
Safety Quantification for Nonlinear and Time-Delay Systems

using Occupation Measures

A Dissertation Presented

by

Jared Franklin Miller

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Electrical Engineering

Northeastern University

Boston, Massachusetts

April 2023



To my parents, Wayne and Debbie.

i



Acknowledgments

I would like to begin by thanking my parents, Debbie Mitzner and Wayne Miller, for all of

their advice and support. Wayne Miller voluntarily acted as a copy-editor for all of my publications,

including this thesis.

My next thanks go to my advisor, Mario Sznaier, at the Robust Systems Laboratory in

Northeastern. I met Mario in Fall of 2016 as a BS/MS student, when I asked him for an override

in order to attend his Spring 2017 special topics course in Big Data, Sparsity, and Control. During

the opening lecture, he gave a survey of sparse methods in robust regression, computer vision, and

system identification. At the close of this first lecture, I asked him how I could learn more and join

his lab, and he responded by giving me the door code. I officially joined the lab as a PhD student in

Fall of 2018, and then acted as a teaching assistant for his Sparsity course in 2019, 2021, and 2022.

Mario introduced me to topics such as rank-minimization, sparsity, Frank-Wolfe methods, measures,

polynomial optimization, and data-driven control. Mario’s wealth of experience allows him to draw

connections between different disciplines and rapidly determine if ideas have promise, have been

done before, and/or are marginal/intractable. His discussions with myself and other members of

the laboratory help us refine our approaches and experiments, providing guidance in sometimes

unexpected ways, and leading us into new directions of research. I would like to thank Octavia

Camps (co-director of the Robust Systems Laboratory) for the discussions and application of my

methods towards computer vision.

I would like to thank all of my colleagues in the Robust Systems Lab over the course of my

∼6 years there. Specific recognition goes to my collaborators Tianyu Dai, Rajiv Singh, Jian Zheng,

Armand Comas, Biel Roig-Solvas, and Zachary Walker-Liang.

There are many other students and professors at Northeastern (outside the Robust Systems

Laboratory) to thank. Students in research include Muhammad Ali Al-Radhawi, Aria Masoomi,

Tooba Imtiaz, Arthur Costello Branco de Oliveira, Chieh Wu, Zulqarnain Khan, and James Massucco.

ii



Professors at Northeastern to thank include Bahram Shafai, Eduardo Sontag, Milad Siami, Jennifer

Dy, Dave Rosen, David Kaeli, and Felipe Pait. Bahram Shafai was my Capstone project advisor

in 2017-2018, and was the coauthor for my first conference paper (about the vertical motion of

air cushion vehicles) [1]. Eduardo Sontag taught a Special Topics course about synthetic biology

in Spring 2018, during which my final project analyzed orthogonal ribosome models for protein

translation. I worked with Eduardo and Muhammad on this project in the time between my MS

graduation and my PhD beginning (publishing our findings at [2]), and my discussions with Eduardo’s

research group helped me understand how to apply systems theory methods towards problems in

biology and chemistry.

When I was deciding between undergraduate institutions in 2013, David Kaeli personally

called me to recruit me to Northeastern. His Embedded Systems pilot course was the first time I

watched control algorithms that I wrote being deployed onto robotic systems (FPGA via Simulink or

C).

I would like to thank Yang Zheng and Antonis Papachristodoulou for teaching me how

to formulate research questions and to write papers. I visited Oxford in July 2018 before my PhD,

during which I shared an idea about structured rank-minimization under chordal sparsity. This turned

into my first conference publication in the theory of control [3]. When in February of 2019 I realized

that positive semidefinite approximations could be combined with structure, I again worked with

Yang, Mario, and Antonis to develop these findings for efficient convex optimization. This work in

Decomposed Structured Subsets became my first journal article [4]. Yang was extremely helpful

with respect to organizing my research ideas into theorems and statements, which guided me through

my work and the layout/presentation of this thesis.

The first time I presented my control research at an in-person conference was at CDC 2019

in Nice, France. Following this presentation, Didier Henrion and Victor Magron from LAAS-CNRS

asked me questions about my work in rank-minimization [3] (after a suggestion to attend from

Mario). Once I returned to the United States, I received an email from Didier inviting me to apply

for a Chateaubriand Fellowship. I was awarded this fellowship with a scheduled time-frame of

January-July, 2021, but we delayed this visit multiple times due to the ongoing COVID epidemic.

During these delays, I worked remotely with Didier Henrion, Milan Korda, and Victor Magron in

a ‘virtual’ fellowship, and presented my work twice at BrainPOP seminars. I stayed physically at

LAAS between January-July, 2022, during which I met and fruitfully worked with the POP and MAC

teams of LAAS-CNRS. I also got to interact with many PhDs at LAAS-CNRS during my 2022 visit,

with special thanks to Corbinian Schlosser, Vit Cibulka, Alexey Lazayev, Nicola Zaupa, Antonio

iii

https://homepages.laas.fr/vmagron/brainpop.html


Bellin, Loi Do, Olga Yufuvera, Filip Becanovic, and Anh Le. Some of the highlights of my time at

LAAS-CNRS included the weekly Sunday visits to Marché St. Aubin (a wonderful street market).
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Chapter 1

Introduction

1.1 Motivation

The motivation for this thesis is to provide methods for safety quantification and trajectory

analysis. Figure 1.1 is a visual example of the importance of quantifying the safety of trajectories.

60 mph

5”

Figure 1.1: Safety of the car is quantified by a 5” distance of closest approach to the tree

An agent is driving a car at a speed of 60 mph. In the path of the car there is a tree (unsafe

set/obstacle), and the agent would like to evaluate whether their current course is appropriate. If

1
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the agent receives notification that the current driving plan is safe (the car would not crash into

the tree), then the agent will continue its control scheme. If the agent is provided the additional

information that the car will attain a 5” clearance to the tree when traveling at 60 mph, the agent

would likely deem their current control scheme unsafe and would find a new plan. The distance of

closest approach of 5” quantified the safety of the current (verified-safe) controller and allowed for

assessment of the control model.

Safety is quantified in Figure 1.1 by finding (or lower-bounding) the distance of closest

approach. This distance estimation problem is a particular instance of a peak estimation problem [5, 6].

Using techniques from optimal control theory, the peak estimation problem can be approximated

by a convergent sequence of Semidefinite Programs (SDPs) based on occupation measure Linear

Programs (LPs) [7, 8]. This thesis extends the peak estimation framework of occupation measures

towards other methods of systems analysis with differing dynamical behavior.

This thesis originated during the COVID-19 pandemic in March-April 2020. The phrase

‘flatten the curve’ had just entered the public lexicon, in which the peak infection rate must not exceed

the hospital system’s capacity for care (Figure 1.2).

Figure 1.2: Credit to Mayo Clinic News Network

The general problem to minimize the peak infection rate involves L1-optimal control, but

prior work had been developed in a parameterized or discretized manner [9, 10, 11]. Finding a

convex and strongly convergent program to minimize the peak value remained an open problem
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during the initial writing of this thesis.

Near the conclusion of my Chateaubriand Fellowship (on July 4, 2022), I attended a SPOT

seminar (SPOT 75) at ENSEEIHT, Toulouse, in which Alain Rapoport discussed his team’s work in

peak-minimizing Optimal Control Problems (OCPs) [12]. Their formulation involves minimizing a

newly added constant-time state variable that always upper-bounds the desired-minimum objective

on state trajectories. This concept was the missing link towards providing convex and convergent

programs for peak minimizing control. I then used their method to provide further safety quantifica-

tion techniques (measuring the safety of trajectories by the minimal control effort/data corruption

needed to crash).

1.2 Summary

Chapter 2 reviews background information about measure theory, occupation measures,

and Linear Matrix Inequality (LMI) approximations to measure LPs.

Past the preliminaries in Chapter 2, the thesis is divided into three parts.

Part 1 extends the peak estimation framework towards safety analysis and systems with

uncertainty. Chapter 3 provides an overview of prior work in Ordinary Differential Equation (ODE)

peak estimation with infinite-dimensional LPs and introduces a recovery algorithm to attempt

extraction of approximately-optimal trajectories. Chapter 4 performs peak estimation on system

whose dynamics are affected by bounded-uncertainty processes. Chapter 5 applies peak estimation

towards verifying the safety of trajectories with respect to an unsafe set by computing safety margins

and distances of closest approach.

Part 2 utilizes robust optimization to solve peak estimation and peak-minimizing-control

tasks. Chapter 6 focuses on input-affine dynamics where the input disturbances are restricted

to Semidefinite Representable (SDR) sets. Under this structure, the disturbance variables can

be eliminated using the theory of robust counterparts, providing tractable SDPs for applications

including data-driven peak estimation. Chapter 7 quantifies the safety of trajectories by the required

perturbation intensity needed to crash into the unsafe set, and applies this method to analyze data-

driven models with respect to their maximal constraint violations. Chapter 8 synthesizes controllers

to maximize the distance of closest approach to an unsafe set as trajectories travel from the initial set

to the terminal set within a specified time horizon.

Part 3 applies peak estimation methods towards systems with non-ODE dynamical be-

haviors. Chapter 9 extends the peak estimation framework towards systems with hybrid dynamics.
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Chapter 10 introduces probabilistic peak estimation to upper-bound the maximal Value-at-Risk (VaR)

of an objective function along Stochastic Differential Equation (SDE) trajectories. Chapter 11

performs peak estimation for Delay Differential Equations (DDEs).

Each chapter between 3-11 begins with an introduction and review of prior art and ends

with a conclusion. The content in the chapters may be combined to form a modular framework for

peak estimation problems. As an example, Section 5.9.1 (in Chapter 5 about safety) introduces a

program to bound the distance of closest approach in which the dynamical system is corrupted by

bounded uncertainty (where peak estimation under bounded uncertainty is covered in Chapter 4).

Chapter 12 concludes the thesis and provides an outline for future work.

1.3 Publications

This section lists all disseminated work arising from the thesis. Further detail about the

research in this thesis is available at https://jarmill.github.io/projects/peak_

project/. Slides associated with this thesis can be found at https://jarmill.github.

io/assets/pdf/Thesis_Presentation_Merged.pdf.

Journal Papers (published)

1. J. Miller, D. Henrion, and M. Sznaier, “Peak Estimation Recovery and Safety Analysis,” IEEE

Control Systems Letters, vol. 5, no. 6, pp. 1982–1987, 2021 [link]

Journal Papers (conditionally accepted)

1. J. Miller and M. Sznaier, “Bounding the Distance to Unsafe Sets with Convex Optimization,”

(Conditionally accepted by IEEE Transactions on Automatic Control in 2022) [link]

Conference Proceedings (published)

1. J. Miller and M. Sznaier, “Bounding the Distance of Closest Approach to Unsafe Sets with

Occupation Measures,” in 2022 61st IEEE Conference on Decision and Control (CDC), pp.

5008–5013, 2022. [link]

2. J. Miller and M. Sznaier, “Facial Input Decompositions for Robust Peak Estimation under

Polyhedral Uncertainty,” IFACPapersOnLine, vol. 55, no. 25, pp. 55–60, 2022. [link].

Received IFAC Young Author Award.
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Chapter 2

Preliminaries

This chapter defines notation and reviews background material. The introductory content

in this chapter is an extended version of the preliminaries from [13].

2.1 Notation

Let R be the set of real numbers and Rn be an n-dimensional real Euclidean space. The

set of m× n matrices with real coefficients is Rm×n, and the set of n× n symmetric matrices is Sn.

A symmetric matrix M ∈ Sn is Positive Semidefinite (PSD) (Positive Definite (PD)) if the quadratic

form xTMx ≥ 0 (xTMx > 0) for all choices of x ∈ Rn. The set of n-dimensional symmetric PSD

(PD) matrices is denoted by Sn+ (Sn++). The notation M ⪰ 0 will also be used to denote that M is

PSD.

Let N be the set of natural numbers and Nn be the set of n-dimensional multi-indices. The

sequence of natural numbers between a and b (inclusive) is a..b. The total degree of a multi-index

α ∈ Nn is |α| =
∑

i αi. A monomial
∏n
i=1 x

αi
i may be expressed in multi-index notation as xα. The

set of polynomials with real coefficients is R[x], and polynomials p(x) ∈ R[x] may be represented

as the sum over a finite index set J ⊂ Nn of p(x) =
∑

α∈J pαx
α. The set of polynomials with

monomials up to degree |α| = d is R[x]≤d.

2.2 Measure Theory

This section will introduce concepts in measure theory for use in this thesis. Refer to [14]

for a complete reference, and to [15] for a visual introduction to measure theory.
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2.2.1 Measures

Let S be a Banach space, and let Set(S) = 2S be the set of sets (power set) of a space

S ∈ Rn. A σ-algebra Σ over S is a subset of Set(S) such that Σ contains S and is closed under

countable unions and complements. Examples of σ-algebras over the real line R include the countable

unions of the set of intervals [a, b] with a, b ∈ R or a, b ∈ Z.

A nonnegative Borel measure µ : Σ→ R+ is a function that assigns a size (measure) to

each set A ⊂ S in a σ-algebra Σ under the following rules:

1. µ(A) ≥ 0 ∀A ∈ Σ

2. µ(∅) = 0

3. µ(
⋃∞
k=1Ak) =

∑∞
k=1 µ(Ak) sets Ak are disjoint.

The quantity µ(S) is known as the mass of µ, and µ is a probability measure if this mass is

1. The Dirac delta δs′ is a probability measure supported at a single point s′ ∈ S . An example of

a Dirac Delta with elements (boxes) in Set(S) are plotted in Figure 2.1. The point s′ is the green

•-shape in the center of the figure. Boxes which contain s′ have a measure of 1 and have solid walls.

Boxes that do not contain s′ have a measure of 0 and have dotted walls.

Figure 2.1: Dirac Delta: solid boxes contain x′, dotted boxes miss x′

2.2.2 Pairings and Operators

The set of continuous functions over the Banach space S is denoted asC(S), the set of finite

signed Borel measures over S isM(S), and the set of nonnegative Borel measures over S isM+(S).

A duality pairing exists between all functions f ∈ C(S) and measures µ ∈ M+(S) by Lebesgue

7
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integration: ⟨f, µ⟩ =
∫
S f(s)dµ(s) when S is compact. The subcone of nonnegative continuous

functions over S is C+(S) ⊂ C(S), which satisfies ⟨f, µ⟩ ≥ 0 ∀f ∈ C+(S), µ ∈ M+(S).

The pairing ⟨f, µ⟩ is an inner product between f ∈ C+(S) and µ ∈ M+(X). The sup-norm of

a function f ∈ C0(S) is ∥f∥C0(S) = sups∈S |f(s)|. The C1 norm of a function f ∈ C1(S) is

∥f∥C1(S) = ∥f∥C0(S)+
∑n

i=1∥∂sif∥C0(S). The subcone of continuous functions over S whose first

k derivatives are continuous is Ck(S) (with C(S) = C0(S)).

The indicator function of a set A ⊆ S is a function IA : S → {0, 1} taking values

IA(s) = 1 if s ∈ A and IA(s) = 0 if s ̸∈ A. The measure of a set A with respect to µ ∈M+(S) is

µ(A) = ⟨IA(s), µ⟩ =
∫
A dµ (generalizing the duality pairing to allow for Borel measurable rather

than continuous functions). The mass of µ is µ(S) = ⟨1, µ⟩, and µ is a probability measure if

⟨1, µ⟩ = 1. The support of µ is the set of all points s ∈ S such that every open neighborhood Ns

of s has µ(Nx) > 0. The Lebesgue measure λS over a space S is the volume measure satisfying

⟨f, λS⟩ =
∫
S f(s)ds ∀f ∈ C(S). The Dirac delta δs′ is a probability measure supported at a

single point s′ ∈ S, and the duality pairing of any function f ∈ C(S) with respect to δs′ is

⟨f(s), δs′⟩ = f(s′). A rank-r atomic measure is a measure µ such there exist scalars ci > 0 and

distinct points si ∈ S for i = 1..r such that µ =
∑r

i=1 ciδsi . The atoms of µ are the support points

{si}ri=1.

Let S, Y be spaces and µ ∈ M+(S), ν ∈ M+(Y ) be measures. The product measure

µ ⊗ ν is the unique measure such that ∀A ∈ S, B ∈ Y : (µ ⊗ ν)(A × B) = µ(A)ν(B). The

pushforward of a map Q : S → Y along a measure µ(s) is Q#µ(y), which satisfies ∀f ∈ C(Y ) :

⟨f(y), Q#µ(y)⟩ = ⟨f(Q(s)), µ(s)⟩. The measure of a set B ∈ Y is Q#µ(Y ) = µ(Q−1(Y )). The

projection map πs : S × Y → S preserves only the s-coordinate as (s, y) → s, and a similar

definition holds for πy. Given a measure η ∈ M+(S × Y ), the projection-pushforward πs#η

expresses the s-marginal of η with duality pairing ∀f ∈ C(S) : ⟨f(s), πs#η⟩ =
∫
S×Y f(s)dη(s, y).

Every linear operator L : S → Y possesses a unique adjoint operator L† such that ⟨Lf, µ⟩ =
⟨f,L†µ⟩, ∀f ∈ C(S), µ ∈M+(S).

2.2.3 Absolute Continuity and Domination

Let µ, ν ∈ M+(S) be nonnegative Borel measures. The measure ν is absolutely con-

tinuous to µ (ν ≪ µ) if, for every A ∈ Σ, µ(A) = 0 implies that ν(A) = 0. Equivalently,

there exists a unique nonnegative and measurable (density) function ρ(s) such that ⟨f(s), µ(s)⟩ =
⟨f(s)ρ(s), ν(s)⟩ for all f ∈ C(S). The function ρ is the Radon-Nikodým derivative ρ = dν/dµ.

8
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The measure ν is dominated by µ if ν(A) ≤ µ(A) for all subsets A ⊂ S (elements A in a

σ-algebra). There exists a unique nonnegative slack measure ν̂ ∈M+(S) such that ν(A) + ν̂(A) =

µ(A), ∀A ⊂ S, which may be equivalently written as ν + ν̂ = µ. Domination (ν ≤ µ) is a stronger

condition than absolute continuity (ν ≪ µ).

A pair of measures ω, ν ∈ M+(S) are orthogonal (ω ⊥ ν) if ∀A ∈ supp(ω) : ν(A) = 0

and ∀B ∈ supp(ν) : ω(B) = 0. While the sum ν + ω dominates ν and ω individually, it does not

hold that every µ with µ ≥ ν and µ = ν + ν̂ produces an orthogonal pair ν ⊥ ν̂.

If the sets {Si}Ni=1 form a partition of S (∪Ni=1S
i = S and Si ∩ Si′ = ∅ ∀i ̸= i′), then

any nonnegative Borel measure µ ∈M+(S) may be uniquely split by orthogonality into the sum of

measures µi ∈M+(S
i) ∀i = 1..N with nonoverlapping support such that µ =

∑N
i=1 µi.

2.2.4 Signed Measures

A signed measure is a function µ : Σ → R that only satisfies conditions 2 and 3 of a

nonnegative measure (sets may have negative measure). The set of signed measures over a space S is

M(S). The Hahn-Jordan decomposition is a unique method to split a signed measure µ ∈M into

the difference of two orthogonal nonnegative measures µ = µ+ − µ−.

The Total Variation (TV) norm of a signed measure µ ∈M(S) is

∥µ∥TV = sup
v∈C(S)

⟨v, µ⟩ : −1 ≤ v(s) ≤ 1 ∀s ∈ S (2.1a)

= inf
µ+, µ−∈M+(S)

⟨1, µ+⟩+ ⟨1, µ−⟩ : µ+ − µ− = µ. (2.1b)

2.3 Occupation Measures

Given an interval [a, b] and a continuous curve s(t) where s : [a, b] → S and S ⊂ Rn,

the pushforward of the Lebesgue measure on [a, b] through the map t → (t, s(t)) is called the

occupation measure associated to s(t) [16].

Assume that there exists a set of states X and a set of initial conditions X0 ⊆ X . Given an

initial condition x0 ∈ X0, the curve x(t | x0) corresponds to a trajectory of the following dynamical

system starting at time x0:

ẋ(t) = f(t, x(t)). (2.2)

The measure µx(·) is the occupation measure associated with x(t | x0). Given a stopping

time t∗ ∈ [0, T ], the occupation measure µx(·) returns the amount of time the time-indexed trajectory

9
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x(t | x0) spends in the region A×B ⊆ [0, T ]×X with

µx(·)(A×B | x0) =
∫ t∗

0
IA×B(t, x(t | x0))dt. (2.3)

The definition in (2.3) induces a pairing rule by integration:

∀ϕ ∈ C([0, T ]×X) : ⟨v, µ⟩ =
∫ t∗

t=0
ϕ(t, x(t | x0))dt. (2.4)

The occupation measure µx(·) may be averaged over a distribution of initial conditions

µ0 ∈M+(X0) to form

µ(A×B) =

∫
X0

µx(·)(A×B | x0)dµ0(x0). (2.5)

A consequence of (2.5) is that ⟨1, µ⟩ ≤ T ⟨1, µ0⟩.
When t∗ = T , occupation measures are particular instances of stochastic (Markov) kernels

(the conditional distribution µ(x | t) is a probability measure for each fixed t, and the function

µ(·, B) is measurable in t for each B ∈ X).

Figure 2.2 visualizes trajectories in cyan of the dynamical system x′ = −x(x+ 2)(x− 1)

with one trajectory highlighted in a thick dark blue line. Let µx(·) be the occupation measure

associated with the thick blue line, and µ be the occupation measure averaged over the uniformly

distributed set of initial conditions between [−4, 4]. No trajectory passes through the green box

the top-right, so the measures of µ(green) and µx(·)(green) are both zero. The thick blue trajectory

passes through the black box on the bottom, so µ(black) and µx(·)(black) are both nonzero. The

red box on the left does intersect trajectories starting between [−4, 4] but does not contain the blue

trajectory, so µ(red) is nonzero and µx(·)(red) is zero.

