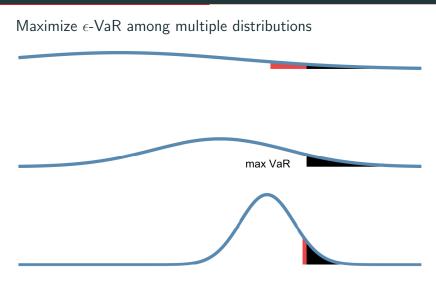
Value-at-Risk (Quantile)

 ϵ -VaR of univariate measure $\omega(q)$ is unique number with



VaR = 1.282 for unit normal distribution at $\epsilon = 10\%$

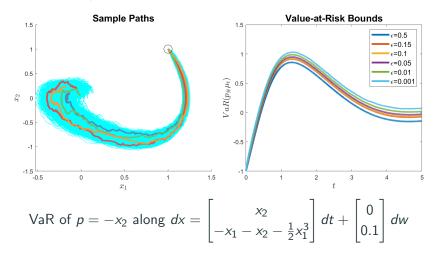
Maximal Value at Risk



Red + Black areas = 10% probability

Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, $\Delta t = 10^{-3}$



Maximize VaR of p(x) along SDE trajectories

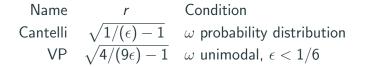
 $p_{\#}\mu_{t^*}$: distribution of p(x(t)) at time t^*

$$P^* = \sup_{t^* \in [0,T]} VaR_{\epsilon}(p_{\#}\mu_{t^*})$$
(5a)
$$dx = f(t,x)dt + g(t,x)dw$$
(5b)
stopping time of min(t^{*}, exit from X) (5c)

 $x(0) \sim \mu_0.$ (5d)

Concentration inequalities can upper-bound VaR

$$VaR_{\epsilon}(\omega) \leq \operatorname{stdev}(\omega)r + \operatorname{mean}(\omega)$$



Coherent Risk Measures (e.g., CVaR) can also bound VaR

Apply concentration inequalities to get upper bound $P_r^* \ge P^*$ Objective upper-bounds VaR w.r.t. time- t^* distribution μ_{t^*}

$$P_{r}^{*} = \sup_{t^{*} \in [0,T]} r \sqrt{\langle p^{2}, \mu_{t^{*}} \rangle - \langle p, \mu_{t^{*}} \rangle^{2}} + \langle p, \mu_{t^{*}} \rangle$$
(6a)
$$dx = f(t,x)dt + g(t,x)dw$$
(6b)
$$stopping time of min(t^{*}, exit from X)$$
(6c)
$$x(0) \sim \mu_{0}.$$
(6d)

Max-Mean: $\epsilon = 0.5$, r = 0 (Cho, Stockbridge, 2002)

Occupation measure μ , terminal measure $\mu_{ au}$

Second-Order Cone Program in measures (3d SOC)

$$p_r^* = \sup r \sqrt{\langle p^2, \mu_\tau \rangle - \langle p, \mu_\tau \rangle^2} + \langle p, \mu_\tau \rangle$$
 (7a)

$$\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger} \mu \tag{7b}$$

$$\mu_{\tau}, \ \mu \in \mathcal{M}_+([0, T] \times X) \tag{7c}$$

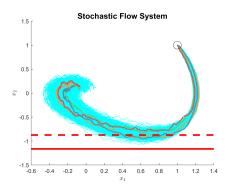
Generator $\mathcal{L}v = \partial_t v + f \cdot \nabla_x v + g^T (\nabla^2_{xx} v)g/2$ (Dynkin's) Results in upper-bound $p_r^* \ge P_r^* \ge P^*$, use moments

Chance-Peak Examples

Two-State

Stochastic Flow system from Prajna, Rantzer with T = 5

$$dx = \begin{bmatrix} x_2 \\ -x_1 - x_2 - \frac{1}{2}x_1^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} dw.$$

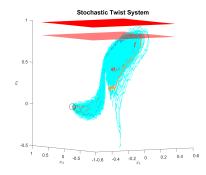


Maximize $-x_2$ with d = 6 (dashed=50%, solid=85% [ours])

Three-State

Stochasic Twist system with T = 5

$$dx = \begin{bmatrix} -2.5x_1 + x_2 - 0.5x_3 + 2x_1^3 + 2x_3^3 \\ -x_1 + 1.5x_2 + 0.5x_3 - 2x_2^3 - 2x_3^3 \\ 1.5x_1 + 2.5x_2 - 2x_3 - 2x_1^3 - 2x_2^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0 \\ 0.1 \end{bmatrix} dw.$$

