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Safety Example
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Safety Example (Barrier/Density Function)
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Safety Example (Distance Estimate)
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Safety Example

Safety
Quantification
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Motivation: Epidemic

Image credit to Mayo Clinic News Network
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Problems Covered
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Main Ideas

Pose safety quantification problems

Want convex, convergent, bisection-free algorithms

Formulate using convex linear programs in measures

Increasing-quality bounds using Semidefinite Programming
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Overview of Presentation

Peak estimation background

1. Survey of Thesis Work

2. Peak Value-at-Risk Estimation

3. Time-Delay Systems

Wrap-up
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Peak Estimation Background



Peak Estimation Background

Find extreme value of p(x) along trajectories

P∗ = sup
t, x0∈X0

p(x(t | x0))

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

p(x) = −x2, ẋ = [x2,−x1 − x2 + x31/3]
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Occupation Measure

Time trajectories spend in set

Test function

v(t, x) ∈ C ([0,T ]× X )

Single trajectory:

⟨v , µ⟩ =
∫ T

0
v(t, x(t | x0))dt

Averaged trajectory: ⟨v , µ⟩ =∫
X

(∫ T

0
v(t, x)dt

)
dµ0(x)

x ′ = −x(x + 2)(x − 1)
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Connection to Measures

Measures: Initial µ0, Peak µp, Occupation µ

For all functions v(t, x) ∈ C ([0,T ]× X )

µ∗
0 : ⟨v(0, x), µ∗

0⟩ = v(0, x∗0 )

µ∗
p : ⟨v(t, x), µ∗

p⟩ = v(t∗p , x
∗
p )

µ∗ : ⟨v(t, x), µ∗⟩ =
∫ t∗p
0

v(t, x∗(t | x∗0 ))dt
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Liouville Equation

Lie derivative (instantaneous change along f ) ∀v ∈ C 1:

Lf v = ∂tv(t, x) + f (t, x) · ∇xv(t, x) (1a)

Conservation law: final = initial + accumulated change

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ (1b)

µp = δ0 ⊗ µ0 + L†
f µ (1c)

Liouville ‘represents’ dynamics ẋ(t) = f (t, x(t))
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Measures for Peak Estimation

Infinite-dimensional Linear Program (Cho, Stockbridge, 2002)

p∗ = sup ⟨p(x), µp⟩ (2a)

⟨1, µ0⟩ = 1 (2b)

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ ∀v (2c)

µ, µp ∈M+([0,T ]× X ) (2d)

µ0 ∈M+(X0) (2e)

Instance of Optimal Control Program (Lewis and Vinter, 1980)

(µ∗
0, µ

∗
p, µ

∗) is feasible with P∗ = ⟨p(x), µ∗
p⟩ ≤ p∗

P∗ = p∗ if compactness, Lipschitz properties hold
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Moments for Peak Estimation

Moment: yα = ⟨xα, ν⟩ ∀α ∈ Nn

Moment matrix M[y ]αβ = yα+β is PSD

M2[y ] =



y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12
y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y11
y11 y21 y12 y31 y22 y13
y02 y12 y03 y22 y13 y04


⪰ 0

Liouville induces affine relation in (µ0, µp, µ)→ (y 0, yp, y)
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Peak Estimation Example Bounds

Converging bounds to min. x2 = −0.5734 (moment-SOS)

Box region X = [−2.5, 2.5], time t ∈ [0, 5]

Max. PSD size:
(
(n+1)+(d+⌊deg f /2⌋)

n+1

)
(Fantuzzi, Goluskin, 2020)
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Survey of Thesis Work



Distance Estimation Problem

Unsafe set Xu, point-set distance c(x ;Xu) = infy∈Xu c(x , y)

P∗ = inf
t, x0∈X0

c(x(t | x0);Xu)

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

L2 bound of 0.2831 16



Distance Program (Measures)

Infinite Dimensional Linear Program (Convergent)

p∗ = inf ⟨c(x , y), η(x , y)⟩ (3a)

⟨1, µ0⟩ = 1 (3b)

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ ∀v (3c)

⟨w(x), η(x , y)⟩ = ⟨w(x), µp(t, x)⟩ ∀w (3d)

η ∈M+(X × Xu) (3e)

µp, µ ∈M+([0,T ]× X ) (3f)

µ0 ∈M+(X0) (3g)

Probability measures: (µ0, µp, η)

Near-optimal trajectories if moment-matrix ≈ rank-1
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Distance Example (Flow Moon)

Collision if Xu was a half-circle
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Distance Example (Flow Moon)