For a test function v(t, x) ∈ C1([0, T ]×X), the Lie derivative operator Lf is defined

Lfv(t, x) = ∂tv(t, x) +∇xv(t, x)T f(t, x). (2.6)

The measure µp ∈M+([0, T ]×X) is a free-terminal-time distribution of times and states.

This three measures µ0, µp, µ are linked together by the linear Liouville Equation

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lfv(t, x), µ⟩ ∀v ∈ C1([0, T ]×X). (2.7)

Equation (2.7) may be equivalently expressed in shorthand notation (abstracting out the ∀v
imposition) as

µp = δ0 ⊗ µ0 + L†fµ. (2.8)

10
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Figure 2.2: Trajectories of x′ = −x(x+ 2)(x− 1) and boxes

The operator L†f is the adjoint of Lf such that ⟨Lfv, µ⟩ = ⟨v,L†fµ⟩ for any v(t, x) ∈
C1([0, T ] × X). Every trajectory x(t | x0) with x0 ∈ X0 and t∗ ∈ [0, T ] induces a measure

representation following (2.7) and (2.8) with µ0 = δx=x0 , µ = µx(·), and µp = δt=t∗ ⊗ δx=x(t∗|x0).

2.4 Moment-SOS Hierarchy

The standard form for a measure Linear Program (LP) with variable µ ∈M+(X) involving

a cost function p ∈ C(X) and a (possibly infinite) set of affine constraints ⟨aj , µ⟩ = bj with bj ∈ R

and aj ∈ C(X) for j = 1..Jmax is

p∗ = sup
µ∈M+(X)

⟨p, µ⟩ (2.9a)

⟨aj(x), µ⟩ = bj ∀j = 1..Jmax. (2.9b)

The dual problem to Program (2.9) with dual variables vj ∈ R : ∀j = 1..m is

d∗ = inf
v∈Rm

∑
j bjvj (2.10a)

p(x)−
∑

j aj(x)vj ≥ 0 ∀x ∈ X. (2.10b)

The objectives in (2.9) and (2.10) will match (p∗ = d∗ strong duality) if p∗ is finite and if

the mapping µ→ {⟨aj(x), µ⟩}mj=1 is closed in the weak-* topology (Theorem 3.10 in [17]).

11
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When p(x) and all aj(x) are polynomial, Equation (2.10b) is a polynomial nonnegativity

constraint.

The restriction that a polynomial q(x) ∈ R[x] is nonnegative over Rn may be strengthened

to finding a set of polynomials {qi(x)} such that q(x) =
∑

i qi(x)
2. The polynomials {qi(x)}

are a Sum of Squares (SOS) certificate of nonnegativity of q(x), given that the square of a real

quantity qi(x) at each i and x is nonnegative. The set of SOS polynomials in indeterminate quantities

x is expressed as Σ[x], with a maximal-degree-d subset of Σ[x]≤d. A polynomial p(x) is SOS

(p(x) ∈ Σ[x]) iff there exists a finite integer s, a polynomial vector v(x) ∈ R[x]s, and a PSD matrix

Q ∈ Ss+, such that p(x) = v(x)TQv(x). SOS polynomials are nonnegative over Rn.

A Basic Semialgebraic (BSA) set K = {x | gi(x) ≥ 0, i = 1..Nc} is a set formed by a

finite set of bounded-degree polynomial constraints.

The quadratic module Q[g] formed by the constraints describing the BSA set K = {x |
gi(x) ≥ 0, i = 1..Nc} is the set of polynomials

Q[g] =
{
σ0(x) +

∑Nc
i=1 σi(x)gi(x)

}
, (2.11)

such that the multipliers σ are SOS:

σi(x) ∈ Σ[x] ∀i = 0..Nc. (2.12)

The BSA set K is compact if there exists a constant 0 ≤ R <∞ such that K is contained

in the ball R ≤ ∥x∥22. K satisfies the Archimedean property if the polynomial R − ∥x∥22 is a

member of Q[g]. The Archimedean property is stronger than compactness [18], and compact sets

may be rendered Archimedean by adding a redundant ball constraint R − ∥x∥22 ≥ 0 to the list of

constraints describing in K (though finding such an R may be difficult). When K is Archimedean,

every polynomial satisfying p(x) > 0,∀x ∈ K has a representation (Putinar’s Positivestellensatz

[19]):
p(x) = σ0(x) +

∑
i σi(x)gi(x)

σ0(x) ∈ Σ[x] σi(x) ∈ Σ[x].
(2.13)

The Weighted Sum of Squares (WSOS) set Σ[K] is the set of polynomials that admit a

positivity certificate over K from (2.13). Its maximal degree-d subset is Σ[K]≤d. Given a multi-index

α ∈ Nn, the α-moment of a measure µ ∈M+(X) is mα = ⟨xα, µ⟩.
A measure µ is a representing measure for a moment sequence m̃ if m̃α = ⟨xα, µ⟩ ∀α ∈

Nn. The measure µ is additionally moment-determinate if µ is the unique representing measure

associated with m̃ (Def. 1.4 of [20]). An infinite moment matrix M[m]α,β = mα+β indexed by

12
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monomials α, β ∈ Nn may be constructed from the moment sequence m. One sufficient condition

for a sequence m to be moment-determinate on the compact set [−a, a]n for some finite R, a > 0 is

that M[m] ⪰ 0 and |mα| ≤ Ra|α| ∀α ∈ Nn (Lemma 1.4 of [20]).

The degree-d moment matrix Md[m] of size
(
n+d
d

)
is the submatrix of M[m] where the

indices Md[m]α,β have total degree bounded by 0 ≤ |α|, |β| ≤ d. Given a polynomial g(x) ∈ R[x],

the localizing matrix associated with g is a square infinite-dimensional symmetric matrix with

entries M[gm]α,β =
∑

γ∈Nn gγmα+β+γ . A moment sequence m has a representing measure

µ ∈M+(K) if there exists µ supported in K such that mα = ⟨xα, µ⟩ ∀α ∈ Nn. The Linear Matrix

Inequality (LMI) conditions that M[m] ⪰ 0 and M[gim] ⪰ 0 ∀i = 1..Nc are necessary to guarantee

the existence of a representing measure associated with m. The moment matrix M[m] is a localizing

matrix with the function g = 1. These LMI conditions are sufficient if the set K is Archimedean, and

all compact sets may be rendered Archimedean through the application of a redundant ball constraint

[19].

Assume that each polynomial gi(x) in the constraints of K induces a degree di =

⌈deg gi/2⌉. We define a block-diagonal matrix Md[Km] containing the moment and all localizing

matrices as

diag(Md[m], {Md−di(gim) ∀i = 1..Nc}). (2.14)

The degree-d moment relaxation of Problem (2.9) with variables y ∈ R(
n+2d
2d ) is

p∗d = max
m

∑
α pαmα, Md[Km] ⪰ 0 (2.15a)∑

α ajαmα = bj ∀j = 1..m. (2.15b)

The bound p∗d ≥ p∗ is an upper bound for the infinite-dimensional measure LP. The

decreasing sequence of upper bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗ is convergent to p∗ as d→∞ if K is

Archimedean. The dual semidefinite program to (2.15a) is the degree-d SOS relaxation of (2.10):

d∗d =minv∈Rm

∑
j bjvj (2.16a)

p(x)−
∑

j aj(x)vj = σ0(x) +
∑

k σi(x)gi(x) (2.16b)

σ(x) ∈ Σ[x]≤2d (2.16c)

σi(x) ∈ Σ[x]≤2d−⌈deg gi/2⌉ ∀i ∈ 1..Nc. (2.16d)

We use the convention that the degree-d SOS tightening of (2.16) involves polynomials of maximal

degree 2d. When the moment sequence mα is bounded (|mα| < ∞ ∀|α| ≤ 2d) and there exists

an interior point of the affine measure constraints in (2.9b), then the finite-dimensional truncations

13
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(2.15a) and (2.16) will also satisfy strong duality p∗k = d∗k at each degree k (by arguments from

Appendix D/Theorem 4 of [21] using Theorem 5 of [22], also applied in Corollary 8 of [23] ). The

sequence of upper bounds (outer approximations) p∗d ≥ p∗d+1 ≥ . . . computed from Semidefinite

Programs (SDPs) is called the Moment-SOS hierarchy.

Let m be a moment sequence with Md[m] ⪰ 0. The sequence m has a flat extension if

rank(M)d[m] = rank(M)d−1[m], which implies that there exists an atomic representing measure

for m with rank(M)d[m] atoms [24, 25]. The sequence m has a flat extension for the K-constrained

moment problem if md[Km] ⪰ 0 and rank(M)d[m] = rank(M)d−maxi di [m], and has an atomic

representing measure with rank(M)d[m] [26] [27, Theorem 3.11]. Flat extensions have applications

in certification of global optimality for polynomial optimization problems.
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Chapter 3

Peak Estimation and Recovery

3.1 Introduction

The behavior of dynamical systems may be analyzed by bounding extreme values of state

functions along trajectories. For a system with dynamics governed by an Ordinary Differential

Equation (ODE) ẋ = f(t, x) with continuous f , let x(t | x0) denote a trajectory starting from an

initial point x0. The problem of finding the maximum value of a function p(x) for trajectories starting

from a set X0 evolving over the time interval [0, T ] is

P ∗ = sup
t, x0∈X0

p(x(t))

ẋ(t) = f(t, x), t ∈ [0, T ].

(3.1)

The goal of peak estimation is to approximate sharp upper bounds to P ∗. It is also desired

to recover the near-optimal trajectories that achieve p(x(t | x0)) ≈ P ∗ for some time t ∈ [0, T ].

Lower bounds to P ∗ can be found by sampling an initial point x0 ∈ X0 and finding the maximum

value of p(x) along x(t | x0), but generating a sampled lower bound that is close to P ∗ is difficult.

Upper bounds of P ∗ are universal properties of all trajectories, and P ∗ may be sandwiched between

discovered lower and upper bounds. Peak estimation may be infinite-time if T =∞.

Problem (3.1) was cast into an infinite-dimensional LP of occupation measures in the

context of optimal stopping problems for a martingale in [5], and the bound P ∗ was approximated by

discretization with finite-dimensional LPs. The infinite-dimensional LP in [5] is an extension to the

stochastic setting of the deterministic optimal control formulation in [7] with a state cost instead of a

running cost. A survey of infinite-dimensional LP methods is available at [28], and LPs in occupation

measures may also be solved through the moment-SOS hierarchy of SDP [16]. More recently, an
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auxiliary function approach was developed to find a convergent sequence of upper bounds to P ∗ by

SOS methods [6]. The infinite-dimensional LP in [6] that is truncated into an SOS program is dual

to LMI relaxations of the infinite-dimensional LP in [5]. The optimal trajectories that achieve P ∗

are localized into a sublevel set of the solved auxiliary function, and may be approximated through

adjoint optimization [29, 6]. The constraints of the SOS programs in [6] are dual to LMIs in moments

of occupation measures [16, 21].

This chapter reviews measure-LP formulations for peak estimation problems, and intro-

duces a recovery algorithm to approximate optimizing trajectories. If moment matrices of the LMI

solution satisfy an approximate rank constraint, an attempt may be made to extract near-optimal

trajectories through an atom extraction procedure (Cholesky decomposition) [30]. Other methods for

trajectory extraction require additional postprocessing (by solving optimization problems) after the

LMI solution is computed. One of these other recovery techniques include adjoint optimization within

an intersection of sublevel sets [6]. Another recovery technique is the application of Christoffel-

Darboux kernels to isolate the support of the occupation measure [31] from its approximate moments

(appropriate moments of Md′k
(yk)).

This chapter is organized as follows: Section 3.2 reviews LP formulations for peak

estimation problems. Section 3.3 posits a recovery algorithm to extract near-optimal trajectories.

Section 3.4 presents a set of numerical examples with successful extraction by the recovery algorithm.

Section 3.5 extends the rank-based recovery algorithm to peak estimation problems over global

attractors. The recovery section of this chapter is from [32], and was coauthored by Didier Henrion

and Mario Sznaier.

3.2 Peak Estimation Programs

Peak estimation problems can be bounded by an infinite-dimensional LP in measures by

defining a peak measure µp ∈M+([0, T ]×X), which generalizes δT ⊗ µT with free terminal time.

17
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Eq. (9) from [5] with variables (µ0, µ, µp) can be restated as

p∗ = sup ⟨p(x), µp⟩ (3.2a)

µp = δ0 ⊗ µ0 + L†fµ (3.2b)

µ0(X0) = 1 (3.2c)

µ, µp ∈M+([0, T ]×X) (3.2d)

µ0 ∈M+(X0). (3.2e)

The probability measure µ0 in (3.2c) is distributed over initial conditions. By Liouville’s Equation

(3.2b), µp is a probability measure over points in time and space:

⟨1, µp⟩ = ⟨1, δ0 ⊗ µ0⟩+ ⟨Lf (1), µ⟩ = 1 + 0 = 1. (3.3)

Another consequence of the Liouville equation is

⟨t, µp⟩ = ⟨t, δ0 ⊗ µ0⟩+ ⟨Lf (t), µ⟩ = 0 + ⟨1, µ⟩ = ⟨1, µ⟩. (3.4)

The dual problem to (3.2) with variables (v(t, x), γ) is

d∗ = inf
γ∈R

γ (3.5a)

γ ≥ v(0, x) ∀x ∈ X0 (3.5b)

Lfv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (3.5c)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (3.5d)

v ∈ C1([0, T ]×X), (3.5e)

and is formulated in Eq. 2.5 and 2.6 of [6]. The auxiliary function v(t, x) and scalar γ are dual

variables for constraints (3.2b) and (3.2c) respectively [6]. If (v, γ) solves to (3.5), then the sublevel

set {(t, x) | v(t, x) ≤ γ} contains all trajectories starting from X0.

The solution p∗ = d∗ ≥ P ∗ is an upper bound for the true peak in (3.1). Strong duality

holds with p∗ = d∗ when {[0, T ], X,X0} are all compact [7]. The solution p∗ is approximately

equal to P ∗ for compact [0, T ]×X and locally Lipschitz dynamics (Theorem 2.1 of [7], 2.5 of [6]),

and often p∗ = P ∗. The objective values d∗ = P ∗ are tight if the function v(t, x) in (3.5) is allowed

to be discontinuous [6].

The work in [5] estimates (3.2) by discretizing the infinite-dimensional LP (sec. 4.1) or

forming a Markov chain (sec. 4.2). The work in [6] finds a convergent sequence of upper bounds

through an SOS relaxation (Eq. 4.4-4.7).
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3.3 Recovery

This section presents an algorithm to attempt extraction of optimal trajectories if p∗ is

reached at a finite number of R points. This recovery algorithm was first presented in [32].

3.3.1 Optimal Trajectories and Measures

Each of the R solution trajectories to Problem (3.1) that achieves P ∗ may be encoded by

a triple (xr0, t
r
p, x

r
p) satisfying P ∗ = p(xrp) = p(x(trp | xr0)) for r = 1..R. A trajectory x(t | x0) in

which P ∗ is reached multiple times is separated into triples for each attainment.

Let the triple (x0, tp, xp) be a solution to Problem (3.1). The probability measures µ0 =

δx0 , µp = δtp ⊗ δxp , and µ defined by Eq. (2.3) with an endpoint tp instead of T , satisfy constraints

(3.2b)-(3.2e) with an objective value of ⟨p, µp⟩ = P ∗ (where µ is supported between (0, x0) and

(tp, xp)). For the general case where P ∗ is reached at multiple triples (xr0, t
r
p, x

r
p), the measures

µ0 =
∑R

r=1wrδxr0 , µp =
∑R

r=1wr(δtrp ⊗ δxrp) , and µ =
∑R

r=1wrµ
r are feasible solutions to

(3.2b)-(3.2e) for all weights w ∈ RR+ with 1Tw = 1 (convex combinations). If p∗ = P ∗, optimal

trajectories may be recovered from the support of µ0 and µp solving (3.2).

3.3.2 LMI Formulation

Assume that the measures µ0, µ, µp from (3.2) have moment sequences of m0,m,mp up

to degree 2d. Liouville’s equation in (3.2b) implies that the following linear relation holds for each

test function v(t, x) = xαtβ:

⟨xα, µ0⟩δβ0 + ⟨Lf (xαtβ), µ⟩ − ⟨xαtβ, µp⟩ = 0. (3.6)

The expression δβ0 is the Kronecker Delta taking a value δβ0 = 1 when β = 0 and δβ0 = 0

when β ̸= 0.

Define Liouαβ(m0,m,mp) as the relation in moment sequences from (3.6) for each test

function xαtβ , and the dynamics degree d̃ as d+ ⌊deg f/2⌋ for a given degree d. Assuming that p

and the entries of f are given polynomials and

X ={x | gk(x) ≥ 0, ∀k = 1..Nc} (3.7a)

X0 ={x | g0k(x) ≥ 0,∀k = 1..N0
c } (3.7b)
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are compact basic semialgebraic sets, the degree-d LMI relaxation of (3.2) with variables (m0,m,mp)

is

p∗d =max
∑

α pαy
p
α (3.8a)

Liouαβ(m0,m,mp) = 0 ∀(α, β) ∈ Nm+1
≤2d (3.8b)

m0
0 = 1 (3.8c)

Md(X0m
0) ⪰ 0 (3.8d)

Md(([0, T ]×X)mp) ⪰ 0 (3.8e)

Md̃(([0, T ]×X)m) ⪰ 0. (3.8f)

Program (3.8) is dual to the degree-d SOS program in [6]. Localizing matrix constraints (3.8d)-(3.8f)

enforce the measure support constraints in (3.2d)-(3.2e).

3.3.3 Recovery Algorithm

A solution to (3.8) at degree d will yield an upper bound p∗d ≥ p∗. There exist atomic

representing measures µ0, µp whose measures agree with the moment sequences up to order 2d

if the moment matrices Md(m
0) and Md(m

p) are rank-deficient and have a flat extension. These

representing measures may not necessarily solve (3.2), as there may not exist a µ supported on the

graph of optimal trajectories with moments in Md(m).

The atoms of Md(m
0) and Md(m

p) with extraction by [33] (or reading m0, mp if rank-

1, which automatically implies existence of a flat extension) are candidates for optimal triples

(xr0, t
r
p, x

r
p). Evaluating p(x) along a sampled trajectory starting at a feasible atom xr0 ∈ X0 from

Md(m
0) will yield a lower bound prd such that prd ≤ p∗ ≤ p∗d. If the lower and upper bound are

sufficiently close together, then the trajectory starting at xr0 is approximately optimal. Algorithm 1

describes the forward trajectory recovery algorithm. An alternative approach could take atoms from

µp with p∗d − p(xrp) ≤ ϵ, running f backwards from xrp for time trp, and observing if the destination

point is a member of X0.

This process assumes that the peak estimation problem takes an optimal value at a finite

set of points, which in practice is not very restrictive. The rank-recovery process requires low rank

moment matrices, is sensitive to numerical conditioning in the monomial basis as d increases, and

may not always succeed (e.g., p∗ − P ∗ > ϵ). A dynamical system that possesses symmetry under

action by a continuous group may have a set of optimal solutions with dimension greater than zero.
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The super-resolution procedure in [34] may be used to approximate the starting points xr0 and peak

points xrp in case their moment matrices are not sufficiently low rank.

After an appropriate symmetry reduction [35], the moment matrices Md(m
0) and Md(m

p)

may contain a discrete set of atoms, each corresponding to orbit representatives of the symmetry

group.

Algorithm 1: Trajectory recovery
Input : Sets X0, X , dynamics f , cost p, max. time T , initial degree d0, tolerance ϵ

Output : Near-Optimal Trajectories OPT

degree d = d0, optimal triples OPT = ∅

Loop
Solve (3.8) at degree d for (p∗d, Md(m

0))

if Md(m
0) has a flat extension then

for atoms xr0 in Md(m
0) by [33] do

Simulate x(t | xr0)
Find prd = maxt∈[0,T ] p(x(t | xr0))
Find trp, x

r
p on traj. with prd = p(xrp)

if p∗d − prd < ϵ then
Append (xr0, t

r
p, x

r
p) to OPT

end
return OPT if OPT ̸= ∅

d← d+ 1

EndLoop

3.4 Recovery Examples

3.4.1 Flow System

A persistent example throughout this thesis will be the Flow system of [36]:

ẋ =

 x2

−x1 − x2 + 1
3x

3
1

 . (3.9)

Figure 3.1 plots trajectories of the flow system in cyan for times t ∈ [0, 5], starting from the

initial set X0 = {x | (x1 − 1.5)2 + x2 ≤ 0.42} in the black circle. The minimum value of x2 along
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these trajectories is minx2 ≈ −0.5734. The optimizing trajectory is shown in dark blue, starting at

the blue circle x∗0 = (1.4889,−0.3998), and reaching optimality at x∗p = (0.6767,−0.5734) in time

t∗p = .6627.

Figure 3.1: Minimizing x2 along Flow system (3.9)

3.4.2 Symmetric Attractor

Example 4.1 from [6] is the following system with a central symmetry and two stable

attractors: ẋ1
ẋ2

 =

0.2x1 + x2 − x2(x21 + x22)

−0.4x1 + x1(x
2
1 + x22)

 . (3.10)

For the infinite-horizon problem (without variable t) of maximizing ∥x∥22 starting at

X0 = {x | ∥x∥22 = 0.5}, X = [−2, 2]2, (3.8) finds a bound p∗7 = 1.90318. The solved

M7(y0),M7(yp) are rank-2 up to a tolerance of 3× 10−4. When using Alg. 1, p∗7 is within 0.005 of

the sampled result pr7 of each atom.

Fig. 3.2a plots the optimal trajectory in dark blue and randomly sampled trajectories in

cyan along with the level set p(x) = p∗7 in the red dashed line. The black dashed curve is the level set

{x | v(x) = 0}. Fig. 3.2b compares the extracted x∗0 ≈ ±(0.491,−0.093) (blue circles) and x∗p ≈
±(0.481, 1.293) (blue stars) against a sublevel-set approximation to locations of optimal trajectories

and their initial conditions ([6] Sec. 3: {x | 0 ≤ −v(x) + p∗7 ≤ 0.002, 0 ≤ −Lfv(x) ≤ 0.004}).