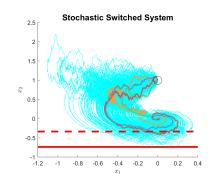


Maximize x_3 with d = 6 (translucent=50%, solid=85%) 40

Two-State Switching

Switching subsystems at T = 5

$$dx = \left\{ \begin{bmatrix} -2.5x_1 - 2x_2 \\ -0.5x_1 - x_2 \end{bmatrix}, \begin{bmatrix} -x_1 - 2x_2 \\ 2.5x_1 - x_2 \end{bmatrix} \right\} dt + \begin{bmatrix} 0 \\ 0.25x_2 \end{bmatrix} dw$$

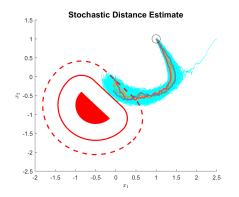


Maximize $-x_2$ with d = 6 (dashed=50%, solid=85%)

Two-State Distance

Half-circle unsafe set X_u

Based on distance estimation program



Minimize L_2 distance to X_u with d = 6 (dashed=50%, solid=85%)

Time-Delay Peak Estimation

with M. Korda, V. Magron, M. Sznaier

Time-Delay Examples

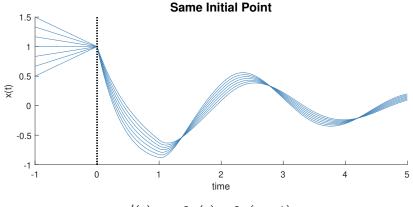
Delay between state change and its effect on system

$$\dot{x}(t) = f(t, x(t), x(t - \tau)) \qquad \forall t \in [0, T]$$

 $x(s) = x_h(s) \qquad \forall s \in [-\tau, 0]$

System	Delay
Epidemic	Incubation Period
Population	Gestation Time
Traffic	Reaction Time
Congestion	Queue Time
Fluid Flow	Moving in Pipe

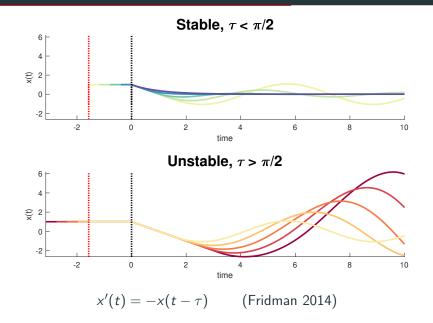
Dependence on History



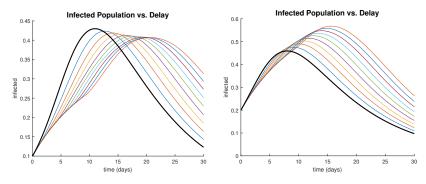
$$x'(t) = -2x(t) - 2x(t-1)$$

All trajectories pass through (t, x) = (0, 1)Initial history determines behavior, not just initial point

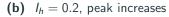
Delay Bifurcation Example



Peak Value vs. Delay



(a) $I_h = 0.1$, peak decreases



$$\begin{bmatrix} S'(t) \\ I'(t) \end{bmatrix} = \begin{bmatrix} -0.4S(t)I(t) \\ 0.4S(t-\tau)I(t-\tau) - 0.1I(t) \end{bmatrix}$$

History $x_h(t)$ resides in a class of functions \mathcal{H}

Graph-constrained \mathcal{H} : $(t, x_h(t))$ contained in $H_0 \subset [-\tau, 0] \times X$

$$P^* = \sup_{\substack{t^*, x_h}} p(x(t^*))$$

$$\dot{x} = f(t, x(t), x(t - \tau)) \qquad t \in [0, t^*]$$

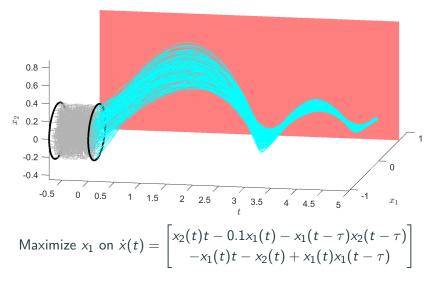
$$x(t) = x_h(t) \qquad t \in [-\tau, 0]$$

$$x_h(\cdot) \in \mathcal{H}$$

Represent $x(t \mid x_h) : t \in [-\tau, t^*]$ as occupation measure

Time-Varying Preview

Order 5 bound: 0.71826



Existing Methods (very brief)