L2 bound of 0.1592
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Safety of Shapes

Points on shape S with orientation ω (e.g., rigid body motion)

L2 bound of 0.1465, rotating square
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Distance with Bounded Uncertainty

Dynamics ẋ(t) = f (t, x(t),w(t)) with w(t) ∈ W

Young measure µ(t, x ,w), Liouville term ⟨Lf v(t, x ,w), µ⟩

L2 bound of 0.1691, w(t) ∈ [−1, 1]
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Hybrid Systems

Continuous dynamics with discrete jumps/transitions

Rleft→bottom = [1− x2; x1], Rright→top = [x2; x1]
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Sampling: Flow System

Data D = {(tj , xj , ẋj)}j under mixed L∞-bounded noise

ẋ = [x2,−x1 − x2 + x31/3]
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Dynamics Model

Given data D, budget ϵ, system model {f0, fℓ}

Parameterize ground truth F by functions in dictionary

ẋ(t) = f (t, x ,w) = f0(t, x) +
L∑

ℓ=1

wℓfℓ(t, x)

Ground truth satisfies corruption J(w ∗) ≤ ϵ

L∞ example: J(w) = maxj∥f (tj , xj ,w)− ẋj∥∞
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Distance Estimation Example (Flow)

Input-affine + Semidefinite Representable uncertainty

Lf v(t, x ,w) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

PSD Size 8568→ 56 (L = 10) using robust counterparts

ẋ = [x2, cubic(x1, x2)] 25



Crash-Safety

How much data corruption is needed to crash?

Q∗ = inf
t∗, x0, w

[
sup

t∈[0,t∗]
J(w(t))

]
ẋ(t) = f (t, x(t),w(t)) ∀t ∈ [0, t∗]

x(t | x0,w(·)) ∈ Xu

w(·) ∈ W , t∗ ∈ [0,T ], x0 ∈ X0

Model safe if Q∗ > ϵ
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Example Crash-Bounds

Two trajectories have same distance, different crash-bounds

Green-Top Q∗ = 0.316, Yellow-Bottom Q∗ = 0.622
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Peak-Minimizing Control

Add state ż = 0 (Molina, Rapaport, Raḿırez 2022)

Q∗
z = inf

t∗, x0, z, w
z (4a)

ẋ(t) = f (t, x(t),w(t)) ∀t ∈ [0, t∗] (4b)

ż(t) = 0 ∀t ∈ [0, t∗] (4c)

J(w(t)) ≤ z ∀t ∈ [0, t∗] (4d)

x(t∗ | x0,w(·)) ∈ Xu (4e)

w(·) ∈ W , t∗ ∈ [0,T ] (4f)

x0 ∈ X0, z ∈ [0, Jmax] (4g)

Equivalent formulation, Q∗ = Q∗
z
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Data-Driven Flow Crash-Bound

CasADi matches degree-4 moment-SOS crash bound

Terminal measure µp ∈M+([0,T ]× Xu)

True ϵ = 0.5 < 0.5499, distance ≈ 0.2014
29



Flow Crash-Subvalue

Piecewise-polynomial subvalue for crash-safety

Based on Joint+Marginal optimization (Lasserre, 2010)

Bound of 0.3399 ≤ 0.5499, but valid everywhere in X
30



Peak Value-at-Risk Estimation

with M. Tacchi, M. Sznaier, A. Jasour



Stochastic Differential Equation

Multivariate SDE dx = f (t, x)dt + g(t, x)dw (Itô)

Drift f and Diffusion g

Geometric Brownian Motion 31



Value-at-Risk (Quantile)

ϵ-VaR of univariate measure ω(q) is unique number with

Probω(q ≥ VaRϵ(ω)) = ϵ

VaR = 1.282 for unit normal distribution at ϵ = 10%
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Maximal Value at Risk

Maximize ϵ-VaR among multiple distributions

Red + Black areas = 10% probability
33



Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, ∆t = 10−3

VaR of p = −x2 along dx =

[
x2

−x1 − x2 − 1
2x

3
1

]
dt +

[
0

0.1

]
dw
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Chance-Peak Problem

Maximize VaR of p(x) along SDE trajectories

p#µt∗ : distribution of p(x(t)) at time t∗

P∗ = sup
t∗∈[0,T ]

VaRϵ(p#µt∗) (5a)

dx = f (t, x)dt + g(t, x)dw (5b)

stopping time of min(t∗, exit from X ) (5c)

x(0) ∼ µ0. (5d)
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Value-at-Risk Bounds