3.4.3 Frictioned Pendulum

Another example of recovery is in finding the maximum height of a unit pendulum with

friction. Pendulum dynamics with angle θ and angular velocity θ̇ = ω are ω̇ = − sin θ − 0.1ω. The
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Figure 3.2: Maximize ∥x∥22 along (3.10)

initial set is X0 = {θ ∈ [−π
2 ,

π
2 ], ω = [−1, 1]}. The trigonometric expression is reformulated into

polynomial dynamics in terms of c = cos θ, s = sin θ satisfying c2 + s2 = 1:
ċ

ṡ

ω̇

 =


−sω
cω

−s− 0.1ω

 . (3.11)

The d = 4 LMI relaxation in Section 3.2 produces an upper bound on pendulum height of h∗4 =

1−cos θ∗ ≈ 1.4682 over t ∈ [0,∞), with results provided in Figure 3.3. The initial points generating

the optimal trajectory are x0 = [θ0, ω0] = ±[π2 , 1], and the peak is achieved at xp = ±[2.058, 0]
(swing angle of θ∗ ≈ 117.92◦). Figure 3.3 displays the upper bound as a red plane. The two optimal

trajectories generated by Algorithm (1) are marked by thick blue curves, originating from x∗0 (circles)

and reaching the maximum height x∗p (stars). The black contour is the invariant set {x | v(x) = h∗4}.

3.5 Global Attractor Peak Recovery

With minor modifications, Algorithm (1) may be used to recover points on a global attractor

that maximize a function p(x).
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Figure 3.3: Maximize h = 1− cos θ along pendulum with friction

3.5.1 Global Attractor Background

This subsection follows the background of [37]. A set X is forward invariant with respect

to dynamics ẋ = f(t, x) if the initial condition x0 ∈ X implies that x(t | x0) ∈ S, ∀t ∈ [0,∞).

The maximum positively invariant (MPI) set M+ is the largest forward-invariant subset of the set X .

A global attractor A ⊂ X is the smallest compact set satisfying the property

lim
t→∞

dist(x(t, x0),A) = 0, ∀x0 ∈M+, (3.12)

where the dist is the minimal distance (for some metric) from a point in X to the set A. The global

attractor set is forward and backward invariant in time [38].

3.5.2 Global Attractor Program

The problem of peak estimation over global attractors may be posed as

P ∗ = max
x∈A

p(x) ẋ = f(x). (3.13)

Problem (3.13) has been upper-bounded by a sum-of-squares program enforcing that A
is an attractive set in [39]. [37] proposes an infinite-dimensional linear program in discounted
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occupation measures to provide an outer approximation for A by the mechanisms of reachability

set estimation. For a discount factor α > 0, a subset C ⊂ X , and a point x0 ∈ X , define the

α-discounted occupation measure µ as

µ(C) =

∫ ∞

0
e−αtIC(x(t | x0))dt. (3.14)

The α-discounting is used to enforce that µ has bounded mass as t→∞. The average α-discounted

occupation measure may be formed with respect to an initial measure µ0 ∈M+(X), as

µ(C) =

∫
X

∫ ∞

0
e−αtIC(x(t | x0))dtdµ0(x0). (3.15)

Liouville’s equation may be formed for trajectories on a global attractor. For a measure

µ0 ∈ M+(X) distributed over points and an α-discounted occupation measure µ ∈ M+(X), a

Liouville equation holds for all test functions v(x) ∈ C1(X):

β⟨v, µ⟩ − ⟨Lfv, µ⟩ = ⟨v, µ0⟩. (3.16)

3.5.2.1 Measure Program

Equation 6 of [37] may be modified for use in peak estimation (µ0 has unit mass, no

Lebesgue measure, objective p), forming the measure program

p∗ =sup ⟨p(x), µ0⟩ (3.17a)

αµ+ − L†fµ+ = µ0 (3.17b)

αµ− + L†fµ− = µ0 (3.17c)

⟨1, µ0⟩ = 1 (3.17d)

µ0, µ+, µ− ∈M+(X). (3.17e)

The supremum in (3.17a) will be attained assuming that X is compact. The bound satisfies

p∗ ≥ P ∗ as compared to (3.13). Constraints (3.17b) and (3.17c) enforces forward and backwards

invariance respectively of trajectories starting from µ0. The discount factor α is equivalent to 1/λ,

where λ is the scalar value in [39]. The work in [39] only enforces forward invariance, while [37]

and equation (3.17a) also enforce backwards invariance.
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3.5.2.2 Function Program

The Lagrangian of (3.17a) with dual variables v+(x), v−(x) on constraints (3.17b) and

(3.17c) is

L =⟨p(x), µ0⟩+ γ(1− ⟨1, µ0⟩) + ⟨v+(x),−αµ+ + L†fµ+ + µ0⟩+ ⟨v−(x),−αµ− − L†fµ+ + µ0⟩.
(3.18)

The function program formed by infimizing L is

d∗ = inf
γ∈R

γ (3.19a)

γ ≥ v+(x) + v−(x) + p(x) ∀x ∈ X (3.19b)

αv+(x)− Lfv+(x) ≥ 0 ∀x ∈ X (3.19c)

αv−(x) + Lfv−(x) ≥ 0 ∀x ∈ X (3.19d)

v+(x), v−(x) ∈ C1(X). (3.19e)

The mass of µ0 is constrained to 1 by constraint (3.17d). The occupation measures µ+, µ−

each have mass 1/α <∞ by definition (3.15). Strong duality with p∗ = d∗ holds between problems

(3.17a) and (3.5) by Theorem 2.6 of [40] because X is compact, all measures are bounded, and the

affine maps are continuous. The sublevel set {x | v+(x) + v−(x) ≥ 0} is invariant and contains A.

3.5.2.3 Recovery

The recovery algorithm for global attractors may proceed by a minor modification of

Algorithm 1. Let Md[y
0] be the moment matrix associated with the measure µ0 in the degree-d LMI

relaxation of (3.17a). Candidate values for extremizing points of p(x) with x ∈ A are the atoms of

Md[y
0]. An atom x0 that satisfies p(x0) ≈ P ∗, such that the trajectory of f starting from x0 return

to an ϵ-neighborhood of x0 an infinite number of times (x0 is in its own α and ω limit set [41]), is an

approximate optimum of the global attractor peak estimation problem.

3.5.2.4 Global Attractor Examples

The Van-der-Pol oscillator pictured in Figure 3.4 has dynamics

ẋ =

 2x2

−0.8x1 − 10(x21 − 0.21)x2

 . (3.20)
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An order-6 LMI relaxation to program (3.17a) maximizing x21 over the attractive set of the

Van-der-Pol oscillator yields a bound of p∗6 = 0.8585. The point approximately maximizing p(x) is

x0 = ±[0.9266, 0.0030].

-1 -0.5 0 0.5 1

x
1

-1

-0.5

0

0.5

1

x
2

Peak Value for Trajectories = 0.8585 order = 6

Trajectories

Initial Points

Invariant Set

Cost Bound

Peak Achieved

Figure 3.4: Maximize x21 on Van-der-Pol system in (3.20)

The Lorenz attractor is an ODE described by parameters (ρ, σ, β) with behaviour

ẋ =


σ(x2 − x1)

x1(ρ− x3)− x2
x1x2 − βx3

 . (3.21)

The parameters that Lorenz used (now standard) are ρ = 28, σ = 10, β = 8/3. A scaling

of coordinates from [37] of x̃1 = x1/25, x̃2 = x2/30, x̃3 = x3/50 may be performed to ensure

that the attractor remains within the box [−1, 1]3. An order-6 of maximizing p(x) = x1 = 25x̃1 on

the attractor of the Lorenz system is visualized in Figure 3.5. The discovered bound is p∗6 = 18.646,

and the extracted peak point from the nearly rank-1 initial moment matrix (largest two eigenvalues

are 2.640, 1.609e− 4) is x∗0 ≈ [0.7458, 0.6309, 0.8280]. This point is close to the attractor but is not

on it, as backwards trajectories traced by MATLAB’s ode45 starting from x∗0 explode around time

t = 1.48. The global attractor recovery algorithm still yielded a peak point that is likely in the same

vicinity as the true bound.
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Figure 3.5: Maximize 25x̃1 on the scaled Lorenz system in (3.21)

3.6 Conclusion

This chapter reviewed the approximation of peak estimation programs by LMIs of occupa-

tion measure LPs. It also presented the rank-based recovery Algorithm 1 that attempts extraction

of optimal trajectories peak estimation problems. Algorithm 1 is applied to problems in ODE peak

estimation as well as in finding extrema of global attractors. Future work may involve quantifying

the optimality gap between recovered trajectories and the true trajectories, both in terms of difference

in peak values, and in normed distance between initial/peak points.
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Chapter 4

Peak Estimation under Uncertainty

4.1 Introduction

Peak estimation under uncertainty aims to bound extreme values of a state function subject

to an adversarial noise process. Examples include finding the maximum height of an aircraft subject

to wind, the maximum voltage in a transmission line subject to thermal noise, and the maximum speed

of a motor subject to impedance within a tolerance. A system with finite-dimensional state x ∈ RNx

evolves under Ordinary Differential Equation (ODE) dynamics defined by a locally Lipschitz vector

field f perturbed by uncertainty over the time-range t ∈ [0, T ]. The time-independent uncertainty

θ ∈ Θ ⊂ RNθ is fixed (such as the unknown mass of a system component within tolerance), while

the time-dependent uncertainty w(t) may change arbitrarily in time within the region W ⊂ RNw . Let

x(t | x0, θ, w(t)) denote a trajectory in time starting from an initial point x0 subject to uncertainties

(θ, w(t)). The uncertain peak estimation problem with variables (t, x0, θ, w(t)) may be posed as

P ∗ = sup
t∈[0,T ], x0∈X0, θ∈Θ, w(t)

p(x(t | x0, θ, w(t))) (4.1)

ẋ(t) = f(t, x(t), θ, w(t)), w(t) ∈W ∀t ∈ [0, T ].

This chapter produces an infinite-dimensional LP in occupation measures to upper bound the quantity

P ∗ from (4.1).

Occupation measure-based bounds for uncertain peak estimation may be developed by

adapting methods from optimal control [7, 16]. Time-dependent uncertainty is an instance of an

adversarial optimal control which aims to maximize the state function. Time-independent parameter

uncertainty may be incorporated by adding states, and switched systems can be analyzed by splitting
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the occupation measure [42]. The true peak cost P ∗ is upper bounded with an infinite-dimensional

LP in occupation measures. The infinite LP is then truncated into a sequence of LMIs by the

moment-SOS hierarchy [27].

This chapter has the following structure: Section 4.2 reviews uncertainty models. Section

4.3 introduces a unified uncertain peak estimation. Section 4.4 extends uncertain peak estimation to

discrete systems. The chapter is concluded in Section 4.5. This chapter’s content is from [43] (IEEE

CDC 2021 Outstanding Student Paper Award), and was coauthored by Didier Henrion, Milan Korda,

and Mario Sznaier.

4.2 Uncertainty Models

This section summarizes techniques for incorporating uncertainty into occupation-measure

based frameworks, and briefly notes their application to peak estimation. The methods mentioned

here arose from optimal control and the approximation of reachability sets. The two basic types of

uncertainty are time-independent (θ ∈ Θ) and time-dependent (w ∈W ). It is assumed that Θ and

W are compact basic semialgebraic sets, just like X and X0 from (3.7).

4.2.1 Time-Independent Uncertainty

Time-independent uncertainty θℓ for ℓ = 1..Nθ may take values in a set Θ ⊆ RNθ , and

typically arises in systems with parameter tolerances. The time-independent θ may start at any value

in Θ ⊂ RNθ , and is then constant along trajectories. By the methods in [16, 42], the state space may

be extended into X × Θ by adding new states θ with constant dynamics θ̇ℓ = Lfθℓ = 0 for each

ℓ = 1..Nθ.

4.2.2 Time-Dependent Uncertainty

Systems with time-dependent uncertainty may have the noise process w(t) change arbitrar-

ily quickly in W over time t. Such bounded time-varying noise may be found in driving or piloting

tasks with changing winds. The disturbance w(t) is a Borel measurable function of time, rather than

the Itô-type stochastic process considered in [44] (and discussed later in Chapter 10). For an input

w(t) ∈W and a subset D ⊆W , the disturbance-occupation measure µw(A×B ×D) is:∫
[0,T ]×X0

IA×B×D((t, x(t), w(t)) | x0)dt dµ0(x0). (4.2)
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The disturbance w(t) may be relaxed into a distribution ω(w | x, t), which is known as a Young

Measure [45, 7]. The disturbance-occupation measure µw can be disentangled into dµw(t, x, w) =

dt dξ(x | t) dω(w | x, t) for conditional distributions ξ, ω. Liouville’s equation with a relaxed

disturbance ω(w | x, t) influencing dynamics f(t, x, w) for all v(t, x) ∈ C1([0, T ]×X) is

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lfv(t, x), µw⟩. (4.3a)

Equivalent expressions are formed by rearranging operators

⟨v, µp⟩ = ⟨v, δ0 ⊗ µ0⟩+ ⟨Lfv, µw⟩ ∀v (4.3b)

⟨v, µp⟩ = ⟨v, δ0 ⊗ µ0⟩+ ⟨v,L†fµ
w⟩ ∀v (4.3c)

⟨v, µp⟩ = ⟨v, δ0 ⊗ µ0 + πtx#L
†
fµ

w⟩ ∀v. (4.3d)

The measures of the two summands on the right-hand side of (4.3c) reside in differ-

ent spaces, as δ0 ⊗ µ0 ∈ M+([0, T ] × X), while L†fµ
w ∈ M+([0, T ] × X ×W ). The (t, x)-

marginalization πtx#L
†
fµ

w ∈M+([0, T ]×X) allows the measures to be added together inside the

duality pairing in (4.3d). The duality pairings ⟨v(t, x),L†fµ
w⟩ and ⟨v(t, x), πtx#L

†
fµ

w⟩ are equal

for all v ∈ C1([0, T ]×X) because v(t, x) is not a function of w. The weak disturbed Liouville’s

Equation is derived from (4.3d) by treating ∀v(t, x) ∈ C1([0, T ]×X) as the implicit expression

µp = δ0 ⊗ µ0 + πtx#L
†
fµ

w. (4.4)

Time-varying disturbances may be incorporated into peak estimation by letting µ ∈
M+([0, T ]×X ×W ) be a disturbance-occupation measure of the form in (4.2) obeying a disturbed

Liouville equation (4.4). The support sets of the measures µ0 ∈M+(X0), µp ∈M+([0, T ]×X)

are unchanged when time-dependent uncertainty is added.

4.2.3 Switching Uncertainty

An approach for analyzing switched systems with occupation measures is presented in [42].

Let {Xk}Ns
k=1 be a closed cover of X with Ns switching modes. The sets Xk are not necessarily

disjoint, and together satisfy ∪kXk = X (definition of closed cover). Each region Xk has dynamics

ẋ = fk(t, x) for some locally Lipschitz vector field fk. The closed cover formalism generalizes

partitions of X (deterministic dynamics) and arbitrary switching where Xk = X ∀k (polytopic

uncertainty). Polytopic uncertainty is a model with dynamics f(t, x, k) =
∑

k wkfk(t, x) where

the disturbance wk ∈ RNs
+ satisfies

∑
k wk = 1. Trajectories from a switching system are equipped
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with a right-continuous function S : [0, T ] → 1..Ns yielding the resident subsystem at time t−.

Such a trajectory under switching may be written as x(t | x0, S(t)). The switched measure program

introduces an occupation measure µk ∈M+([0, T ]×Xk) for each subsystem fk :

µ =
∑

k µk L†µ =
∑

k L
†
kµk. (4.5)

A valid auxiliary function v(t, x) from (3.5c) must decrease along all subsystems [46, 47]. Problem

(3.5) may be modified for switching by enlarging Constraint (3.5c) to

Lfkv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×Xk, k = 1..Ns. (4.6)

Remark 4.2.1. The closed cover switching formalism may be expanded into a system with general

time-dependent uncertainty if desired. The switching basic semialgebraic sets may be described

as Xk = {x | gki(x) ≥ 0 i = 1..Nk
c } for Nk

c polynomial constraints each. A linear expression

of time-dependent uncertain dynamics is ẋ(t) =
∑Ns

k=1wk(t)fk(t, x(t)) for processes w(t) ∈ RNs
+

satisfying
∑

k wk(t) = 1 for all t ∈ [0, T ]. Additional constraints must be imposed to enforce that

the process wk(t) is zero whenever x(t) ̸∈ Xk. These constraints may be realized as {wkgki(x) ≥
0, ∀i = 1..Nk

c , ∀k = 1..Ns}, given that x(t) ̸∈ Xk if any of the gki(x) are negative.

4.3 Continuous-Time Uncertain Peak Estimation

This section combines the uncertainty formulations from Section 4.2 to form a pair of

primal-dual infinite-dimensional LPs. The variables θ ∈ Θ, w ∈ W will respectively denote time-

independent and time-dependent uncertainties of sizes Nθ, Nw. The dynamics f have Ns switching

subsystems fk(t, x, θ, w) which are valid in regions Xk ⊆ X .
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4.3.1 Continuous-Time Measure Program

A combined uncertain peak estimation measure program is detailed in Program (4.7) with

indices k = 1..Ns for the switching subsystems

p∗ = sup ⟨p(x), µp⟩ (4.7a)

µp = δ0 ⊗ µ0 +
∑

k π
txθ
# L

†
fk
µk (4.7b)

µ0(X0) = 1 (4.7c)

µk ∈M+([0, T ]×Xk ×Θ×W ) ∀k = 1..Ns (4.7d)

µp ∈M+([0, T ]×X ×Θ) (4.7e)

µ0 ∈M+(X0 ×Θ). (4.7f)

Theorem 4.3.1. The solution p∗ to program (4.7) will yield an upper bound to P ∗ in (4.1).

Proof. First assume Ns = 1 with X1 = X , so there is only one switching domain. An op-

timal achievement of (4.1) reaching the peak value of P ∗ may be characterized by the tuple

(x∗0, t
∗, x∗p, θ

∗, w∗(t)). The peak value p(x∗p) = P ∗ is achieved by following the trajectory x(t |
x∗0, θ

∗, w∗(t)) until time t = t∗. Measures (µ0, µp, µ) may be defined from this optimal tuple such

that the measures satisfy constraints (4.7b)-(4.7f). The initial measure and peak measure may be

set to µ0 = δx=x∗0 and µp = δt=t∗ ⊗ δx=x∗p ⊗ δθ=θ∗ based on the optimal tuple. The measure

µ ∈M+([0, T ]×X ×Θ×W ) is the occupation measure of t 7→ (t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t))

in the times [0, t∗]. The measures (µ0, µp, µ) satisfy constraints (4.7b)-(4.7f), so p∗ ≥ P ∗ when

Ns = 1.

Optimal trajectories arising from a system with Ns > 1 may be described in a tuple as

(x∗0, t
∗, x∗p, θ

∗, w∗(t), S∗(t)), where S∗(t) is the sequence of switches undergone between times

t ∈ [0, t∗]. The measures µ0 and µp may remain the same as in the non-switched case. Switching

occupation measures µk may be set to the unique occupation measure supported on the graph

(t, x(t | x∗0, θ∗, w∗(t)), θ∗, w∗(t)) between times t ∈ [0, t∗] when S(t) = k. These occupation

measures satisfy constraints (4.7b) and (4.7d), proving that there exists a feasible solution to (4.7b)-

(4.7f) for the case of switching with objective P ∗.

Theorem 4.3.2. Assumptions that the sets X0,∀k : Xk,Θ,W, [0, T ] are compact, that p is contin-

uous, and that each fk is Lipschitz within [0, T ] ×Xk × Θ ×W . Further assume that the image

fℓ(t, x, θ,W ) is convex for each fixed (t, x, θ) ∈ [0, T ]×X ×Θ and ℓ ∈ 1..Ns. Then program (4.7)

has the same optimal value as (4.1) with p∗ = P ∗.
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Proof. Program (4.1) is an instance of an Optimal Control Problem (OCP) with zero running cost

and free terminal time. Theorem 2.1 of [7] ensures that the measure LP (4.7) will have the same

optimal value as the OCP (4.1) under the provided compactness, continuity, regularity, and dynamics-

convexity assumptions.

4.3.2 Continuous-Time Function Program

Dual variables v(t, x, θ) ∈ C1([0, T ] × X × Θ) and γ ∈ R can be defined to find the

Lagrangian of (4.7)

L = ⟨p(x), µp⟩+ ⟨v(t, x, θ), δ0 ⊗ µ0 +
∑

k π
txθ
# L

†
fk
µk⟩

+ ⟨v(t, x, θ),−µp⟩+ γ(1− ⟨1, µ0⟩).

The resulting dual program in (v, γ) is

d∗ = inf
γ∈R

γ (4.8a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(0, x, θ) (4.8b)

∀(t, x, θ, w) ∈ [0, T ]×Xk ×Θ×W, ∀k :

Lfkv(t, x, θ) ≤ 0 (4.8c)

∀(t, x, θ) ∈ [0, T ]×X ×Θ :

v(t, x, θ) ≥ p(x) (4.8d)

v(t, x, θ) ∈ C1([0, T ]×X ×Θ). (4.8e)

Theorem 4.3.3. There is no duality gap between (4.7) and (4.8) when the set [0, T ]×X ×Θ×W
is compact.