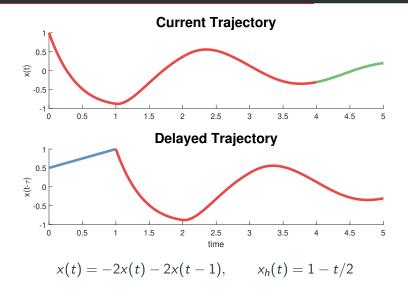
Certificates of Stability

- Lyapunov-Krasovskii
- Razumikhin
- LMI, Wirtinger
- ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2) Fixed-terminal-time OCP with gridding (Barati 2012) SOS Barrier (Papachristodoulou and Peet, 2010) Riesz Operators (Magron and Prieur, 2020)

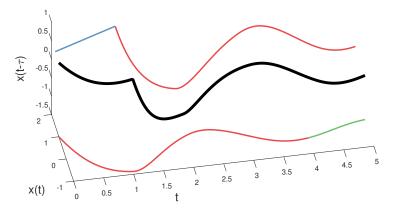
Time-Delay Measure Program

Time-Delay Visualization



Time-Delay Embedding

Delay Embedding



Black curve: $(t, x(t), x(t - \tau))$

Tuple of measures for the delayed case

Peak Initial History Occupation Start Occupation End Time-Slack $\mu_{p} \in \mathcal{M}_{+}([0, T] \times X)$ $\mu_{0} \in \mathcal{M}_{+}(X_{0})$ $\mu_{h} \in \mathcal{M}_{+}(H_{0})$ $\bar{\mu}_{0} \in \mathcal{M}_{+}([0, T - \tau] \times X^{2})$ $\bar{\mu}_{1} \in \mathcal{M}_{+}([T - \tau, T] \times X^{2})$ $\nu \in \mathcal{M}_{+}([0, T] \times X)$

Initial Conditions

Liouville: Dynamics

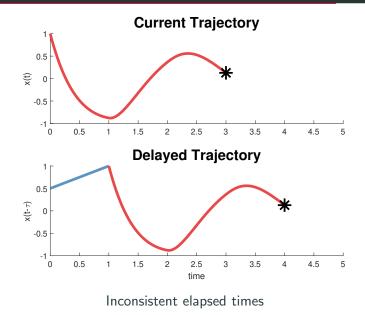
Consistency: Time-delay overlaps

Point evaluation $\langle 1, \mu_0
angle = 1$ at time $t = 0^+$

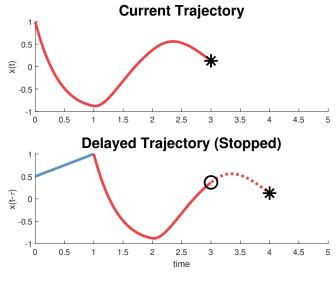
History $(t, x_h(t))$ defines a curve $[-\tau, 0]$, point at $x_h(0)$ t-marginal of μ_h should be the Lebesgue measure in $[-\tau, 0]$ Treat $x(t - \tau) = x_1$ as an external input $\dot{x}_0 = f(t, x_0, x_1)$ Sum $\bar{\mu} = \bar{\mu}_0 + \bar{\mu}_1$ in times $[0, T - \tau] \cap [T - \tau, T] = [0, T]$ Based on the delay embedding $(t, x(t), x(t - \tau))$ For all test functions $v \in C^1([0, T] \times X)$:

$$\langle \mathbf{v}, \mu_{\mathbf{p}} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0}(\mathbf{x}) \rangle + \langle \mathcal{L}_{f(t, x_{0}, x_{1})} \mathbf{v}(t, x_{0}), \overline{\mu}(t, x_{0}, x_{1}) \rangle$$

Consistency Issue



Consistency Fix



Early stopping in delayed time

Consistency Constraint

Inspired by changing limits of integrals $t' \leftarrow t - \tau$

$$\begin{pmatrix} \int_0^{t^*} + \int_{t^*}^{\min(\tau, t^* + \tau)} \end{pmatrix} \phi(t, x(t - \tau)) dt \\ = \left(\int_{-\tau}^0 + \int_0^{\min(t^*, \tau - \tau)} \right) \phi(t' + \tau, x(t')) dt'.$$

Shift-push $S^{\tau}_{\#}$ with $\langle \phi, S^{\tau}_{\#} \mu \rangle = \langle S^{\tau} \phi, \mu \rangle = \langle \phi(t + \tau, x), \mu \rangle$

Consistency constraint with time-slack ν

$$\pi_{\#}^{tx_1}(\bar{\mu}_0 + \bar{\mu}_1) + \nu = S_{\#}^{\tau}(\mu_h + \pi_{\#}^{tx_0}\bar{\mu}_0).$$