Concentration inequalities can upper-bound VaR

VaRϵ(ω) ≤ stdev(ω)r +mean(ω)

Name r Condition

Cantelli
√

1/(ϵ)− 1 ω probability distribution

VP
√
4/(9ϵ)− 1 ω unimodal, ϵ < 1/6

Coherent Risk Measures (e.g., CVaR) can also bound VaR
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Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound P∗
r ≥ P∗

Objective upper-bounds VaR w.r.t. time-t∗ distribution µt∗

P∗
r = sup

t∗∈[0,T ]

r
√
⟨p2, µt∗⟩ − ⟨p, µt∗⟩2 + ⟨p, µt∗⟩ (6a)

dx = f (t, x)dt + g(t, x)dw (6b)

stopping time of min(t∗, exit from X ) (6c)

x(0) ∼ µ0. (6d)

Max-Mean: ϵ = 0.5, r = 0 (Cho, Stockbridge, 2002)
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Occupation Measure Formulation

Occupation measure µ, terminal measure µτ

Second-Order Cone Program in measures (3d SOC)

p∗r =sup r
√
⟨p2, µτ ⟩ − ⟨p, µτ ⟩2 + ⟨p, µτ ⟩ (7a)

µτ = δ0 ⊗ µ0 + L†µ (7b)

µτ , µ ∈M+([0,T ]× X ) (7c)

Generator Lv = ∂tv + f · ∇xv + gT (∇2
xxv)g/2 (Dynkin’s)

Results in upper-bound p∗r ≥ P∗
r ≥ P∗, use moments
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Chance-Peak Examples



Two-State

Stochastic Flow system from Prajna, Rantzer with T = 5

dx =

[
x2

−x1 − x2 − 1
2
x31

]
dt +

[
0

0.1

]
dw .

Maximize −x2 with d = 6 (dashed=50%, solid=85% [ours])
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Three-State

Stochasic Twist system with T = 5

dx =

−2.5x1 + x2 − 0.5x3 + 2x31 + 2x33
−x1 + 1.5x2 + 0.5x3 − 2x32 − 2x33
1.5x1 + 2.5x2 − 2x3 − 2x31 − 2x32

 dt +

 0

0

0.1

 dw .

Maximize x3 with d = 6 (translucent=50%, solid=85%) 40



Two-State Switching

Switching subsystems at T = 5

dx =

{[
−2.5x1 − 2x2
−0.5x1 − x2

]
,

[
−x1 − 2x2
2.5x1 − x2

]}
dt +

[
0

0.25x2

]
dw

Maximize −x2 with d = 6 (dashed=50%, solid=85%)
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Two-State Distance

Half-circle unsafe set Xu

Based on distance estimation program

Minimize L2 distance to Xu with d = 6 (dashed=50%, solid=85%)
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Time-Delay Peak Estimation

with M. Korda, V. Magron, M. Sznaier



Time-Delay Examples

Delay between state change and its effect on system

ẋ(t) = f (t, x(t), x(t − τ)) ∀t ∈ [0,T ]

x(s) = xh(s) ∀s ∈ [−τ, 0]

System Delay

Epidemic Incubation Period

Population Gestation Time

Traffic Reaction Time

Congestion Queue Time

Fluid Flow Moving in Pipe

43



Dependence on History
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time

-1

-0.5

0

0.5

1

1.5

x
(t

)

Same Initial Point

x ′(t) = −2x(t)− 2x(t − 1)

All trajectories pass through (t, x) = (0, 1)

Initial history determines behavior, not just initial point 44



Delay Bifurcation Example

-2 0 2 4 6 8 10

time
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time
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x ′(t) = −x(t − τ) (Fridman 2014) 45



Peak Value vs. Delay
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(a) Ih = 0.1, peak decreases
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(b) Ih = 0.2, peak increases

[
S ′(t)

I ′(t)

]
=

[
−0.4S(t)I (t)

0.4S(t − τ)I (t − τ)− 0.1I (t)

]
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Peak Estimation of Time-Delay Systems

History xh(t) resides in a class of functions H

Graph-constrained H : (t, xh(t)) contained in H0 ⊂ [−τ, 0]×X

P∗ = sup
t∗, xh

p(x(t∗))

ẋ = f (t, x(t), x(t − τ)) t ∈ [0, t∗]

x(t) = xh(t) t ∈ [−τ, 0]
xh(·) ∈ H

Represent x(t | xh) : t ∈ [−τ, t∗] as occupation measure
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Time-Varying Preview