Proof. Necessary and sufficient conditions for there to be no duality gap between measure and

function programs are if the objective p∗ is bounded and if the affine map is closed in the weak-*

topology (Theorem 2.6 in [40]). The function p(x) is bounded over the compact set X and µp is a

probability distribution, so the objective ⟨p(x), µp⟩ is therefore bounded. The image of the affine

map (µ0, µp, µk) → (δ0 ⊗ µ0 +
∑

k π
txθ
# L

†
fkµk − µp, µ0) induced by constraints (4.7b)-(4.7c) is

closed in the weak-* topology [8] Strong duality therefore holds by closure and boundedness of

measures.
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The measure µ0 has Nx + Nθ variables, and µp has 1 + Nx + Nθ variables. The Ns

occupation measures µk each have 1 +Nx +Nθ +Nw variables. If the switching structure was not

taken into account by the methods of section 4.2.3, there would be a single occupation measure µ

with 1 +Nx +Nθ +Nw +Ns variables. The affine uncertainty structure breaks up the large µ (in

terms of the number of variables) into Ns smaller measures (µk).

4.3.3 Continuous-Time LMI Relaxation

The compact (Archimedean) basic semialgebraic sets in the uncertain peak estimation

setting are

X = {x | gi(x) ≥ 0 | i = 1..Nc} (4.9a)

X0 = {x | g0i(x) ≥ 0 | i = 1..N0
c } (4.9b)

Xk = {x | gki(x) ≥ 0 | i = 1..Nk
c } (4.9c)

Θ = {θ | gθi(θ) ≥ 0 | i = 1..N θ
c } (4.9d)

W = {w | gwi(w) ≥ 0 | i = 1..Nw
c }. (4.9e)

The degree of gi(x) is di, and other degrees d0i, dθi, dwi, dki are defined on corresponding

polynomials. Monomials forming moments may be indexed as xαtβθγwη for multi-indices α ∈
NNx , β ∈ N, γ ∈ NNθ , η ∈ NNw . Define m0 = {m0

αγ}, mp = {mp
αβγ} as the moment sequences

for measures µ0 and µp. The moment sequence for the occupation measure µk is mk = {mk
αβγη}

for each switching subsystem k. The Liouville equation (4.7b) with test function v(t, x, θ) = xαtβθγ

has the form

0 = ⟨xαtβθγ , δ0 ⊗ µ0⟩ − ⟨xαtβθγ , µp⟩+
∑

k⟨Lfk(t,x,θ,w)(x
αtβθγ), µk⟩. (4.10)

Define the operator Liouαβγ(m0,mp,mk) as the linear relation between the moment sequences

induced by (4.10) assuming that each fk is a polynomial vector field. Given a degree d, define the

degrees d′k as d+ ⌈deg(fk)/2⌉ − 1 for each k. The degree-d LMI relaxation of the uncertain peak
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estimation problem in (4.7) resulting in an upper bound p∗d ≥ P ∗ is

p∗d =max
∑

α pαy
p
α00 (4.11a)

Liouαβγ(m0,mp,mk) = 0 by (4.10) ∀|α|+ |β|+ |γ| ≤ 2d (4.11b)

m0
0 = 1 (4.11c)

Md((X0 ×Θ)m0),Md(([0, T ]×X ×Θ)mp),⪰ 0 (4.11d)

∀k : Md′k
(([0, T ]×Xk ×Θ×W )mk) ⪰ 0. (4.11e)

Constraints (4.11d)-(4.11e) are moment and localizing matrix PSD constraints ensuring

that there exist representing measures to the moment sequences (m0,mp,mk) supported on the

appropriate spaces.

In Program (4.7), µ0 and µp each have mass 1, and the mass of
∑

k µk ≤ T by Liouville’s

equation. Compactness of [0, T ] ×X × Θ ×W therefore assures that all measures are bounded.

Given this boundedness, sequence {p∗d} will converge to p∗ monotonically from above as d→∞ if

all sets in (4.9) are Archimedean [27].

Algorithm 1 may be used to attempt localization of peak points (tp, xp, θ) and initial points

(0, x0, θ). Algorithm 1 can recover near-optimal values for time-independent uncertainty θ ∈ Θ if

the rank condition holds, but it is unable to determine the optimal time-dependent noise process

w(t) ∈W , nor the optimal switching sequence S(t). The work in [31] that estimates support of a

measure from its moments may be used to approximate the noise processes w(t) and S(t) from the

w-marginals πw#µ
k (appropriate moments of which are contained in Md′k

(mk)).

4.3.4 Continuous-Time Uncertain Examples

Code is available at github.com/jarmill/peak, and is written in MATLAB R2020a

using Gloptipoly3 [30], YALMIP [48], and Mosek 9.2 [49] to formulate and solve LMIs. Demon-

strations are available in the folder peak/experiments uncertain, and were run on an Intel

i9 CPU at 2.30 GHz with 64.0 GB of RAM.

4.3.4.1 Inner Tube

Dynamics based on Example 1 of [50] (adding w) are

ẋ(t) =

−0.5x1 − (0.5 + w(t))x2 + 0.5

−0.5x2 + 1 + θ

 . (4.12)
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Figure 4.1 illustrates maximization of p(x) = x1 starting in X0 = {x | (x1 + 1)2 + (x2 +

1)2 ≤ 0.25} for time t ∈ [0, 10]. The admissible disturbances w(t) are in W = [−0.2, 0.2]. Fig.

4.1a has Θ = 0, while Fig. 4.1b has Θ = [−0.5, 0.5] for the time-independent uncertainty θ ∈ Θ.

In each figure, the black circles are initial conditions from the boundary of X0, the blue curves are

sampled trajectories, and the red plane are level sets for upper bounds of x1 along trajectories. At

the order r = 4 LMI relaxation, Fig. 4.1a yields a bound of P ∗ ≤ 0.4925, while Fig. 4.1b with θ

results in P ∗ ≤ 0.7680. The black surface containing all trajectories in Fig. 4.1a is the level set

{(t, x) | v(t, x) = 0.4925}.

(a) θ = 0 (b) θ ∈ [−0.5, 0.5]

Figure 4.1: Maximize x1 at order 4 with w(t) ∈W

4.3.4.2 Three-Wave

The reduced three-wave model is a nonlinear model for the interaction of three quasisyn-

chronous waves in a plasma [51]. These dynamics with parameters (A,B,G) are

ẋ1 = Ax1 +Bx2 + x3 − 2x22

ẋ2 = −Bx1 +Ax2 + 2x1x2 (4.13)

ẋ3 = −Gx3 − 2x1x2.

This example aims to maximize x2 on the three-wave system starting in X0 = {x | (x1 + 1)2 +

(x2 + 1)2 + (x3 + 1)2 ≤ 0.16}. Order 3 LMI relaxations are used to upper bound x2 over the
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region of interest X = [−4, 3] × [0.5, 3.6] × [0, 4] and times t ∈ [0, 5]. The bound P ∗ ≤ 2.6108

is produced with parameter values A = 1, B = 0.5, G = 2 (no uncertainty), as illustrated in Fig.

4.2a. Fig. 4.2b adds uncertainty by letting A ∈ [−0.5, 1.5] and B ∈ [0.25, 0.75] vary arbitrarily with

time, and G now possesses parametric uncertainty in [1.9, 2.1] . Uncertainty in A,B are realized by

switching between 4 subsystems of (4.13) with (A,B) ∈ {0.5, 1.5} × {0.25, 0.75} Uncertainty in

G is implemented as G = 2 + θ where θ ∈ [−0.1, 0.1]. The order-3 bound under uncertainty in Fig.

4.2b is P ∗ ≤ 3.296.

(a) no uncertainty (b) with uncertainty

Figure 4.2: Maximize x2 on three-wave system (4.13)

4.3.4.3 Spacecraft Attitude

Section 4.1 of [42] introduces a 1DOF attitude controller for validation of a space launcher

system. These linearized dynamics corresponding to a double-integrator Iϕ̈ = u and states x = [ϕ, ϕ̇].

The input u = satL(Kx) is a state feedback controller Kx = 1000(2.475ϕ+ 19.8ϕ̇) that saturates

at levels ±L = ±380. The subsystems are linear operation |Kx| ≤ L, positive saturation Kx ≥ L,

and negative saturation Kx ≤ −L (deterministic switching). These valid regions Xk are separated in

Fig. 4.3 by thin dotted diagonal lines. Maximizing p(x) = |ϕ| (implemented as ϕ2) is shown in Fig.
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4.3a. With |ϕ0| ≤ 15◦ and |ϕ̇0| ≤ 3◦/sec, a degree-5 approximation finds a time-independent upper

bound of |ϕ∗| = 20.69◦. The blue curve is the near-optimal trajectory, starting at the blue circle and

extremizing p(x) at the blue star. The nominal moment of inertia in Fig. 4.3a is I = 27, 500 kg m2.

Time-independent relative uncertainty I may be introduced by replacing I with I/(1 + θ), where

θ ∈ [−0.5, 0.5]. The peak angle is raised to |ϕ∗| = 51.86◦ at d = 5 at I ′ = 2I with this new

uncertainty in Fig. 4.3b.
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Figure 4.3: Maximum angle for 1DOF attitude controller

4.4 Discrete-Time Uncertain Peak Estimation

Uncertain peak estimation can be extended to discrete systems, including switched discrete-

time systems. A discrete-time system from times t = 0..T is considered for dynamics x+ = f(x)

where x+ is the next state. A trajectory starting at the initial condition x0 ∈ X0 is xt(x0) The

uncertain peak estimation problem for discrete-time systems with uncertainties (θ, wt) and Ns

subsystems with switching sequence St is

P ∗ = sup
t, x0∈X0, θ∈Θ, wt, St

p(xt(x0, θ, wt, St)) (4.14)

x+ = fk(xt, θ, wt) if St = k

wt ∈W, St ∈ 1..Ns ∀t ∈ 0..T.
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4.4.1 Discrete-Time Measure Background

Just as the Lie derivative Lfv yields the infinitesimal change in v along continuous

trajectories, the quantity v(f(x))−v(x) is the change in v along a single discrete step. An occupation

measure for sets A ⊆ X with initial conditions distributed as µ0 ∈ M+(X0) may be defined for

discrete systems as

µ(A) =

∫
X0

T∑
t=0

IA(f
t(x0))dµ0. (4.15)

The quantity µ(A) is the averaged number of time steps that trajectories distributed as µ0 spend in

the region A. For measures µ0 ∈ M+(X0), µp ∈ M+(X), µ ∈ M+(X), the strong and weak

discrete Liouville equations for all v are

⟨v(x), µp⟩ = ⟨v(x), µ0⟩+ ⟨v(f(x)), µ⟩ − ⟨v(x), µ⟩, (4.16)

µp = µ0 + f#µ− µ. (4.17)

Time may be optionally included in system dynamics by setting a state t+ = t+ 1 and incorporating

t into dynamics. The pushforward term in (4.17) would then be v(t+ 1, f(t, x))− v(t, x). Discrete

systems with uncertainties (θ, w) have dynamics and Liouville equations according to

x+ = f(xt, θ, wt), µp = µ0 + πxθ# (f#µ− µ). (4.18)

The uncertainty θ ∈ Θ is fixed, and the time-dependent uncertainty has wt ∈ W for every time

step t = 0..T . Switching uncertainty from Section 4.2.3 with subsystems fk valid over Xk may be

realized by defining occupation measures µk ∈M+(Xk ×Θ×W ) such that µ =
∑

k µk.

4.4.2 Discrete-Time Measure Program

A measure program may be formulated to upper bound the peak-estimation task on discrete

systems. The uncertainties available in this formulation are (θ, w) and switching between dynamics
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fk over Xk. The uncertain discrete peak estimation measure problem with variables (µ0, µk, µp) is

p∗ = sup ⟨p(x), µp⟩ (4.19a)

µp = µ0 + πxθ# (
∑

k(fk#µk − µk)) (4.19b)

µ0(X0) = 1 (4.19c)

T ≥
∑

k⟨1, µk⟩ (4.19d)

µk ∈M+(Xk ×Θ×W ) ∀k = 1..Ns (4.19e)

µp ∈M+(X ×Θ) (4.19f)

µ0 ∈M+(X0 ×Θ). (4.19g)

Remark 4.4.1. The composition of pushforwards in (4.19b) acts as

⟨v(x, θ), πxθ# fk#µk⟩ = ⟨v(fk(x, θ, w), θ), µk⟩ (4.20)

for all test functions v(x, θ) ∈ C(X ×Θ).

Theorem 4.4.1. The optimum p∗ of (4.19) is an upper bound for P ∗ from discrete program (4.14).

Proof. This proof follows the same steps as the proof to Theorem 4.3.1. An trajectory achieving

a peak value of P ∗ solving (4.14) may be expressed as a tuple (t∗, x∗0, x
∗
p, θ

∗, w∗
t , S

∗
t ) with P ∗ =

p(x∗p) = p(xt∗(x
∗
0, θ

∗, wt)). Measures may be defined from this tuple to solve problem (4.19). The

probability distributions are µ0 = δx=x∗0 and µp = δx=x∗p ⊗ δθ=θ∗ . Switching measures µk may be

chosen as the discrete-time occupation measures of t | (xt(x∗0, θ∗, w∗
t ), θ

∗, w∗
t )I(St = k) in t ∈ 0..t∗k

for all test functions ṽk ∈ C(Xk ×Θ×W ) and for each k = 1..Ns. The measures (µ0, µp, µk) are

feasible solutions to (4.19b)-(4.19g) with objective value P ∗ = p(x∗p) = ⟨p(x), µp⟩, so p∗ ≥ P ∗ is a

valid upper bound to (4.14).

Remark 4.4.2. Constraint (4.19d) is a technique from [52] ensuring that the maximal time in

optimization is T and that each µk has a bounded mass.

4.4.3 Discrete-Time Function Program

With dual variables (v(x, θ) ∈ C(X × Θ), γ ∈ R) and a new dual variable α ≥ 0, the

Lagrangian of (4.19) is

L = ⟨p(x), µp⟩+ ⟨v(x, θ), µ0 − µp⟩+ α(T − ⟨1,
∑

k µk⟩)

+ ⟨v(x, θ), πxθ#
∑

k fk#µk − µk⟩+ γ(1− ⟨1, µ0⟩).
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The corresponding dual problem is

d∗ = inf
γ∈R, α≥0

γ + Tα (4.21a)

∀(x, θ) ∈ X0 ×Θ :

γ ≥ v(x, θ) (4.21b)

∀(x, θ, w) ∈ Xk ×Θ×W : ∀k

v(fk(x, θ, w), θ)− v(x, θ) ≤ α (4.21c)

∀(x, θ) ∈ X ×Θ :

v(x, θ) ≥ p(x) (4.21d)

v(x, θ) ∈ C(X ×Θ). (4.21e)

Theorem 4.4.2. Strong duality p∗ = d∗ between holds between (4.19) and (4.21) if T < ∞ and

X ×Θ×W is compact.

Proof. This is affirmed by a similar process to Theorem 4.3.3. The objective ⟨p, µp⟩ is bounded.

Additionally, all measures have bounded finite moments given that their masses are bounded and

their supports are compact. The image of the affine map in constraints (4.19b)-(4.19c) is closed in

the weak-* topology, concluding the conditions for strong duality by Theorem 2.6 of [40].

4.4.4 Discrete LMI

The LMI relaxation of (4.19) can be developed in the same manner as in Section 4.3.3.

The sets (X0, X,W,D) are defined in the same way as in equation (4.9). As there is no t term in

discrete systems, monomials forming moments are indexed as xαθγwη. The moment sequences are

y0, yp, and a yk for each switching subsystem k = 1, . . . , Ns. The Liouville equation (4.19b) with a

given test function v(x, θ) = xαθγ is

0 = ⟨xαθγ , δ0 ⊗ µ0⟩ − ⟨xαθγ , µp⟩+
∑

k⟨(fk(x, θ, w)αθγ − xαθγ , µk⟩. (4.22)

The operator Liouαγ(m0,mp,mk) is defined as the relation induced by the discrete
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Liouville equation (4.22). The discrete degree-d LMI truncation of (4.19) is

p∗d =sup
∑

α pαy
p
α0 (4.23a)

Liouαγ(m0,mp,mk) = 0 by (4.22) ∀|α|+ |γ| ≤ 2d (4.23b)

m0
0 = 1 (4.23c)∑
km

k
0 ≤ T (4.23d)

Md((X0 ×Θ)m0),Md(([0, T ]×X ×Θ)mp) ⪰ 0 (4.23e)

∀k : Md(([0, T ]×Xk ×Θ×W )mk) ⪰ 0. (4.23f)

Constraint (4.23d) enforces the time limit constraint on occupation measures (4.19d). The

structure of (4.23e)-(4.23f) is similar to (4.11) with the affine, moment matrix and localizing matrix

constraints.

4.4.5 Discrete Example

An example to demonstrate uncertain discrete peak estimation is to minimize x2 on the

following subsystems:

f1(x,w) =

−0.3x1 + 0.8x2 + 0.1x1x2

−0.75x1 − 0.3x2 + w

 (4.24a)

f2(x,w) =

 0.8x1 + 0.5x2 − 0.01x21

−0.5x1 + 0.8x2 − 0.01x1x2 + w

 . (4.24b)

The space under consideration is X = [−3, 3]2, and the time varying uncertainty wt satisfies wt ∈
[−0.2, 0.2] =W . The valid regions for subsystems of (4.24) are X1 = X and X2 = X ∩ (x1 ≥ 0).

When x1 ≥ 0, the system may switch arbitrarily between dynamics f1 and f2, but when x2 < 0, the

system only follows dynamics f1. Figure 4.4 visualizes minimizing x2 starting from the initial set

X0 = {x | (x1 + 1.5)2 + x22 = 0.16} between discrete times t ∈ 0, . . . , T with T = 50. A fourth

order LMI relaxation of (4.19a) is solved aiming to maximize p(x) = −x2. With w = 0 in Fig. 4.4a

the bound is P ∗ ≤ 1.215 (minx2 ≥ −1.215), while the time varying w in Fig. 4.4b yields a bound

of P ∗ ≤ 1.837.
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(a) wt = 0 (b) wt ∈ [−0.2, 0.2]

Figure 4.4: Minimize x2 on system (4.24)

4.5 Conclusion

The problem of peak estimation with uncertainty may be bounded by the optimal value

of an infinite-dimensional LP in occupation measures. Available uncertainty processes discussed

in this chapter are time-independent, arbitrarily time-dependent, and switching. This LP is then

approximated by the moment-SOS hierarchy and Linear Matrix Inequalities. Time-independent

and time-dependent uncertainties are incorporated into this measure framework for continuous and

discrete systems. Upcoming chapters of this thesis will focus on cases where the noise has additional

decomposable structure (Chapter 6), and will also treat probability-based bounds on peak values

under stochastic differential equations (Chapter 10).
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Chapter 5

Peak Estimation for Safety Analysis

5.1 Introduction

A trajectory is safe with respect to an unsafe set Xu if no point along trajectories contacts

or enters Xu. This chapter presents two methods to certify safety trajectories with respect to Xu:

safety margins and distance of closest approach. Safety Margins are a measure of violation for the

nonnegativity constraints describing the BSA set Xu. A negative safety margin verifies the safety

of trajectories starting from X0. The safety margin may be computed by extending measure-LP

peak estimation techniques to problems with maximin objectives. The distance of closest approach

between points along trajectories and Xu will be positive for all safe trajectories, and will be zero

for all unsafe trajectories. The task of finding this distance of closest approach will also be referred

to as ‘distance estimation’. Distance estimation problems may be solved by using techniques from

optimal transport theory by relaxing a distance objective into an expectation of the distance c(x, y)

with respect to probability distributions over X and Xu [53, 54, 55].

Prior work on verifying safety of trajectories includes Barrier functions [36, 56] and Den-

sity functions [57]. Barrier and Density functions offer binary indications of safety/unsafety; if a

Barrier/Density function exists, then all trajectories starting from X0 are safe. Barrier/Density func-

tions may be non-unique, and the existence of such a function does not yield a measure of closeness

to the unsafe set. Safety Margins can vary with constraint reparameterization (e.g., multiplying all

defining constraints of Xu by a positive constant) and therefore yield a qualitative certificate of safety.

The distance of closest approach P ∗ is independent of constraint reparameterization, and returns

quantifiable and geometrically interpretable information about the safety of trajectories.

This chapter is structured as follows: Section 5.2 reviews barrier functions for safety
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verification. Section 5.3 introduces the concept of safety margins which may be computed through

maximin peak estimation. Section 5.4 proposes an infinite-dimensional LP to bound the distance

closest approach between points along trajectories and points on the unsafe set. Section 5.5 uses

the moment-SOS hierarchy on the distance estimation LP to form a convergent sequence of SDPs.

Section 5.6 utilizes correlative sparsity to create SDPs of distance estimation with smaller PSD matrix

constraints. Section 5.7 poses distance estimation problems for shapes traveling along trajectories.

Section 5.8 presents examples of distance estimation. Section 5.9 details extensions to the distance

estimation problem, including uncertainty, polyhedral norm distances, and application of correlative

sparsity. Section 5.10 concludes the chapter. Appendix A.1 contains a proof of strong duality for the

distance LPs.

The safety margin content of this chapter appeared in [32] and was coauthored by Didier

Henrion and Mario Sznaier. The distance estimation work is from [58, 13] and was coauthored by

Mario Sznaier.

A persistent example throughout this chapter is verifying safety of the Flow system in

Figure 5.1 with respect to the unsafe setXu = {x | x21+(x2+0.7)2 ≤ 0.52,
√
2/2(x1+x2−0.7) ≤

0}. The set Xu is the red half-circle to the bottom-left of trajectories.

Figure 5.1: Trajectories of Flow system (3.9)
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5.2 Barrier Functions

A barrier function B ∈ C(X) is a continuous function that obeys the following nonnega-

tivity constraints [36, 56]:

B(x) ≤ 0 ∀x ∈ Xu (5.1a)

B(x) > 0 ∀x ∈ X0 (5.1b)

f(t, x) · ∇xB(x) ≥ 0 ∀x ∈ X. (5.1c)

The barrier function begins positive on X0 (5.1b) and increases along all trajectories (5.1c).

It is therefore not possible for trajectories to visit Xu where the barrier function is negative (5.1a).