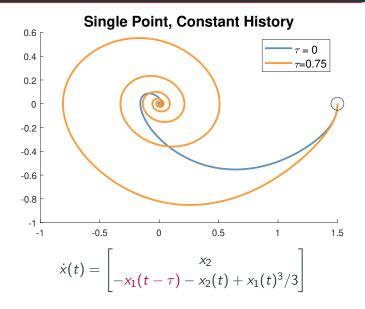
Linear program for time-delay peak estimation

$$p^{*} = \sup \langle p, \mu_{p} \rangle$$
(8a)
History-Validity(μ_{0}, μ_{h}) (8b)
Liouville($\mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}$) (8c)
Consistency($\mu_{h}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (8d)
Measure Definitions for ($\mu_{h}, \mu_{0}, \mu_{p}, \bar{\mu}_{0}, \bar{\mu}_{1}, \nu$) (8e)

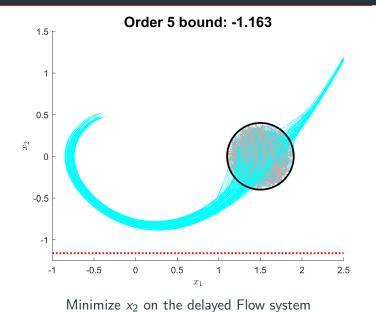
Largest measures $\bar{\mu}_0, \bar{\mu}_1$ have 2n + 1 variables

Time-Delay Examples

Delay Comparision



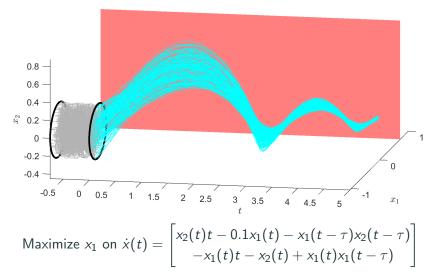
Delayed Flow System



61

Time-Varying System (Reprise)

Order 5 bound: 0.71826



Noted importance of safety quantification

Extended occupation measure methods for peak estimation

Performed data-driven analysis using robust counterparts

Adapted to non-ODE systems (Hybrid, SDE, Time-Delay)

- No-relaxation-gap for chance-peak and time-delay system
- High-order concentration inequalities
- Other time-delay models
- Lévy processes, Poisson jumps
- Distance-maximizing control
- Increased scalability, robotic systems
- Real-time computation

Safety is Important

Quantify using Peak Estimation

Published:

 J. Miller, D. Henrion, and M. Sznaier, "Peak Estimation Recovery and Safety Analysis," *IEEE Control Systems Letters*, vol. 5, no. 6, pp. 1982–1987, 2021 [link]

Conditionally Accepted:

 J. Miller and M. Sznaier, "Bounding the Distance to Unsafe Sets with Convex Optimization," (Conditionally accepted by IEEE Transactions on Automatic Control in 2022) [link]

Conference Proceedings

- J. Miller and M. Sznaier, "Bounding the Distance of Closest Approach to Unsafe Sets with Occupation Measures," in 2022 61st IEEE Conference on Decision and Control (CDC), pp. 5008–5013, 2022. [link]
- J. Miller and M. Sznaier, "Facial Input Decompositions for Robust Peak Estimation under Polyhedral Uncertainty," *IFACPapersOnLine*, vol. 55, no. 25, pp. 55–60, 2022. [link]. IFAC Young Author Award (ROCOND)
- J. Miller, D. Henrion, M. Sznaier, and M. Korda, "Peak Estimation for Uncertain and Switched Systems," in 2021 60th IEEE Conference on Decision and Control (CDC), pp. 3222–3228, 2021. [link]. Outstanding Student Paper Award (CDC 2021)

Preprints

- J. Miller, M. Korda, V. Magron, and M. Sznaier "Peak Estimation of Time Delay Systems using Occupation Measures, " 2023. [link]
- J. Miller, M. Tacchi, M. Sznaier, and A. Jasour, "Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures," 2023. [link]
- 3. J. Miller and M. Sznaier, "Peak Estimation of Hybrid Systems with Convex Optimization, " 2023. [link]
- J. Miller and M. Sznaier "Quantifying the Safety of Trajectories using Peak-Minimizing Control," 2023. [link]
- J. Miller and M. Sznaier, "Analysis and Control of Input-Affine Dynamical Systems using Infinite-Dimensional Robust Counterparts," 2023. [link]

- Parents (Wayne and Debbie) and Family
- Mario Sznaier, Octavia Camps, RSL
- Didier Henrion, POP and MAC groups at LAAS-CNRS
- Roy Smith, IfA at ETH Zurich
- Jesús A. De Loera, ICERM
- Fred Leve, Air Force Office of Scientific Research
- Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.
- National Science Foundation, Office of Naval Research

Last but not least

The Warden

Thank you again for your attention

Thank you again for your attention

Cookies in Dana 429 (RSL)