Maximize x1 on ẋ(t) =

[
x2(t)t − 0.1x1(t)− x1(t − τ)x2(t − τ)

−x1(t)t − x2(t) + x1(t)x1(t − τ)

]
48



Existing Methods (very brief)

Certificates of Stability

• Lyapunov-Krasovskii

• Razumikhin

• LMI, Wirtinger

• ODE-Transport PDE

Relaxed control (Warga 1974, Vinter and Rosenblueth 1991-2)

Fixed-terminal-time OCP with gridding (Barati 2012)

SOS Barrier (Papachristodoulou and Peet, 2010)

Riesz Operators (Magron and Prieur, 2020)

49



Time-Delay Measure Program



Time-Delay Visualization
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Delayed Trajectory

x(t) = −2x(t)− 2x(t − 1), xh(t) = 1− t/2
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Time-Delay Embedding

Delay Embedding
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Black curve: (t, x(t), x(t − τ))
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Measure-Valued Solution

Tuple of measures for the delayed case

Peak µp ∈M+([0,T ]× X )

Initial µ0 ∈M+(X0)

History µh ∈M+(H0)

Occupation Start µ̄0 ∈M+([0,T − τ ]× X 2)

Occupation End µ̄1 ∈M+([T − τ,T ]× X 2)

Time-Slack ν ∈M+([0,T ]× X )
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Types of Constraints

Initial Conditions

Liouville: Dynamics

Consistency: Time-delay overlaps

53



Initial Conditions

Point evaluation ⟨1, µ0⟩ = 1 at time t = 0+

History (t, xh(t)) defines a curve [−τ, 0], point at xh(0)

t-marginal of µh should be the Lebesgue measure in [−τ, 0]
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Liouville

Treat x(t − τ) = x1 as an external input ẋ0 = f (t, x0, x1)

Sum µ̄ = µ̄0 + µ̄1 in times [0,T − τ ] ∩ [T − τ,T ] = [0,T ]

Based on the delay embedding (t, x(t), x(t − τ))

For all test functions v ∈ C 1([0,T ]× X ):

⟨v , µp⟩ = ⟨v(0, x), µ0(x)⟩+ ⟨Lf (t,x0,x1)v(t, x0), µ̄(t, x0, x1)⟩
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Consistency Issue
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Consistency Fix
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Consistency Constraint

Inspired by changing limits of integrals t ′ ← t − τ(∫ t∗

0

+

∫ min(T ,t∗+τ)

t∗

)
ϕ(t, x(t − τ))dt

=

(∫ 0

−τ

+

∫ min(t∗,T−τ)

0

)
ϕ(t ′ + τ, x(t ′))dt ′.

Shift-push Sτ
# with ⟨ϕ, Sτ

#µ⟩ = ⟨Sτϕ, µ⟩ = ⟨ϕ(t + τ, x), µ⟩

Consistency constraint with time-slack ν

πtx1
# (µ̄0 + µ̄1) + ν = Sτ

#(µh + πtx0
# µ̄0).

58



Measure Linear Program

Linear program for time-delay peak estimation

p∗ = sup ⟨p, µp⟩ (8a)

History-Validity(µ0, µh) (8b)

Liouville(µ0, µp, µ̄0, µ̄1) (8c)

Consistency(µh, µ̄0, µ̄1, ν) (8d)

Measure Definitions for (µh, µ0, µp, µ̄0, µ̄1, ν) (8e)

Largest measures µ̄0, µ̄1 have 2n + 1 variables
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Time-Delay Examples



Delay Comparision
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ẋ(t) =

[
x2

−x1(t − τ)− x2(t) + x1(t)
3/3

]
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Delayed Flow System

Minimize x2 on the delayed Flow system 61



Time-Varying System (Reprise)

Maximize x1 on ẋ(t) =

[
x2(t)t − 0.1x1(t)− x1(t − τ)x2(t − τ)

−x1(t)t − x2(t) + x1(t)x1(t − τ)

]
62



Take-aways



Summary

Noted importance of safety quantification

Extended occupation measure methods for peak estimation

Performed data-driven analysis using robust counterparts

Adapted to non-ODE systems (Hybrid, SDE, Time-Delay)
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Future Work

• No-relaxation-gap for chance-peak and time-delay system

• High-order concentration inequalities

• Other time-delay models

• Lévy processes, Poisson jumps

• Distance-maximizing control

• Increased scalability, robotic systems

• Real-time computation
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Safety is Important

Quantify using Peak Estimation
64
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Last but not least

The Warden
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