The existence of a B(x) that solves (5.1) is sufficient to certify safety of trajectories with respect to

Xu. Constraint (5.1a) may be relaxed to B(x) ≤ 0 ∀x ∈ ∂Xu with no loss of generality so long as

X0 ∩Xu = ∅.

Barrier functions are non-unique: for any r > 0, the function rB(x) will also be a Barrier

function if B(x) is a Barrier function. Barrier functions are strong alternatives to feasibility of the

following measure program with variables (µ0, µ, µu):

µu = µ0 + L†fµ µ0(X0) = 1 (5.2a)

µ0 ∈M+(X0), µu ∈M+(Xu), µ ∈M+(X). (5.2b)

The green curve in Figure 5.2 is the level set B(x) = 0 of a degree-6 polynomial barrier

function certifying safety of the Flow system, found through a sum-of-squares relaxation of (5.1)

with the state constraint X = [−3, 3]2.

Figure 5.2: Degree-6 Barrier function for Flow system (3.9)
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5.3 Safety Margins and Maximin Peak Estimation

5.3.1 Safety Margin Background

Assume that Xu is a BSA set with description Xu = {x | pi(x) ≥ 0, i = 1..Nu}. A point

x is in Xu if all pi(x) are nonnegative. If at least one pi(x) remains negative for all points along

trajectories x(t | x0), x0 ∈ X0, then no point starting from X0 enters Xu and trajectories are safe.

The value p∗ = mini pi(x) is called the safety margin, and a negative safety margin p∗ < 0 certifies

safety.

5.3.2 Maximin Program

The safety margin estimation problem is a particular instance of maximin peak estimation.

Let p(x) = [pi(x)]
Np

i=1 be a polynomial vector of objectives. The maximin peak estimation problem

is
P ∗ = max

t, x0∈X0

min
i
pi(x)

ẋ(t) = f(t, x), t ∈ [0, T ].

(5.3)

Theorem 5.3.1. The maximin peak estimation problem (5.3) may be upper bounded by a measure

program

p∗ = max q (5.4a)

q + zi = ⟨pi(x), µp⟩ ∀i = 1..Np (5.4b)

µp = δ0 ⊗ µ0 + L†fµ (5.4c)

µ0(X0) = 1 (5.4d)

q ∈ R, z ∈ RNp

+ (5.4e)

µ, µp ∈M+([0, T ]×X) (5.4f)

µ0 ∈M+(X0). (5.4g)

Proof. This is an extension to the measure program (3.2) upper bounding (3.1) with multiple costs.

The value q is a lower bound on ⟨pi, µp⟩, and Program (5.4) aims to find the maximum such q.

Nonnegative slack variables zi in (5.4b) fill the gap between the bound q and ⟨pi, µp⟩.
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Degree-d LMI relaxations provide a decreasing sequence of upper bounds to p∗ in (5.4).

The Lagrangian of (5.4) is

L =γ(1− ⟨1, µ0⟩) +
∑Np

i=1 αizi + βi(q + zi − ⟨pi, µp⟩)

+ ⟨v(t, x), δ0 ⊗ µ0 + L†fµ− µp⟩+ q (5.5)

with new dual variables β ∈ RNp from constraint (5.4b) and α ∈ RNp

+ from the cone constraint

z ∈ RNp

+ . After eliminating α, the dual problem to (5.4) is

d∗ = min
γ∈R

γ (5.6a)

γ ≥ v(0, x) ∀x ∈ X0 (5.6b)

Lfv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (5.6c)

v(t, x) ≥ βT p(x) ∀(t, x) ∈ [0, T ]×X (5.6d)

v ∈ C1([0, T ]×X) (5.6e)

β ∈ RNp

+ , 1Tβ = 1. (5.6f)

Strong duality holds between (5.4) and (5.6) by Theorem 3.10 of [17] when [0, T ]×X is compact.

Remark 5.3.1. If a particular term pi(x) is minimal among p(x) at optimality, then zi = 0 and

βi ̸= 0. The dual variable β is located on an Np-dimensional simplex, so a single-objective case will

feature β = 1.

5.3.3 Maximin Example

An example of maximin estimation is the following non-autonomous ODE (Example 2.1

from [6]) is ẋ1
ẋ2

 =

x2t− 0.1x1 − x1x2
x1t− x2 + x21

 . (5.7)

Figure 5.3 plots trajectories from equation (5.7) on the initial set X0 = {x | (x1 +

0.75)2 + x22 = 1} and total set X = [−3, 2] × [−2, 2]. When maximizing p(x) = x1, over the

time range [0, 5], the first three bounds are p∗1:3 = [1.5473, 0.4981, 0.4931]. The second-largest

eigenvalue of M1(y) = 2.943× 10−6, so the moment matrix is nearly rank-1 for atom extraction

by Algorithm 1. The near-optimal trajectory is displayed in Fig. 5.3a with x∗0 = [−1.674,−0.383]
and x∗p = [0.493, 0.029]. With a maximin objective p(x) = [x1, x2], the first three bounds are

p∗1:3 = [1.0765, 0.3905, 0.3891]. At d = 3, the optimal β = [0.647, 0.353] has both elements
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nonzero, as p1(x∗p) = p2(x
∗
p) = p∗3. Fig. 5.4 displays the maximin objective min(x1, x2) along

trajectories in Fig. 5.3. x∗p is reached at time t∗p = 2.19, which is indicated by the blue stars on Fig.

5.4.
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Figure 5.3: Peak analysis of system (5.7) at d = 3
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5.3.4 Safety Margin Example and Scaling

The moment-SOS hierarchy can be used to find upper bounds p∗d > p∗ at degrees d. Safety

is assured if any upper bound is negative 0 > p∗d > p∗. Figure 5.5 visualizes the safety margin for
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the Flow system (3.9), where the bound of p∗ ≤ −0.2831 was found at the degree-4 relaxation.

Figure 5.5: Flow system is safe, p∗ ≤ −0.2831

The safety margin of trajectories will generally change if the unsafe set Xu is reparameter-

ized, even in the same coordinate system. Let q ≤ 0 and s > 0 be violation and scaling parameters

for the enlarged unsafe set Xviol
u = {x | q ≤ 0.52 − x21 + (x2 + 0.7)2, q ≤ −s(x1 + x2 − 0.7)}.

The original unsafe set is Xu = Xviol
u with q = 0 and s =

√
2/2. Figure 5.6 visualizes contours of

regions Xq
u as q decreases from 0 down to −2 for sets with scaling parameters s = 5 and s = 1. The

safety margins of trajectories with respect to Xu will vary as s changes, even as the same set Xu is

represented in both cases.

Figure 5.6: Safety margin scaling contours
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5.4 Distance Estimation Program

A metric function c(x, y) over the space X with x, y ∈ X satisfies the following properties

[59]:

c(x, y) = c(y, x) > 0 x ̸= y

c(x, x) = 0

c(x, y) ≤ c(x, z) + c(z, y) ∀z ∈ X.

The set of metric functions are closed under addition and pointwise maximums. Every norm ∥·∥
inspires a metric c∥·∥(x, y) = ∥x − y∥. The point-set distance function c(x;Y ) between a point

x ∈ X and a closed set Y ⊂ X is defined by

c(x;Y ) = inf
y∈Y

c(x, y). (5.8)

The closest approach as measured by a distance function c that any trajectory takes to the

unsafe set Xu in a time horizon of t ∈ [0, T ] can be found by solving

P ∗ =inft, x0,yc(x(t | x0), y)

ẋ(t) = f(t, x), t ∈ [0, T ]

x(0) =x0 ∈ X0, y ∈ Xu.

(5.9)

Solving (5.9) requires optimizing over all points (t, x0, y) ∈ [0, T ]×X0 ×Xu, which is generically

a non-convex and difficult task. Upper bounds to P ∗ may be found by sampling points (x0, y) and

evaluating c(x(t | x0), y) along these sampled trajectories. Lower bounds to P ∗ are a universal

property of all trajectories, and will satisfy P ∗ > 0 if all trajectories starting from X0 in the time

horizon [0, T ] are safe with respect to Xu.

An optimizing trajectory of the Distance program (5.9) may be described by a tuple

T ∗ = (y∗ x∗0, t
∗
p) using Table 5.1.

Table 5.1: Characterization of optimal trajectory in distance estimation

y∗ location on unsafe set of closest approach
x∗0 initial condition to produce closest approach
t∗p time to reach closest approach from x∗0

The relationship between these quantities for an optimal trajectory of (5.9) is

P ∗ = c(x(t∗p | x∗0);Xu) = c(x(t∗p | x∗0), y∗). (5.10)
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Figure 5.7 plots the trajectory of closest approach to Xu in dark blue. This minimal

L2 distance is 0.2831, and the red curve is the level set of all points with a point-set distance

0.2831 to Xu. On the optimal trajectory, the blue circle is x∗0 ≈ (1.489,−0.3998), the blue star

is x∗p= x(t∗ | x0) ≈ (0,−0.2997), and the blue square is y∗ ≈ (−0.2002,−0.4998). The closest

approach of 0.2831 occurred at time t∗ ≈ 0.6180. Figure 5.8 plots the distance and safety margin

contours for the set Xu. These distance contours for a given metric c are independent of the way that

Xu is defined (within the same coordinate system).

Figure 5.7: Flow system L2 bound of 0.2831 with optimal trajectory recovery

Figure 5.8: Comparison between L2 distance and safety margin contours
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5.4.1 Assumptions

The following assumptions are made in Program (5.9):

A1 The sets [0, T ], X, Xu, X0 are all compact, X0 ⊂ X .

A2 The function f(t, x) is Lipschitz in each argument in the compact set [0, T ]×X .

A3 The cost c(x, y) is C0 in X ×Xu.

A4 If x(t | x0)∈ ∂X for some t ∈ [0, T ], x0 ∈ X0, then x(t′ | x0) ̸∈ X ∀t′ ∈ (t, T ].

A3 relaxes the requirement that c should be a metric, allowing for costs such as ∥x− y∥22
in addition to the metric ∥x− y∥2. The combination of A1 and A3 enforce that c(x, y) is bounded

inside X ×Xu by the Weierstrass extreme value theorem. Assumption A4 requires that trajectories

leave X immediately after contacting the boundary ∂X .

Remark 5.4.1. A strict ϵ-superset Xϵ is a set Xϵ ⊃ X in which the boundaries of Xϵ and X have a

positive distance. If trajectories starting in X0 remain in X at all times t ∈ [0, T ], then any strict

ϵ-superset Xϵ satisfies A4. However, X may not satisfy A4, because there might exist a trajectory

remaining in X that is tangent to ∂X .

5.4.2 Measure Program

The problem of c∗ = min(x,y)∈X×Xu
c(x, y) is identical to

c∗ = min
(x,y)∈X×Xu

⟨c(x, y), δx ⊗ δy⟩

for Dirac measures δx ⊗ δy. The Dirac restriction may be relaxed to minimization over the set

of probability measures c∗ = ⟨c(x, y), η⟩, η ∈ M+(X × Xu), ⟨1, η⟩ = 1 with no change in the

objective value c∗. An infinite-dimensional convex LP in measures (µ0, µp, µ, η) to bound from

below the distance closest approach to Xu starting from X0 may be developed.
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Theorem 5.4.1. Suppose that f ∈ C0 and A3 holds. Further impose that if X0 ⊂ X are both

compact then A4 holds. Under these conditions, a lower bound for P ∗ is

p∗ = inf ⟨c(x, y), η⟩ (5.11a)

πx#η = πx#µp (5.11b)

µp = δ0 ⊗ µ0 + L†fµ (5.11c)

⟨1, µ0⟩ = 1 (5.11d)

µ0 ∈M+(X0), η ∈M+(X ×Xu) (5.11e)

µp, µ ∈M+([0, T ]×X) (5.11f)

Proof. Let T = (y, x0, tp) ∈ Xu×X0× [0, T ] be a tuple representing a trajectory with xp = x(tp |
x0) achieving a distance P = c(xp, y). A set of measures (5.11e)-(5.11f) satisfying constraints

(5.11b)-(5.11f) may be constructed from the tuple T . The initial measure µ0 = δx=x0 , the peak

(free-time terminal) measure µp = δt=tp ⊗ δx=xp with xp = x(tp | x0), and the joint measure

η = δxp ⊗ δy=y, are all rank-one atomic probability measures. The measure µ is the occupation

measure of t 7→ (t, x(t | x0)) in times [0, tp]. The distance objective (5.11a) for the tuple T may be

evaluated as

⟨c(x, y), η⟩ = ⟨c(x, y), δx=xp ⊗ δy=y⟩ = c(xp, y) = P. (5.12)

The feasible set of (5.11b)-(5.11f) contains all measures constructed from trajectories by the above

process, which immediately implies that p∗ ≤ P ∗.

Remark 5.4.2. As a reminder, the term πx# from constraint (5.11b) is the operator performing

x-marginalization. Constraint (5.11b) ensures that the x-marginals of η and µp are equal: ∀w ∈
C(X) : ⟨w(x), η(x, y)⟩ = ⟨w(x), µp(t, x)⟩.

We now prove that the measure program in (5.11) has the same objective value as the

trajectory program in (5.9) under assumptions A1-A4. In order to accomplish this task, we require a

pair of lemmas.
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Lemma 5.4.2. Under assumptions A1-A4, the following measure LP has the same optimal value as

(5.9):

p∗c = inf ⟨c(x;Xu), µp(t, x)⟩ (5.13a)

µp = δ0 ⊗ µ0 + L†fµ (5.13b)

⟨1, µ0⟩ = 1 (5.13c)

µ0 ∈M+(X0), µp, µ ∈M+([0, T ]×X). (5.13d)

Proof. Problem (5.13) is a peak estimation instance of (3.2) with a continuous (A3) objective of

p(x) = −c(x;Xu). Theorem 2.1 of [7] states that the peak estimation LP (5.13) will equal the

true peak estimation problem (3.1) (distance estimation problem (5.9)). The measures in (5.13d)

contain trajectories that stay withinX and terminate on ∂X (agreeing with the non-return assumption

A4).

Lemma 5.4.3. Under the assumptions that A1 and A3 hold and that ν ∈M+(X) is a probability

measure, it follows that

⟨c(x;Xu), ν(x)⟩ = inf
η∈M+(X×Xu)

⟨c, η⟩ : πx#η = ν. (5.14)

Proof. This follows by Theorem 2.2(a) of [60], given thatX×Xu is compact and c is continuous.

Remark 5.4.3. The parameterized method of [60] assumes that ν has a positive density with respect

to the Lebesgue measure on X . However, this assumption of positive density is not required in the

statement nor the proof of Theorem 2.2(a) used in [60] (and therefore in Lemma 5.4.3 in this thesis).

Theorem 5.4.4. Under assumptions A1-A4, p∗ = P ∗.

Proof. Lemma 5.4.2 states that p∗c = P ∗ under assumptions A1-A4. For any solution (µp, µ0, µ)

to constraints (5.13b) -(5.13a), Lemma 5.4.3 allows for a measure η to be chosen under ν = πx#µp

with cost ⟨c(x;Xu), π
x
#µp(x)⟩ = ⟨c, η⟩. Furthermore, it is not possible to choose an η such that

⟨c(x;Xu), π
x
#µp(x)⟩ ≥ ⟨c, η⟩. The infimal objectives p∗ = p∗c are the same, which implies that

p∗ = P ∗.
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5.4.3 Function Program

Dual variables v(t, x) ∈ C1([0, T ]×X), w(x) ∈ C(X), γ ∈ R over constraints (5.11b)-

(5.11d) must be introduced to derive the dual LP to (5.11). The Lagrangian L of problem (5.11)

is

L = ⟨c(x, y), η⟩+ ⟨v(t, x), δ0 ⊗ µ0 + L†fµ− µp⟩ (5.15)

+ ⟨w(x), πx#µp − πx#η⟩+ γ(1− ⟨1, µ0⟩).

Recalling that ∀η ∈M+(X × Y ), w ∈ C(X) the relation that ⟨w(x), η(x, y)⟩ = ⟨w(x), πx#η(x)⟩
holds, the Lagrangian L in (5.15) may be reformulated as

L = γ + ⟨v(0, x)− γ, µ0⟩+ ⟨c(x, y)− w(x), η⟩ (5.16)

+ ⟨w(x)− v(t, x), µp⟩+ ⟨Lfv(t, x), µ⟩.

The dual of program (5.11) is provided by

d∗ =supγ,v,w infµ0,µp,µ,ηL (5.17a)

=supγ∈R γ (5.17b)

v(0, x) ≥ γ ∀x ∈ X0 (5.17c)

c(x, y) ≥ w(x) ∀(x, y) ∈ X ×Xu (5.17d)

w(x) ≥ v(t, x) ∀(t, x) ∈ [0, T ]×X (5.17e)

Lfv(t, x) ≥ 0 ∀(t, x) ∈ [0, T ]×X (5.17f)

w ∈ C(X) (5.17g)

v ∈ C1([0, T ]×X). (5.17h)

Theorem 5.4.5. Strong duality with p∗ = d∗ and attainment of optima occurs under assumptions

A1-A4.

Proof. See Appendix A.1.

Remark 5.4.4. The continuous function w(x) is a lower bound on the point set distance c(x;Xu)

by constraint (5.17d). The auxiliary function v(t, x) is in turn a lower bound on w(x) by constraint

(5.17e). This establishes a chain of lower bounds v(t, x) ≤ w(x) ≤ c(x;Xu) holding ∀(t, x) ∈
[0, T ]×X .
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5.5 Finite-Dimensional Programs

This section presents finite-dimensional SDP truncations to the infinite-dimensional dis-

tance estimation LPs (5.11) and (5.17).

5.5.1 LMI Approximation

In the case where c(x, y) and f(t, x) are polynomial, (5.11) may be approximated with a

converging hierarchy of SDPs. Assume that thatX0,X , andXu are Archimedean basic semialgebraic

sets, each defined by a finite number of bounded-degree polynomial inequality constraints X0 =

{x | g0k(x) ≥ 0}N0
k=1, X = {x | gXk (x) ≥ 0}NX

k=1, and Xu = {x | gUk (x) ≥ 0}NU
k=1.

The polynomial inequality constraints for X0, X,Xu are of degrees d0k, dk, d
U
k respectively.

The Liouville equation in (5.11c) enforces a countably infinite set of linear constraints indexed by all

possible α ∈ Nn, β ∈ N from (3.6).

Let (m0,mp,m,mη) be moment sequences for the measures (µ0, µp, µ, η). Define

Liouαβ(m0,m,mp) as the linear relation induced by (3.6) at the test function xαtβ in terms of

moment sequences. The polynomial metric c(x, y) may be expressed as
∑

α,γ cαγx
αyγ for multi-

indices α, γ ∈ Nn. The complexity of dynamics f induces a degree d̃ as d̃ = d+ ⌈deg(f)/2⌉ − 1.

The degree-d LMI relaxation of (5.11) with moment sequence variables (m0,mp,m,mη) is

p∗d =min
∑

α,γ cαγm
η
αγ . (5.18a)

mη
α0 = mp

α0 ∀α ∈ Nn≤2d (5.18b)

Liouαβ(m0,mp,m) = 0 ∀(α, β) ∈ Nn+1
≤2d (5.18c)

m0
0 = 1 (5.18d)

Md(X0m
0) ⪰ 0 (5.18e)

Md(([0, T ]×X)mp) ⪰ 0 (5.18f)

Md̃(([0, T ]×X)m) ⪰ 0 (5.18g)

Md((X ×Xu)m
η) ⪰ 0. (5.18h)

Constraints (5.18b)-(5.18d) are finite-dimensional versions of constraints (5.11b)-(5.11d) from the

measure LP. In order to ensure convergence limd→∞ p∗d = p∗, we must establish that all moments of

measures are bounded.

Lemma 5.5.1. The masses of all measures in (5.11) are finite (uniformly bounded) if A1-A4 hold.
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Proof. Constraint (5.11d) imposes that ⟨1, µ0⟩ = 1, which further requires that ⟨1, µp⟩ = ⟨1, µ0⟩ = 1

by constraint (5.11c) (v(t, x) = 1) and ⟨1, µp⟩ = ⟨1, η⟩ = 1 (w(x) = 1). The occupation measure µ

likewise has bounded mass with ⟨1, µ⟩ = ⟨t, µp⟩ < T by constraint (5.11c) (v(t, x) = t).

Lemma 5.5.2. The measures(µ0, µp, µ, η) all have finite moments under Assumptions A1-A4.

Proof. A sufficient condition for a measure τ ∈M+(X) with compact support to be bounded is to

have finite mass ⟨1, τ⟩. In our case, the support of all measures (µ0, µp, µ, η) are compact sets by

A1. Further, under Assumptions A1-A4, all of these measures have bounded mass (Lemma 5.5.1).

This sufficiency is satisfied by all measures (µ0, µp, µ, η).

Theorem 5.5.3. When T is finite and X0, X,Xu are all Archimedean, the sequence of lower bounds

p∗d ≤ p∗d+1 ≤ p∗d+2 . . . will approach p∗ as d tends towards∞.

Proof. This convergence is assured by Corollary 8 of [23] under the Archimedean assumption and

Lemma 5.5.1.

Remark 5.5.1. Non-polynomial C0 cost functions c(x, y) may be approximated by polynomials

c̃(x, y) through the Stone-Weierstrass theorem in the compact setX×Y . For every ϵ > 0, there exists

a c̃(x, y) ∈ R[x, y] such that maxx∈X,y∈Xu |c(x, y) − c̃(x, y)| ≤ ϵ. Solving the peak estimation

problem (5.11) with cost c̃(x, y) as ϵ → 0 will yield convergent bounds to P ∗ with cost c(x, y).

Section 5.9.2 offers an alternative peak estimation problem using polyhedral lifts for costs comprised

of the maximum of a set of functions.

5.5.2 Numerical Considerations

A moment matrix with n variables in degree d has dimension
(
n+d
d

)
. The sizes of moment

matrices associated with a d relaxation of Problem (5.18) with state x ∈ Rn, dynamics f(t, x), and

induced dynamic degree d̃, are listed in Table 5.2.

Table 5.2: Sizes of moment matrices in LMI (5.18)

Moment Md(m
0) Md(m

p) Md̃(m) Md(m
η)

Size
(
n+d
d

) (
1+n+d

d

) (1+n+d̃
d̃

) (
2n+d
d

)
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The computational complexity of solving the SDP formulation of LMI (5.18) scales

polynomially as the largest matrix size in Table 5.2, usually Md(m
η), except in cases where f(t, x)

has a high polynomial degree.

Remark 5.5.2. The measures µp and η may in principle be combined into a larger measure η̃ ∈
M+([0, T ]×X ×Xu). The Liouville equation (5.11c) would then read πtx# η̃ = δ0⊗µ0+L†fµ, and

a valid selection of η̃ given an optimal trajectory is η̃ = δt=t∗p ⊗ δx=x∗p ⊗ δy=y∗ with x∗p = x(t∗p | x∗0).
The measure η̃ is defined over 2n + 1 variables, and the size of its moment matrix at a degree d

relaxation is
(
1+2n+d

d

)
, as compared to

(
2n+d
d

)
for η. We elected to split up the measures as µp and

η to reduce the number of variables in the largest measure, and to ensure that the objective (5.11a) is

interpretable as an earth-mover distance (from optimal transport literature[53]) between πx#µp and

a probability distribution over Xu (absorbed into πx#η).

Remark 5.5.3. The distance problem (5.9) may also be treated as a peak estimation problem (3.1)

with cost p(x, y) = −c(x, y), initial set X0 ×Xu, x-dynamics ẋ(t) = f(t, x(t)), and y-dynamics

ẏ(t) = 0. The moment matrix Md[m] associated with this peak estimation problem’s occupation

measure (LMI relaxation of program (3.2)) would have size
(
1+2n+d̃

d

)
. This size is greater than any

of the sizes written in Table 5.2.

Remark 5.5.4. The atom-extraction-based recovery Algorithm 1 from [32] may be used to approxi-

mate near-optimal trajectories if the moment matrices Md(m
0), Md(m

p), and Md(m
η) are each

low rank. If these matrices are all rank-one, then the near-optimal points (xp, y, x0, tp) may be read

directly from the moment sequences (m0,mp,mη). The near optimal points from Figure 3.1 were

recovered at the degree-4 relaxation of (5.18). The top corner of the moment matrices Md(m
0),

Md(m
p), and Md(m

η) (containing moments of orders 0-2) have second-largest eigenvalues of

1.87× 10−5, 8.82× 10−6, 5.87× 10−7 respectively, as compared to the largest eigenvalues of 3.377,

1.472, 1.380.
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5.5.3 SOS Approximation

The degree-d WSOS truncation of program (5.17) is

d∗d = max
γ∈R

γ (5.19a)

v(0, x)− γ ∈ Σ[X0]≤2d (5.19b)

c(x, y)− w(x) ∈ Σ[X ×Xu]≤2d (5.19c)

w(x)− v(t, x) ∈ Σ[[0, T ]×X]≤2d (5.19d)

Lfv(t, x) ∈ Σ[[0, T ]×X]≤2d̃ (5.19e)

w ∈ R[x]≤2d (5.19f)

v ∈ R[t, x]≤2d. (5.19g)

Theorem 5.5.4. Strong duality holds with p∗k = d∗k for all k ∈ N between (5.18) and (5.19) under

assumptions A1-A5.

Proof. Refer to Corollary 8 of [23] (Archimedean condition and bounded masses), as well as to the

proof of Theorem 4 and Lemma 4 in Appendix D of [21].

5.6 Exploiting Correlative Sparsity

Many costs c(x, y) exhibit an additively separable structure such that c can be decomposed

into the sum of new terms c(x, y) =
∑

i ci(xi, yi). Each term ci in the sum is a function purely

of (xi, yi). Examples include the Lp family of distance functions, such as the squared L2 cost

c(x, y) =
∑

i(xi − yi)2. The theory of Correlative Sparsity in polynomial optimization, briefly

reviewed below, can be used to substantially reduce the computational complexity entailed in solving

the distance estimation SDPs when c is additively separable [61]. This decomposition does not

require prior structure on the set X ×Xu. Other types of reducible structure (if applicable) include

Term Sparsity [62], symmetry [63], and network dynamics [64]. These forms of structure may be

combined if present, such as in Correlative and Term Sparsity [65].

5.6.1 Correlative Sparsity Background

Let K = {x | gk(x) ≥ 0, k = 1, . . . , N} be an Archimedean basic semialgebraic set and

ϕ(x) be a polynomial. The Correlative Sparsity Pattern (CSP) associated to (ϕ(x), g) is a graph
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G(V, E) with vertices V and edges E . Each of the n vertices in V corresponds to a variable x1, . . . , xn.

An edge (xi, xj) ∈ E appears if variables xi and xj are multiplied together in a monomial in ϕ(x),

or if they appear together in at least one constraint gk(x) [61].

The correlative sparsity pattern of (ϕ(x), g) may be characterized by sets I of variables

and sets J of constraints. The p sets I should satisfy the following two properties:

1. (Coverage)
⋃p
j=1 Ij = V

2. (Running Intersection Property) For all k = 1..p− 1: Ik+1 ∩
⋃k
j=1 Ij ⊆ Is for some s ≤ k.

Equivalently, the sets I are the maximal cliques of a chordal extension of G(V, E) [66]. The

sets J = {Ji}pi=1 are a partition over constraints gk(x) ≥ 0. The number k is in Ji for k = 1, . . . NX

if all variables involved in the constraint polynomial gk(x) are contained within the set Ii. Let

the notation x(Ii) denote the variables in x that are members of the set Ii. A sufficient sparse

representation of positivity certificates may be developed for (ϕ(x), g) satisfying an admissible

correlative sparsity pattern (I, J) [67]:

ϕ(x) =
∑p

i=1 σi0(x(Ii)) +
∑

k∈Ji σk(x(Ii))gk(x) (5.20)

σi0(x) ∈ Σ[x(Ii)] σk(x) ∈ Σ[x(Ii)] ∀i = 1, . . . , p.

Equation (5.20) is a sparse version of the Putinar certificate in (2.13). The sparse certificate

(5.20) is additionally necessary for the G-sparse polynomial ϕ(x) to be positive over K if (I, J)

satisfies the Running Intersection Property and a sparse Archimedean property holds: that there exist

finite constants Ri > 0 for i = 1..n such that R2
i − ∥x(Ii)∥22 is in the quadratic module (2.11) of

constraints Q[{gk}k∈Ji ] [67].

5.6.2 Correlative Sparsity for Distance Estimation

Constraint (5.17d) will exhibit correlative sparsity when c(x, y) is additively separable:

∑n
i=1 ci(xi, yi)− w(x) ≥ 0 ∀(x, y) ∈ X ×Xu. (5.21)

The product-structure support set of Equation (5.21) may be expressed as

X ×Xu = {(x, y) |g1(x) ≥ 0, . . . , gNX
(x) ≥ 0, (5.22)

gNX+1(y) ≥ 0, . . . , gNX+NU
(y) ≥ 0}.
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The correlative sparsity graph of (5.21) is the graph Cartesian product of the complete

graph Kn by K2 and is visualized at n = 4 by the nodes and black lines in Figure 5.9. Black

lines imply that there is a link between variables. The black lines are drawn between each pair

(xi, yi) from the cost terms ci. The polynomial w(x) involves mixed monomials of all variables

(x) = (x1, x2, x3, x4). Prior knowledge on the constraints of Xu are not assumed in advance, so the

variables are (y) = (y1, y2, y3, y4) joined together. A CSP (I, J) associated with this system is

I1 = {x1, x2, x3, x4, y1} J1 = {1, . . . , NX}

I2 = {x2, x3, x4, y1, y2} J2 = ∅

I3 = {x3, x4, y1, y2, y3} J3 = ∅

I4 = {x4, y1, y2, y3, y4} J4 = {NX + 1, . . . , NX +NU}.

Figure 5.9 illustrates a chordal extension of the CSP graph with new edges displayed as red dashed

lines. These new edges appear by connecting all variables in I1 together in a clique and by following

a similar process for I2, . . . I4.

x1 x2 x3 x4

y1 y2 y3 y4

Figure 5.9: CSP with 4-States and Chordal Extension

For a unsafe distance bounding problem with a additively separable c(x, y) =
∑

i c(xi, yi)

with n states, the CSP (I, J) is

I1 = {x1, . . . , xn, y1} J1 = {1, . . . , NX} (5.23)

Ii = {xi, . . . xn, y1, . . . yi} Ji = ∅, ∀i = 2, . . . , n− 1

In = {xn, y1, . . . , yn} Jn = {NX + 1, . . . , NX +NU}.

A total of (n− 1)n/2 new edges are added in the chordal extension. Letting y1:i be the

collection of variables (y1, y2, . . . , yi) for an index i ∈ 1..n (and with a similar definition for xi:n), a
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correlatively sparse certificate of positivity for constraint (5.17d) is
n∑
i=1

ci(xi, yi)− w(x) =
n∑
i=1

σi0(xi:n, y1:i) +

NX∑
k=1

σk(x, y1)gk(x)

+

NX+NU∑
k=NX+1

σk(xn, y)gk(y). (5.24)

with sum-of-squares multipliers

σi0(x, y) ∈ Σ[xi:n, y1:i] ∀i = 1, . . . , p

σk(x, y) ∈ Σ[x, y1] ∀k = 1, . . . , NX (5.25)

σk(x, y) ∈ Σ[xn, y] ∀k = NX + 1, . . . , NX +NU .

The application of correlative sparsity to the distance problem replaces constraint (5.19c)

by (5.24).

Remark 5.6.1. The CSP decomposition in (5.23) is nonunique. As an example, the following

decompositions are all valid for n = 3 (satisfying the Running Intersection Property):

I1 = {x1, x2, x3, y1} I ′1 = {x1, x2, x3, y3}

I2 = {x2, x3, y1, y3} I ′2 = {x1, x2, y2, y3}

I3 = {x2, y1, y2, y3} I ′3 = {x1, y1, y2, y3}.

The original constraint (5.17d) is dual to the joint measure η ∈M+(X × Y ). Correlative

sparsity may be applied to the measure program by splitting η into new measures η1 ∈ M+(X ×
R), ηn ∈ M+(R × Xu) and ηi ∈ M+(Rn+1) for i = 2, . . . , n − 1, following the procedure in

[67]. These measures will align on overlaps with πIi∩Ii+1

# ηi = π
Ii∩Ii+1

# ηi+1, ∀i = 1, . . . , n − 1.

At a degree d relaxation, the moment matrix of η in (5.18) has size
(
2n+d
d

)
. Each of the n moment

matrices of {ηi}ni=1 has a size of
(
n+1+d

d

)
. For example, a problem with n = 4, d = 4 will have a

moment matrix for η of size
(
12
4

)
= 495, while the moment matrices for each of the η(1:4) are of size(

9
4

)
= 126.

5.7 Shape Safety

The distance estimation problem may be extended to sets or shapes travelling along

trajectories, bounding the minimum distance between points on the shape and the unsafe set. An

example application is in quantifying safety of rigid body dynamics, such as finding the closest

distance between all points on an airplane and points on a mountain.
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5.7.1 Shape Safety Background

Let X ⊂ Rn be a region of space with unsafe set Xu, and c(x, y) be a distance function.

The state ω ∈ Ω (such as position and angular orientation) follows dynamics ω̇(t) = f(t, ω) between

times t ∈ [0, T ]. A trajectory is ω(t | ω0) for some initial state ω0 ∈ Ω0⊂ Ω. The shape of the object

is a set S. There exists a mapping A(s;ω) : S × Ω→ X that provides the transformation between

local coordinates on the shape (s) to global coordinates in X .

Examples of a shape traveling along trajectories are detailed in Figure 5.10. The shape

S = [−0.1, 0.1]2 is the pink square. The left hand plot is a pure translation after a 5π/12 radian

rotation, and the right plot involves a rigid body transformation.

Figure 5.10: Shape moving and rotating along Flow (3.9) trajectories

The distance estimation task with shapes is to bound

P ∗ =inft, ω0∈Ω0, s∈S, y∈Xuc(A(s; ω(t | ω0)), y)

ω̇(t) = f(t, ω), ∀t ∈ [0, T ].
(5.26)

For each trajectory in state ω(t | ω0), problem (5.26) ranges over all points in the shape

s ∈ S and points in the unsafe set y ∈ Xu to find the closest approach. An optimal trajectory

of the shape distance program may be expressed as T ∗
s = (y∗, s∗, ω∗

0, t
∗
p) with ω∗

p = ω(t∗p | ω∗
0),

x∗p = A(s∗;ω∗
p) and

P ∗ = c(A(s∗;ω∗
p), Xu) = c(A(s∗;ω(t∗p | ω∗

0)), y
∗).

Remark 5.7.1. The objective in (5.26) can be expressed using

cA(ω;S,Xu) = inf
s∈S,y∈Xu

c(A(s;ω), y) (5.27)

as cA(ω(t | ω0);S,Xu).
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5.7.2 Assumptions

The following assumptions are made in the Shape Distance program (5.26):

A1’ The sets [0, T ], Ω, S, X, Xu are compact and Ω0 ⊂ Ω.

A2’ The function f(t, ω) is Lipschitz in each argument.

A3’ The cost c(x, y) is C0.

A4’ The coordinate transformation function A(s;ω) is C0.

A5’ If ω(t | ω0)∈ ∂Ω for some t ∈ [0, T ], ω0 ∈ Ω0, then ω(t | ω0) ̸∈ Ω ∀t′ ∈ (t, T ].

A6’ If ∃s ∈ S such that A(s;ω(t | ω0)) ̸∈ X or A(s;ω(t | ω0)) ∈ ∂X for some t ∈ [0, T ], ω0 ∈
Ω0, then A(s;ω(t′ | ω0)) ̸∈ X ∀t′ ∈ (t, T ].

An alternative assumption used instead of A5’-A6’ is that ω(t | Ω0) stays in Ω for all ω0 ∈ Ω0 and

A(s;ω(t | ω0)) ∈ X for all s ∈ S, t ∈ [0, T ].

5.7.3 Shape Distance Measure Program

Program (5.26) involves a distance objective c(x, y), where the point x = A(s;ω) is given

by a coordinate transformation between body coordinates s and the evolving orientation ω. In order

to formulate a measure program to (5.26), a shape measure µs ∈M+(S×Ω) may be added to bridge

the gap between the changing orientation ω̇ and the comparison distance x. The shape measure

contains information on the orientation ω and body coordinate s that yields the closest point x,

⟨z(ω), µp(t, ω)⟩ = ⟨z(ω), µs(s, ω)⟩ ∀z ∈ C(Ω) (5.28a)

⟨w(x), η(x, y)⟩ = ⟨w(A(s;ω)), µs(s, ω)⟩ ∀w ∈ C(X). (5.28b)

The shape measure µs chooses the worst-case body coordinate s and orientation ω from

µp (5.28a), such that the point x = A(s;ω) comes as close as possible to the unsafe set’s coordinate

y (5.28b). We retain the coordinate x in order to decrease the computational complexity of the SDPs,

as elaborated upon further in Remark 5.5.2.
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The infinite dimensional measure program that lower bounds (5.26) is

p∗ = inf ⟨c(x, y), η⟩ (5.29a)

µp = δ0 ⊗ µ0 + L†fµ (5.29b)

πω#µp = πω#µs (5.29c)

πx#η = A(s;ω)#µs (5.29d)

⟨1, µ0⟩ = 1 (5.29e)

µ0 ∈M+(Ω0), η ∈M+(X ×Xu) (5.29f)

µs ∈M+(Ω× S) (5.29g)

µp, µ ∈M+([0, T ]× Ω). (5.29h)

Constraint (5.11b) in the original distance formulation is now split between (5.29c) and (5.29d)

(which are equivalent to (5.28b) and (5.28a)). Problem (5.29) inherits all convergence and duality

properties of the original (5.11) under the appropriately modified set of assumptions A1’-A6’.

Theorem 5.7.1. Under A3’-A4’ (and additionally A5’-A6’ when all sets in A1’ are compact possibly

excluding [0, T ]), the Shape programs (5.26) and (5.29) are related by p∗ ≤ P ∗.

Proof. This proof will follow the same pattern as Theorem 5.4.1’s proof. A set of measures that are

feasible solutions for the constraints of (5.29) may be constructed for any trajectory Ts = (y, s, ω0, tp)

with ωp = ω(tp | ω0), xp = A(s;ωp). One choice of these measures are µ0 = δω=ω0 , µp = δt=tp ⊗
δω=ωp , η = δx=xp ⊗ δy=y, µs = δs=s ⊗ δω=ωp and µ as the occupation measure t 7→ (t, ω(t | ω∗

0)

in times [0, t∗p]. The feasible set of the constraints contains all trajectory-constructed measures, so

p∗ ≤ P ∗.

Lemma 5.7.2. All measures in (5.29) have bounded mass under Assumption A1’.

Proof. This follows from the steps of Lemma 5.5.1. The conditions hold that 1 = ⟨1, µ0⟩ = ⟨1, µp⟩
(5.29b), ⟨1, µp⟩ = ⟨1, µs⟩ (5.29c), ⟨1, µs⟩ = ⟨1, η⟩ (5.29d), and ⟨1, µ⟩ ≤ T by (5.29b).
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Lemma 5.7.3. The following peak estimation problem has the same optimal value as (5.26) under

A1’-A6’:

p∗c = inf ⟨cA(ω;S,Xu), µp(t, ω)⟩ (5.30a)

µp = δ0 ⊗ µ0 + L†fµ (5.30b)

⟨1, µ0⟩ = 1 (5.30c)

µ0 ∈M+(Ω0), η ∈M+(X ×Xu) (5.30d)

µs ∈M+(Ω× S) (5.30e)

µp, µ ∈M+([0, T ]× Ω). (5.30f)

Proof. Refer to the proof of Lemma 5.4.2, with a shape-objective from (5.27).

Theorem 5.7.4. Under A1’-A6’, the optimal values of (5.29) and (5.26) are equal (P ∗ = p∗).

Proof. This proof repeats same process used in Theorem 5.4.4. Lemma 5.7.3 is used in place of

Lemma 5.4.2. The reasoning of Lemma 5.4.3 is employed to construct infima-agreeing measures

µs, η given a µp from (5.30f) consistent with the marginal constraints (5.29c) and (5.29d).

5.7.4 Shape Distance Function Program

Defining a new dual function z(ω) against constraint (5.29c) (also observed in (5.28a)),

the Lagrangian of problem (5.29) is

L = ⟨c(x, y), η⟩+ ⟨v(t, x), δ0 ⊗ µ0 + L†fµ− µp⟩

+ ⟨z(ω), πω#(µp − µs)⟩+ γ(1− ⟨1, u0⟩) (5.31)

+ ⟨w(x), A(s;ω)#µs − πx#η⟩.

The Lagrangian in (5.31) may be manipulated into

L = γ + ⟨c(x, y)− w(x), η⟩+ ⟨v(0, ω)− γ, µ0⟩

+ ⟨Lfv(t, ω), µ⟩+ ⟨z(ω)− v(t, ω), µp⟩ (5.32)

+ ⟨w(A(s;ω))− z(ω), µs⟩.
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The dual of program (5.29) provided by minimizing the Lagrangian (5.32) with respect to (η, µs, µp, µ, µ0)

is

d∗ = supγ∈R γ (5.33a)

v(0, ω) ≥ γ ∀x ∈ Ω0 (5.33b)

c(x, y) ≥ w(x) ∀(x, y) ∈ X ×Xu (5.33c)

w(A(s;ω)) ≥ z(ω) ∀(s, ω) ∈ S × Ω (5.33d)

z(ω) ≥ v(t, ω) ∀(t, ω) ∈ [0, T ]× Ω (5.33e)

Lfv(t, ω) ≥ 0 ∀(t, ω) ∈ [0, T ]× Ω (5.33f)

w ∈ C(X), z ∈ C(Ω) (5.33g)

v ∈ C1([0, T ]×X). (5.33h)

Theorem 5.7.5. Problems (5.29) and (5.33) are strongly dual under assumptions A1’-A6’.

Proof. This holds by extending the proof of Theorem 5.4.5 found in Appendix A.1 and applying

Theorem 2.6 of [40].

Remark 5.7.2. Program (5.33) imposes that a chain of lower bounds v(t, ω) ≤ z(ω) ≤ w(A(s;ω)) ≤
c(A(s;ω)), y) holds for all (s, ω, t, y) ∈ S ×Ω× [0, T ]×Xu (similar in principle to Remark 5.4.4).

Remark 5.7.3. We briefly note that the LMI formulation of (5.29) will converge to P ∗ under assump-

tions A1’-A6’ if all sets [0, T ], X,Xu,Ω0,Ω, S are Archimedean and if f(t, ω) ∈ R[t, ω], A(s;ω) ∈
R[s, ω] (from Theorem 5.5.3). Constraint (5.28b) induces a linear expression in moments for (η, µs)

for each α ∈ Nn : ⟨xα, η⟩ = ⟨A(s;ω)α, µs⟩.

Remark 5.7.4. IfA(s;ω) is polynomial with degree κ, then the d-degree relaxation of problem (5.29)

involves moments of µs up to order 2κd. For a system with Nω orientation states and Ns shape

variables, the size of the moment matrix for µs is then
(
Ns+Nω+κd

κd

)
. LMI constraints associated with

µs can become bottlenecks to computation, surpassing the contributions of µ and η as k increases.

Remark 5.7.5. Continuing the discussion Remark 5.5.2, the measures µs(s, ω) and η(x, y) may

be combined together into a larger measure ηs(s, ω, y) ∈ M+(S × Ω × Xu) with objective

inf⟨c(A(s;ω), y), ηs⟩ and constraint πω#µp = πω#ηs. The moment matrix for ηs would have the

generally intractable size
(
Ns+Nω+n+κd

κd

)
.
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5.8 Numerical Examples

All code was written in MATLAB 2021a, and is publicly available at the link https:

//github.com/Jarmill/distance. The SDPs were formulated by Gloptipoly3 [30] through

a Yalmip interface [68], and were solved using Mosek [49]. The experimental platform was an

Intel i9 CPU with a clock frequency of 2.30 GHz and 64.0 GB of RAM. The squared-L2 cost

c(x, y) =
∑

i(xi−yi)2 is used in solving Problem (5.18) unless otherwise specified. The documented

bounds are the square roots of the returned quantities, yielding lower bounds to the L2 distance.

5.8.1 Flow System with Moon

The half-circle unsafe set in Figure 5.8 is a convex set. The moon-shaped unsafe set Xu in

Figure 5.11 is the nonconvex region outside the circle with radius 1.16 centered at (0.6596, 0.3989)

and inside the circle with radius 0.8 centered at (0.4,−0.4). The dotted red line demonstrates that

trajectories of the Flow system would be deemed unsafe if Xu was relaxed to its convex hull.

Figure 5.11: Collision if Xu is relaxed to its convex hull.

The L2 distance bound of 0.1592 in Figure 5.12 was found at the degree-5 relaxation of

Problem (5.18) with X = [−3, 3]2. The moment matrices Md(m
0), Md(m

p),Md(m
η) at d = 5

were approximately rank-1 and near-optimal trajectories were successfully extracted. This near-

optimal trajectory starts at x∗0 ≈ (1.489,−0.3998) and reaches a closest distance between x∗p ≈
(1.113,−0.4956) and y∗ ≈ (1.161,−0.6472) at time t∗p ≈ 0.1727. The distance bounds computed

at the first five relaxations are L1:5
2 = [1.487× 10−4, 2.433× 10−4, 0.1501, 0.1592, 0.1592].
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Figure 5.12: Moon unsafe-set has an L2 bound of 0.1592

5.8.2 Twist System

This subsection performs peak estimation on the Twist system from [69]:

ẋi(t) =
∑

j B
1
ijxj(t)−B3

ij(4x
3
j (t)− 3xj(t))/2 (5.34)

under the choices of parameters

B1 =


−1 1 1

−1 0 −1
0 1 −2

 B3 =


−1 0 −1
0 1 1

1 1 0

 . (5.35)

Choosing different parameter matrices B1 (linear) and B3 (cubic) yields a family of dynamical

systems, many of which are attractors, and some of which possess limit cycles. We note that the

Twist system possesses a symmetry x↔ −x.

The cyan curves in each panel of Figure 5.13 are plots of trajectories of the Twist system

between times t ∈ [0, 5]. These trajectories start at theX0 = {x | (x1+0.5)2+x22+x
2
3 ≤ 0.22}which

is pictured by the grey spheres. The unsafe set Xu = {x | (x1 − 0.25)2 + x22 + x23 ≤ 0.22, x3 ≤ 0}
is drawn in the red half-spheres. The underlying space is X = [−1, 1]3.

The red shell in Figure 5.13a is the cloud of points within an L2 distance of 0.0427

of Xu, as found through a degree 5 relaxation of (5.18). Figure 5.13b involves an L4 contour

of 0.0411, also found at order 5. The first few distance bounds for the L2 distance are L1:5
2 =

[0, 0, 0.0336, 0.0425, 0.0427], and for the L4 distance are L2:5
4 = [0, 0.0298, 0.0408, 0.0413]. Fourth

degree moments are required for the L4 metric, so the L2:5
4 sequence starts at order 2.
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(a) Twist L2 bound of 0.0427 (b) L4 bound of 0.0411

Figure 5.13: Distance contours at order-5 relaxation for the Twist system (5.34)

Table 5.3 and 5.4 lists the L2 bounds and runtimes respectively generated by a distance

estimation task between trajectories and the half sphere of the above L2 Twist system example.

The high-degree relaxations (orders 4 and 5) are significantly faster as found by solving the SDP

associated with the sparse LMI (dual to the sparse SOS with Putinar expression (5.24)) as compared

to the standard program (5.18). The certifiable L2 bounds returned are roughly equivalent between

relaxations.

Table 5.3: L2 bounds for the Twist Example

order 2 3 4 5 6
Standard LMI (5.18) 0.000 0.0313 0.0425 0.0429 0.0429

Sparse LMI with (5.24) 0.000 0.0311 0.0424 0.0430 0.0429

Table 5.4: Time in seconds for the Twist Example

order 2 3 4 5 6
Standard LMI (5.18) 0.32 1.92 47.55 502.29 4028.94

Sparse LMI with (5.24) 0.31 1.19 7.07 45.89 184.42
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5.8.3 Shape Examples

Figure 5.14 visualizes a near-optimal trajectory of the shape distance estimation for

orientations φ ∈ R2 evolving as the flow system with an initial condition Ω0 = {φ : (φ1 − 1.5)2 +

φ2
2 ≤ 0.42} in the space Ω : (φ1, φ2) ∈ [−3, 3]2, φ2

3 + φ2
4 = 1 (with a state set of X = [−3, 3]2).

Suboptimal trajectories were suppressed in visualization to highlight the shape structure and attributes

of the near-optimal trajectory. The degree-1 coordinate transformation function A for pure translation

with a constant rotation of 5π/12 is

A(s;φ) =

cos(5π/12)s1 − sin(5π/12)s2 + φ1

cos(5π/12)s1 + sin(5π/12)s2 + φ2

 . (5.36)

This near-optimal trajectory with an L2 distance bound of 0.1465 was found at a degree-4

relaxation of Problem (5.29). The near-optimal trajectory is described by φ∗
0 ≈ (1.489,−0.3887),

t∗p ≈ 3.090, φ∗
p ≈ (−0.1225,−0.3704), s∗ ≈ (−0.1, 0.1), x∗p ≈ (0,−0.2997), and y∗ ≈

(−0.2261,−0.4739). The first five distance bounds are L1:5
2 = [1.205×10−4, 4.245×10−4,0.1424,

0.1465, 0.1465].

Figure 5.14: Translation, L2 bound of 0.1465

In the following example, the shape S is now rotating at an angular velocity of 1 ra-

dian/second, as shown in the right panel of Fig. 5.10. The orientation φ ∈ SE(2) may be expressed

as a semialgebraic lift through φ ∈ R4 with trigonometric terms φ2
3 +φ2

4 = 1. The dynamics for this

system are

φ̇ =
[
φ2 −φ1 − φ2 +

1
3φ

3
1 −φ4 φ3

]T
. (5.37)
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The degree-2 coordinate transformation associated with this orientation is

A(s;φ) =

φ3s1 − φ4s2 + φ1

φ3s1 + φ4s2 + φ2

 . (5.38)

The shape measure µs ∈ M+(S × Ω) is distributed over 6 variables. The size of

µs’s moment matrix with k = 2 at degrees 1-4 is [28, 210, 924, 3003]. The first three distance

bounds are L1:3
2 = [2.9158 × 10−5, 0.059162, 0.14255], and MATLAB runs out of memory on

the experimental platform at degree 4. A successful recovery is achieved at the degree 3 relax-

ation, as pictured in Figure 5.15. This rotating-set near-optimal trajectory is encoded by φ∗
0 ≈

(1.575,−0.3928, 0.2588, 0.9659), t∗p ≈ 3.371, , s∗ ≈ (−0.1, 0.1), x∗p ≈ (−0.1096,−0.3998),
φ∗
p ≈ (−0.0064,−0.2921,−0.0322,−0.9995), and y∗ ≈ (−0.2104,−0.4896). Computing this

degree-3 relaxation required 75.43 minutes.

Figure 5.15: Rotation, L2 bound of 0.1425

5.9 Extensions

This section presents modifications to the distance estimation programs in order to handle

systems with uncertainties and distance functions c generated by polyhedral norms.

5.9.1 Uncertainty

Distance estimation can be extended to systems with uncertainty. For the sake of simplicity,

this section is restricted to time-dependent uncertainty. Assume that H ⊂ RNh is a compact set of

plausible values of uncertainty, and that the uncertain process h(t), ∀t ∈ [0, T ] may change arbitrarily
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in time within H [43]. The distance estimation problem with time-dependent uncertain dynamics is

P ∗ =inft, x0, y, h(t)c(x(t | x0, h(t)), y)

ẋ(t) = f(t, x, h(t)), h(t) ∈ H ∀t ∈ [0, T ]

x0 ∈ X0, y ∈ Xu.

(5.39)

The process h(t) acts as an adversarial optimal control that aims to steer x(t) as close to

Xu as possible. The occupation measure µ may be extended to a Young measure (relaxed control)

µ ∈M+([0, T ]×X ×H) [45, 8].

The Liouville equation (5.11c) may be replaced by µp = δ0⊗µ0 + πtx#L
†
fµ, which should

be understood to read ⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩ + ⟨∂tv(t, x) + f(t, x, h) · ∇xv(t, x), µ⟩ for all

test functions v ∈ C1([0, T ]×X). Any trajectory with uncertainty process h(t) may be represented

by a tuple (x0, xp, tp, y, h(·)). This trajectory admits a measure representation similar to the proof

of 5.4.1, where the measure µ is the occupation measure of t 7→ (t, x(t | x0), h(t))) in times [0, tp].

The work in [43] applies a collection of existing uncertainty structures to peak estimation problems

(time-independent, time-dependent, switching-type, box-type), and all of these structures may be

applied to distance estimation.

To illustrate these ideas, consider the following Flow system with time-dependent uncer-

tainty:

ẋ =

 x2

(−1 + h)x1 − x2 + 1
3x

3
1

 h ∈ [−0.25, 0.25]. (5.40)

An L2 distance bound of 0.1691 is computed at the degree 5 relaxation of the uncertain

distance estimation program, as visualized in Figure 5.16. The first five distance bounds are L1:5
2 =

[5.125× 10−5, 1.487× 10−4, 0.1609, 0.1688, 0.1691].

5.9.2 Polyhedral Norm Penalties

The infinite-dimensional LP (5.11) is valid for all continuous costs c(x, y) ∈ C(X2), but

its LMI relaxation can only handle polynomial costs c(x, y) ∈ R[x, y]. The Lp distance is defined

as ∥x− y∥p = p
√∑

i|xi − yi|p when p is finite and ∥x− y∥∞ = maxi|xi − yi| for p infinite. The

cost ∥x − y∥pp is polynomial when p is finite and even, otherwise the Lp distance has a piecewise

definition in terms of absolute values. The theory of convex (LP) lifts may be used to interpret

piecewise constraints into valid LMIs [70, 71]. Slack variables q ∈ R (or qi ∈ R as appropriate)
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Figure 5.16: Uncertain Flow (5.40), L2 bound of 0.1691

may be added to form enriched infinite-dimensional LPs. The objective ⟨c, η⟩ from (5.11a) could be

replaced by the following terms for the examples of L∞, L1, and L3 distances:

∥x− y∥∞ min q (5.41a)

− q ≤ ⟨xi − yi, η⟩ ≤ q ∀i = 1..n

∥x− y∥1 min
∑

i qi (5.41b)

− qi ≤ ⟨xi − yi, η⟩ ≤ qi ∀i = 1..n

∥x− y∥33 min
∑

i qi (5.41c)

− qi ≤ ⟨(xi − yi)3, η⟩ ≤ qi ∀i = 1..n.

Distances induced by polyhedral norms can be included through this lifting framework

[72]. Figure 5.17 visualizes the near-optimal trajectory for a minimum L1 distance bound of 0.4003

(cost (5.41c)) at degree 4. This trajectory starts at x∗0 ≈ (1.489,−0.3998) and reaches the closest

approach between x∗p ≈ (0,−0.2997) and y∗ ≈ (−0.1777,−0.5223) at time t∗ ≈ 0.6181 units.

The first five L1 distance bounds are L1:5
1 = [3.179× 10−9, 4.389× 10−8, 0.3146, 0.4003, 0.4003].
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Figure 5.17: Flow system L1 bound of 0.4003

5.10 Conclusion

This chapter presented an infinite-dimensional linear program in occupation measures to

approximate the distance estimation problem. The LP objective is equal to the distance of closest

approach between points along trajectories and points on the unsafe set under mild compactness

and regularity conditions. Finite-dimensional truncations of this LP yield a converging sequence of

SDP lower bounds to the minimal distance under further conditions (Archimedean). The distance

estimation problem can be modified to accommodate dynamics with uncertainty, piecewise distance

functions, and movement of shapes along trajectories. Future work includes formulating and

implementing control policies to maximize the distance of closest approach to the unsafe set while

still reaching a terminal set within a specified time (preliminary work on this subject is detailed in

Chapter 8).
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Chapter 6

Robust Counterparts and Data Driven

Analysis

6.1 Background

This chapter analyzes the following disturbance-affine dynamical system:

ẋ(t) = f(t, x(t), w(t)) = f0(t, x) +
L∑
ℓ=1

wℓ(t)fℓ(t, x). (6.1)

The state x ∈ X ⊂ Rn and the input w(t) ∈W ⊂ RL are assumed to lie in compact sets.

The time horizon t ∈ [0, T ] is finite for convergence purposes. It is further required that the set W is

an L-dimensional compact Semidefinite Representable (SDR) convex set with non-empty interior

[73].

An SDR set could arise from a sequence of observations of ẋ(t) as corrupted by bounded

noise. An example of such an SDR set W is the L-dimensional polytope described by m constraints

(up to m faces), which may be expressed as

W = {w | Aw ≤ b} A ∈ Rm×L, b ∈ Rm. (6.2)

Letting x0 ∈ X0 be an initial condition and w(t) be an admissible control with w(t) ∈
W ∀t ∈ [0, T ] with T finite, the state obtained by following dynamics in (6.1) is

x(t) = x(t | x0, w(·)). (6.3)

There is no imposition of continuity on the process w(t).
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The problem instances that will be addressed in this chapter are peak estimation, distance

estimation, reachable set estimation, and Region of Attraction (ROA) maximization. Each problem

instance may be cast as an infinite-dimensional LP and approximated through the moment-SOS

hierarchy. Each problem has a Lie derivative nonpositivity constraint that usually induces the largest

PSD matrix by numerical solvers. Such a constraint may be split using infinite-dimensional robust

counterparts [74] into smaller PSD matrix constraints using convex duality [75] and a theorem of

alternatives [76]. Decomposition of SDR sets W move beyond the previously considered box cases

in [77] [78] and polytope cases in [69, 79].

Peak estimation finds an initial condition x0 and input w that maximizes the instantaneous

value of a state function p(x(t)) along a trajectory [5]. Distance estimation is a variation of peak

estimation that finds the distance of closest approach between points along trajectories x(t | x0, w)
and an unsafe set Xu (Chapter 5, [58, 13]). Reachable set estimation identifies the set of points

XT such that there exists a pair x0, w where x(T | x0, w) ∈ XT [80]. Peak and reachable set

estimation under input-affine and SDR constraints may arise from the data-driven setting where

state-derivative observationsD = {(tk, xk, yk)}Ns
k=1 are available, subject to an semidefinite-bounded

noise process η (y(tk)
.
= ẋ(tk) + ηk). An L∞-bounded noise model arises from propagating errors

from finite-difference schemes to estimate ẋ, while an L2-bounded noise model is derived from

stochastic/chance constraints when ẋ has a Gaussian distribution.

Reachable set estimation using LPs occurs from outside in [21] and from inside in [81].

SDPs associated with the moment-SOS hierarchy will produce polynomial sublevel sets that converge

in volume to the true reachable set as the polynomial degree increases (under mild conditions, and

outside a set of measure zero). Controllers may be formulated to maximize the Backward Reachable

Set (BRS), in which the volume of the set of initial conditions X0 that can be steered towards a target

set XT is maximized [82]. Other approaches towards reachable set estimation of nonlinear systems

includes ellipsoidal methods [83], polytopes [84], and interval methods using mixed monotonicity

[85]. Infinite-dimensional LPs have also been applied to region of attraction estimation and to

backwards reachable set maximizing control [21].

Table 6.1 lists the PSD constraint of maximal size involved in a peak estimation problem

(input-affine, polytope) with the WSOS degree 2d = 8, number of polytope-constrained inputs

L = 10, state dimension n = 2, and dynamics degree deg(f) = 3 (Lie nonpositivity constraint in

Section 6.7.3).

The polytope W in this case has 33 faces and 7534 vertices. Performing a size-8568 PSD

constraint in solvers such as Mosek or Sedumi is intractable. Applying a vertex decomposition
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Table 6.1: Size of largest Lie constraint Gram Matrix (Peak Estimation)

Chapter 4 (4.11)
(1+n+L+d+⌈deg(f)/2⌉−1

1+n+L

)
= 8568

This chapter
(
1+n+d+maxℓ⌈deg(fℓ)/2⌉−1

1+n

)
= 56

requires that 7534 PSD constraints of size 56 hold. In contrast, a facial decomposition (particular

form of the Lie robust counterpart) introduced in this chapter needs only 33 + 1 PSD constraints of

size 56.

Section 6.2 reviews the definition of SDR sets, the concept of robust counterparts, and the

notion of Polynomial Matrix Inequalities (PMIs). Section 6.3 poses the peak estimation, distance

estimation, reachable set estimation, and BRS maximization programs for systems of the form in

(6.1) with convex-bounded uncertainty w. Section 6.4 splits the Lie derivative constraint over the

SDR uncertainty W through the use of an infinite-dimensional robust counterpart. Section 6.5

details polynomial approximation and SOS programs of the robust counterparts. Section 6.6 reviews

background of the polyhedral structure of consistency constraints induced by model structures and

L∞-bounded noise processes. Section 6.7 presents examples of robust counterparts acting on all

four problems. The chapter is concluded in section 6.8. Appendix A.2 contains a proof showing

that multiplier functions associated with a certificate of Lie constraint nonnegativity may be chosen

to be continuous. Appendix A.3 applies robust counterparts to Lie constraints that possess integral

terms (running costs). Appendix A.4 extends a proof from [6] that the auxiliary function for peak

estimation may be approximated by a polynomial. Appendix A.5 shows that the multiplier functions

may be approximated by polynomials. Appendix A.6 discusses dual measure LPs to the developed

infinite-dimensional robust counterparts and applies a moment-based scheme to recover polynomial

controller laws.

The polytopic uncertainty work in this chapter is from [69, 79] and was coauthored by

Mario Sznaier.

6.2 Preliminaries

This section presents robust counterparts for a linear inequality and PMIs (SOS-matrices)

for nonnegativity proofs.

81



CHAPTER 6. ROBUST COUNTERPARTS AND DATA DRIVEN ANALYSIS

6.2.1 Robust Counterpart

A cone K ⊂ Rn is a set such that ∀c > 0, x ∈ K =⇒ cx ∈ K [75]. A cone K defines a

partial ordering ≥K as x1 ≥ x2 if x1 − x2 ∈ K. The dual K∗ of the (finite-dimensional) cone K is

the set {y ∈ Rn | xT y ≥ 0 ∀x ∈ K}. The cone K is pointed if x ∈ K and −x ∈ K implies that

x = 0.

Definition 6.2.1 ([73]). Let S ⊂ Rm be a set and letK ⊆ Rn be a cone. The set S isK-representable

if there exists a finite dimension q and matrices A ∈ Rn×m, G ∈ Rn×q, e ∈ Rn such that

S = {x ∈ Rm | ∃λ ∈ Rq : Ax+Gλ+ e ∈ K}. (6.4)

The set S is SDR if K is a subset of the PSD cone (where PSD cone may be vectorized as

in [a, b; b, c] ∈ S2+ → (a, b, c) ∈ K).

SDR sets are also referred to as ‘projections of spectahedra’ or ‘spectahedral shadows’.

SDR sets form a strict subset of all convex sets. The product, intersection, and projections of SDR

sets are all SDR.

This chapter will focus on three specific self-dual cones:

1. Nonnegative (R≥0)

2. Second-Order Cone (SOC)/Lorentz (Qn : {(u, v) ∈ Rn × R≥0 | ∥u∥2 ≤ v})

3. Positive Semidefinite (Sn+)

Define the constraint vectors a0, aℓ ∈ Rr and b0, bℓ ∈ R for all ℓ = 1..L. Define W as the

intersection of Ns SDR sets with cones K1..Ks as

W = {w ∈ RL : ∀s = 1..Ns : ∃λs ∈ Rqs : Asw +Gsλs + es ∈ Ks}. (6.5)

The following systems each have a robust semi-infinite linear inequality constraint in β ∈ Rr that

must hold for all uncertain values w in an SDR:

Non-strict : ∀w ∈W : aT0 β +
∑L

ℓ=1wℓa
T
ℓ β ≤ b0 +

∑L
ℓ=1wℓbℓ (6.6)

Strict : ∀w ∈W : aT0 β +
∑L

ℓ=1wℓa
T
ℓ β < b0 +

∑L
ℓ=1wℓbℓ. (6.7)
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Definition 6.2.2 (Equation (1.3.14) of [74] ). The robust counterpart of (6.6) with respect w ∈W
is the conic set of constraints in variables {ζs}Ns

s=1

Ns∑
s=1

eTs ζs + aT0 β ≤ b0 (6.8a)

GTs ζs = 0 ∀s = 1..Ns (6.8b)
Ns∑
s=1

(ATs ζs)ℓ + aTℓ β = bℓ ∀ℓ = 1..L (6.8c)

ζs ∈ K∗
s ∀s = 1..Ns. (6.8d)

Theorem 6.2.1 (Theorem 1.3.4 of [74]). Assume that each Ks is a convex and pointed cone with

nonempty interior. Further assume that there exists a Slater point (ws, λs : Asw̄s +Gsλ̄s + es ∈
int(Ks)) for each non-polyhedral cone Ks. Then the semi-infinite program (6.5) is feasible iff the

finite-dimensional robust counterpart (6.8) is feasible. Additionally, (6.5) is infeasible iff (6.8) is

infeasible.

Lemma 6.2.2. Feasibility equivalence of the robust counterpart also holds in the strict case (6.7) by

applying a < comparator to (6.8a) [86].

6.2.2 Polynomial Matrix Inequalities

The symbol Sn[x] will refer to the set of n× n symmetric-matrix-valued polynomials in

an indeterminate x. The duality paring between two symmetric matrices A,B ∈ Sn is Tr(AB) =∑
ij AijBij .

The matrix P ∈ Sn[x] is an SOS-matrix if there exists a size s ∈ N, a Gram matrix

Q ∈ Ssn+ , and a polynomial vector v(x) ∈ R[x]s, such that (Lemma 1 of [87])

P (x) = (v(x)⊗ Is)TQ(v(x)⊗ Is). (6.9)

The cone of SOS matrices of size n is Σn[x] ⊂ Sn[x], and its degree-2d truncation is

Σn≤2d ⊂ Σn[x]. The BSA set K in this chapter will be expressed as the locus of PSD polynomial

matrix constraints in matrix constraint terms Gi(x) ∈ Sni(x):

K = {x ∈ Rn | Gi(x) ⪰ 0 ∀i = 1..Nc}. (6.10)

Let q(x) ∈ R[x] be a polynomial. A PMI over the scalar q with respect to the region K is

q(x) ≥ 0 ∀x ∈ K. (6.11)
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The Scherer Psatz proving that q(x) > 0 over K is the statement that (Theorem 2 of [87])

q(x) = σ0(x) +
∑n

i=1Tr(Gi(x)σi(x)) + ϵ (6.12a)

σ0 ∈ Σ[x], ∀i ∈ 1..Nc : σi ∈ Σni [x], ϵ > 0. (6.12b)

The WSOS cone Σ[K] is the cone of all polynomials that admit a representation in (6.12)

(for ϵ ≥ 0). Note that the Scherer Psatz in (6.12) is equivalent to the Putinar Psatz when each

constraint term Gi has size ni = 1, ∀i = 1..Nc. The set K in (6.10) is Archimedean if there exists

an R > 0 such that R − ∥x∥22 has a Scherer Psatz (6.12) expression. Just as in the Putinar Psatz,

the Scherer Psatz describes all positive polynomials over K when K is Archimedean (Theorem 2 of

[87]).

Define n0 = 1, d0 = 0 for the multiplier σ0, and define di = ⌊degGi/2⌋ for the

constraints i = 1..Nc. The Gram matrices in (6.12b) have size ni
(
n+d−di
d−di

)
. This Gram size should

be compared against the scalarization constraint ∀y ∈ Rni : yTi Gi(x)yi ≥ 0 involving ni + n

variables, thus resulting in a combinatorially larger Gram matrix of size
(
n+ni+d−di

d−di

)
.

Refer to [87, 88] for generalizations of the presented Scherer Psatz in (6.12), such as cases

where q(x) is a polynomial matrix (q ∈ Sn[x] for n > 1) over the set K.

6.3 Analysis and Control Problems

This subsection will present the peak estimation, distance estimation, reachable set esti-

mation, and ROA maximization problems along with their auxiliary function-based approximation

approaches. The following assumptions will be shared among all problems,

A1 There is a finite time horizon T .

A2 The state set X is compact with X0 ⊂ X .

A3 Dynamics f are disturbance-affine (6.1), and all functions f0(t, x) and {fℓ(t, x)}Lℓ=1 are

Lipschitz within [0, T ]×X .

A4 The input SDR set W satisfies the assumptions of Theorem 6.2.1 (compact, nonempty relative

interior, Slater for non-polyhedral cones Ks).

Remark 6.3.1. The system (6.1) lacks finite escape time by assumptions A1 and A2.
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The Lie derivative Lfv(t, x) of a scalar auxiliary function v(t, x) ∈ C1([0, T ]×X) with

respect to dynamics in (6.1) is

Lfv = ∂tv(t, x) +∇xv(t, x) · f(t, x, w) (6.13a)

= Lf0v(t, x, w) +
∑L

ℓ=1∇xv(t, x) · fℓ(t, x, w). (6.13b)

6.3.0.1 Peak Estimation

The peak estimation problem identifies the maximum value of a state function p(x) attained

along trajectories

P ∗ = sup
t∗∈[0,T ], x0∈X0, w(·)

p(x(t∗ | x0, w(·))) (6.14)

ẋ(t) = f(t, x(t), w(t)), w(t) ∈W ∀t ∈ [0, T ].

Assumptions on the cost p(x) are added:

A5 The cost p(x) is continuous inside X .

A6 Some optimal trajectory with P ∗ = p(x(t∗ | x∗0, w∗(t))) and t∗ ∈ [0, T ], x∗0 ∈ X0, stays in

the valid set as x(t′ | x∗0) ∈ X, w∗(t′) ∈W for all t′ ∈ [0, t∗].

Remark 6.3.2. Further, assumption A5 implies that p is bounded inside X , and therefore that P ∗ is

bounded above.

Peak estimation under polytopic uncertainty is demonstrated in Figure 6.1, with input-affine

Flow system dynamics (modified from [36]) of

ẋ(t) = [x2(t); −x1(t)− x2(t) + (1 + w(t))x31(t)/3] (6.15)

w(t′) ∈ [−0.5, 0.5] ∀t′ ∈ [0, 5].

Figure 6.1 minimizes the vertical coordinate x2 (red line) for trajectories (cyan curves)

starting in X0 = {x | (x1 − 1.5)2 + x22 ≤ 0.42} (black circle) and evolves according to Flow

dynamics (6.15) for T = 5 time units.

An infinite-dimensional LP for peak estimation with variables v(t, x) ∈ C1([0, T ] ×
X), γ ∈ R under a time-varying disturbance process w(t) ∈ W is (from (4.8) with no switching
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Figure 6.1: Plot of Uncertain Flow system (6.15) trajectories

and with Θ = 0)

d∗ = inf
v,γ

γ (6.16a)

γ ≥ v(0, x) ∀x ∈ X0 (6.16b)

Lfv(t, x, w) ≤ 0 ∀(t, x, w) ∈ [0, T ]×X ×W (6.16c)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (6.16d)

v(t, x) ∈ C1([0, T ]×X). (6.16e)

The auxiliary function v(t, x) is an upper bound on the cost p(x) (6.16d), and must

decrease along all possible disturbed trajectories (6.16c). The P ∗ = d∗ between programs (6.14)

and (6.16) will match under assumptions A1-A6. The LP in (6.16) may be approximated through

the moment-SOS hierarchy as reviewed in Section 2.4, and this sequence of upper bounds (outer

approximations) will converge d∗d ≥ d∗d+1 ≥ . . . to P ∗.

The order-4 SOS peak estimate of the Flow system scenario in (6.15) starting in X0 yields

x2(t) ≥ −0.7862, as shown in the red line in Figure 6.1.

6.3.0.2 Distance Estimation

Distance estimation from Chapter 5 will be solved as a peak estimation program over

p(x) = −c(x;Xu) for a compact unsafe set Xu. The Distance Estimation program under uncertainty
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w(·) (with a sign difference from (5.17)) is

d∗ = inf
v(t,x),γ

γ (6.17a)

γ ≥ v(0, x) ∀x ∈ X0 (6.17b)

Lfv(t, x, w) ≤ 0 ∀(t, x, w) ∈ [0, T ]×X ×W (6.17c)

v(t, x) ≥ ϕ(x) ∀(t, x) ∈ [0, T ]×X (6.17d)

ϕ(x) ≥ −c(x, y) ∀(x, y) ∈ X × Y. (6.17e)

ϕ ∈ C(X), v ∈ C1([0, T ]×X). (6.17f)

The distance of closest approach is c∗ = −d∗.

6.3.0.3 Reachable Set Estimation

The reachability set XT is the set of all x that can be reached at time index t = T for

trajectories starting in the set X0 (under assumptions A1-A4):

XT = {x(T | x0) | x(0) = x0 ∈ X0, x
′(t) = f(t, x, w)}. (6.18)

The methods in [21] propose the following volume maximization problem to find the

reachable set XT by

P ∗ = sup
XT⊂X

vol(XT ) (6.19a)

∀x̃ ∈ XT , ∃x0 ∈ X0, w(t) ∈W :

x̃ = x(T | x0, w(t)) (6.19b)

x′(t) = f(t, x) ∀t ∈ [0, T ]. (6.19c)

An infinite-dimensional LP in continuous functions v(t, x) and w(x) may be developed to

87



CHAPTER 6. ROBUST COUNTERPARTS AND DATA DRIVEN ANALYSIS

outer-approximate the reachable set XT [21] as

d∗ = inf
v(t,x),ϕ(x)

∫
X ϕ(x)dx (6.20a)

v(0, x) ≤ 0 ∀x ∈ X0 (6.20b)

ϕ(x) + v(T, x) ≥ 1 ∀x ∈ X (6.20c)

∀(t, x, w) ∈ [0, T ]×X ×W :

Lfv(t, x, w) ≤ 0 (6.20d)

v(t, x) ∈ C1([0, T ]×X) (6.20e)

ϕ(x) ∈ C+(X). (6.20f)

At a degree-d LMI relaxation, the set {x ∈ X | ϕ(x) ≥ 1} is an outer approximation

to the reachable set with volume bounds yielding the bounds d∗d ≥ d∗d+1 ≥ P ∗ = vol(XT ). This

sublevel set will converge in volume to the region of attractions (excluding sets of measure zero) as

d→∞. The level set approximations will be valid except for possibly a set with Lebesgue measure

zero (e.g., points, planes). Inner approximations to the region of attraction can be performed through

the methods in [81].

6.3.0.4 Region of Attraction Maximization

Let XT ⊂≠ X be a given ‘goal’ or ‘target’ set. The BRS/ROA given XT is the set

X0 = {x0 |x(0) = x0 ∈ X0, x
′(t) = f(t, x, w(t)), (6.21)

x(T | x0, w) ∈ XT , w(t) ∈W}.

Intuitively, the set X0 is the set of states that may be steered towards the goal set XT in time T . The

ROA-maximization formulation of optimal control aims to maximize the volume of X0, similar to

how problem (6.19) maximized the volume of XT to acquire the reachable set. The LP in functions
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v, ϕ to perform ROA maximization is [21]

d∗ = inf
∫
X ϕ(x)dx (6.22a)

v(T, x) ≥ 0 ∀x ∈ XT (6.22b)

ϕ(x) ≥ 1 + v(0, x) ∀x ∈ X (6.22c)

∀(t, x, w) ∈ [0, T ]×X ×W :

Lfv(t, x, w) ≤ 0 (6.22d)

v(t, x) ∈ C1([0, T ]×X) (6.22e)

ϕ(x) ∈ C+(X). (6.22f)

Note that the roles of t = {0, T} and some signs are swapped in (6.22) as compared to

(6.20).

6.4 Decomposed Lie Constraint

The Lie constraints in (6.16c), (6.17c), (6.20d), (6.22d) are the main decomposable ex-

pressions to be addressed in this work. Each case requires that an auxiliary function v(t, x) ∈
C1([0, T ]×X) be non-increasing along trajectories of f given by (6.1). The Lie derivative in (6.13)

must respect the constraint

Lfv(t, x, w) ≤ 0 ∀(t, x, w) ∈ [0, T ]×X ×W. (6.23)

Lemma 6.4.1. Constraint (6.23) may be expressed as a semi-infinite linear inequality (6.6) under

the correspondence (holding ∀ℓ = 1..L)

b0 = −(∂t + f0(t, x) · ∇x)v(t, x) = −Lf0v(t, x) a0 = 0 (6.24a)

bℓ = −fℓ(t, x) · ∇xv(t, x) aℓ = 0. (6.24b)

Theorem 6.4.2. The robust counterpart of (6.23) with (possibly discontinuous) multiplier variables

ζs(t, x) is

Lf0v(t, x) +
∑Ns

s=1 e
T
s ζs(t, x) ≤ 0 ∀[0, T ]×X (6.25a)

GTs ζs(t, x) = 0 ∀s = 1..Ns (6.25b)∑Ns
s=1(A

T
s ζs(t, x))ℓ + fℓ(t, x) · ∇xv(t, x) = 0 ∀ℓ = 1..L (6.25c)

ζs(t, x) ∈ K∗
s ∀s = 1..Ns, (t, x) ∈ [0, T ]×X. (6.25d)
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Feasibility of the robust counterpart is equivalent to feasibility (6.23) under Assumptions

A1-A4.

Proof. This follows from Theorem 6.2.1 (equivalence of robust counterpart) applied to the corre-

spondence in Lemma 6.4.1.

Theorem 6.4.3. The multiplier functions ζ in (6.25d) may be chosen to be continuous when

Lfv(t, x, w) < 0 holds strictly (from Lemma 6.2.2).

Proof. See Appendix A.2.

Appendix A.3 formulates robust counterparts to (6.23) under commonly used integral costs

J , producing the constraint Lfv(t, x, w) + J(t, x, w) ≥ 0.

6.5 Polynomial Approximation

This section develops polynomial and SOS approximations of the infinite-dimensional Lie

robust counterpart (6.25).

Theorem 6.5.1. Given a tolerance ϵ > 0, the peak estimation task (6.16) admits a polynomial

auxiliary function V (t, x) with objective d∗ + (5/2)ϵ such that LfV (t, x) < 0 holds strictly in

[0, T ]×X .

Proof. See Appendix A.4.

Remark 6.5.1. Refer to Theorem 5.4.4 for a similar proof w.r.t. distance estimation, and to [21, 77]

for proofs of no relaxation gap (in the sense of volume) for reachable set estimation and for BRS

maximization.

Theorem 6.5.2. Multipliers ζ in (6.25d) can be chosen to be polynomial when v is polynomial and

when (6.25a) holds strictly.

Proof. See Appendix A.5. When v is polynomial, the vector indexed by bℓ = fℓ(t, x) · ∇xv(t, x) is

also polynomial.

We now provide details on polynomial approximation and SOS implementation over the

nonnegative, SOC, and PSD cones. These details can be combined to perform SOS approximation

of sets involving multiple cones. It is not required that the set W be Archimedean, only that W must

be compact (A1).
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6.5.1 Polytope Restriction

Assume that the SDR set W is the polytope {w | ∃λ ∈ RL′
: Aw +Gλ ≤ e} for matrices

A ∈ Rm×L, G ∈ Rm×L′
, b ∈ Rm. Define As as the s-th row of A and (AT )ℓ as the ℓ-th column of

A (transpose ℓ-th row of GT ). This case corresponds to ∀s = 1..m : Ks = R≥0 under the cone

description (−As,−Gs, es) (6.5). The expression of the robustified Lie constraint in (6.25) for the

polytopic case is

Lf0v(t, x) + eT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (6.26a)

− (AT )ℓζ(t, x) + fℓ · ∇xv(t, x) = 0 ∀ℓ = 1..L (6.26b)

GT ζ(t, x) = 0 (6.26c)

ζ(t, x) ∈ Rm≥0. (6.26d)

The SOS tightening of the constraints in (6.26a) when (v, ζ) are polynomials is

Lf0v(t, x) + eT ζ(t, x) ∈ Σ1[([0, T ]×X)] (6.27a)

coefft,x(−AT ζ(t, x) + fℓ · ∇xv(t, x)) = 0 (6.27b)

coefft,x(−GT ζ(t, x)) = 0 (6.27c)

ζs(t, x) ∈ Σ[([0, T ]×X)] ∀s = 1..m. (6.27d)

The degree-d tightening of program (6.27) has a Gram matrix of maximal size size
(
n+d̃
n

)
from (6.27a) and m Gram matrices of maximal size

(
n+d
d

)
from (6.27d).

6.5.2 Semidefinite Restriction

This subsection involves the case where W is an SDR set with describing matrices

A0, Aℓ, Gk ∈ Sq:

W = {w ∈ RL | A0 +
∑L

ℓ=1wℓAℓ +
∑L′

ℓ=1 λkGk ⪰ 0}. (6.28)

The robust counterpart expression in (6.25) is

Lf0v(t, x) + Tr(A0ζ(t, x)) ≤ 0 ∀(t, x) ∈ [0, T ]×X (6.29a)

Tr(Aℓζ(t, x)) + fℓ · ∇xv(t, x) = 0 ∀ℓ = 1..L (6.29b)

Tr(Gkζ(t, x)) = 0 ∀k = 1..L′ (6.29c)

ζ(t, x) ∈ Sq+. (6.29d)
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The Scherer Psatz (6.12) applied to (6.29) is

− Lf0v(t, x)− Tr(A0ζ(t, x))− ϵ ∈ Σ1[([0, T ]×X)] (6.30a)

coefft,x(Tr(Aℓζ(t, x)) + fℓ · ∇xv(t, x)) = 0 ∀ℓ = 1..L (6.30b)

coefft,x(Tr(Gkζ(t, x)) = 0) ∀k = 1..L′ (6.30c)

ζ(t, x)− ϵI ∈ Σq[([0, T ]×X)]. (6.30d)

The maximal-size Gram matrix at degree d will either occur in (6.30a) with size
(
n+d̃
n

)
or

in (6.30) with size q
(
n+d
d

)
.

6.5.3 Second-Order Cone Restriction

This final subsection involves the SOC case W = {w ∈ RL | ∃λ ∈ RL′
: ∥Aw +Gλ +

e∥2 ≤ r} for A ∈ Rm×L, G ∈ Rm×L′
, e ∈ RL, r ∈ R≥0. The constraint in W may be formulated

as the SOC expression

(Aw +Gλ+ e, r) ∈ Qm. (6.31)

The robust counterpart (6.25) applied to (6.31) involves a partitioned multiplier function

ζ = (β, τ) ∈ Qm:

Lf0v(t, x) + rτ(t, x) ≤ 0 (6.32a)

GTβ(t, x) = 0 (6.32b)

(AT )ℓβ(t, x) = fℓ(t, x) · ∇xv(t, x) ∀ℓ = 1..L (6.32c)

(β(t, x), τ(t, x)) ∈ Qm. (6.32d)

An SOS formulation of (6.32) requires the following lemma:

Lemma 6.5.3. The SOC membership (β, τ) ∈ Qm may be expressed by the following SDP with

2× 2 blocks [89]

(β, τ) ∈ Qm ⇔ ∃ω ∈ Rm :

 τ βj

βj ωj

 ∈ S2+, τ =
∑m

i=1 ωj . (6.33)
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Lemma 6.5.3 will be used to form an SOS-matrix representation of (6.32d):

− Lf0v(t, x)− rτ(t, x) ∈ Σ1[([0, T ]×X)] (6.34a)

coefft,x(GTβ(t, x)) = 0 (6.34b)

coefft,x((AT )ℓβ(t, x)− fℓ(t, x) · ∇xv(t, x)) = 0 ∀ℓ = 1..L (6.34c)∑m
j=1 ωj(t, x) βj(t, x)

βj(t, x) ωj(t, x)

 ∈ Σ2[([0, T ]×X)] ∀j = 1..m (6.34d)

ωj(t, x), βj(t, x) ∈ R[t, x] ∀j = 1..m. (6.34e)

The degree-d truncation of (6.34) involving polynomials ωj , βj ∈ R[t, x]≤2d will have m

maximal-size Gram matrices of size 2
(
n+d
n

)
from constraint (6.34d).

Remark 6.5.2. The rotated SOC cone is Qnr = {(u, v, z) ∈ Rn × R2
≥0 | ∥u∥2 ≤ vz} [89].

Membership in Qnr may be expressed as a linear transformation of membership in Qn+1 by

(u, v, z) ∈ Qnr ⇔ ([u, v − z], v + z) ∈ Qn+1. (6.35)

The identity (6.35) can be used to form SOS-matrix programs from (6.34) for rotated-SOC constrained

uncertainty sets W .

6.5.4 Approximation Result

The following theorem summarizes the above restrictions.

Theorem 6.5.4. Assume that [0, T ]×X is Archimedean in addition to A1-A4. Let the SDR cone K

from the W -representation (6.5) be the product of nonnegative, SOC, and PSD cones. Then the SOS

programs derived from (6.25) (by example (6.27), (6.30), (6.34)) will converge to the strict version

of (6.23) when v is polynomial.

Proof. The multiplier functions ζ may be chosen to be polynomial by Theorem 6.5.2. The Archimedean

condition of [0, T ] × X ensures that SOS-matrices will generate all positive PSD matrices over

[0, T ] × X . Because a polynomial ζ exists by 6.5.2, it will be found at some finite-degree SOS

tightening, thus proving the theorem.

Remark 6.5.3. When (6.23) holds strictly, Theorems 6.5.2 and 6.5.4 can be extended to cases where

(A,G, e) in (6.5) are continuous (polynomial) functions of (t, x) in the compact space [0, T ]×X .
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We illustrate the robust decomposition of the Lie constraint on a peak estimation problem

(6.16) under polytopic uncertainty from Section 6.5.1 with

d∗ = inf
v(t,x),γ

γ (6.36a)

γ ≥ v(0, x) ∀x ∈ X0 (6.36b)

Lf0v(t, x) + eT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (6.36c)

− (AT )ℓζ(t, x) + fℓ · ∇xv(t, x) = 0 ∀ℓ = 1..L (6.36d)

GT ζ(t, x) = 0 (6.36e)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (6.36f)

v(t, x) ∈ C1([0, T ]×X) (6.36g)

ζj(t, x) ∈ C+([0, T ]×X) ∀j = 1..m. (6.36h)

Appendix A.6 describes the dual problem to (6.36) in terms of occupation measures and

explains how approximate control laws may be extracted.

6.6 Data-Driven Setting

This section reviews the L∞ bounded noise setting and its derived polytopic input con-

straints for W [90, 91]. We note that other input sets in a data-driven framework include elementwise

L1 noise (sparse channel disturbances), elementwise L2 noise [92] (e.g., Chi-squared chance con-

straints on a Gaussian distribution), and semidefinite energy-bounded-noise [93].

Samples y of an unknown continuous-time system ẋ = F (t, x) are observed according

to the relation ẋobserved = y = F (t, x) + η with noise term ∥η∥∞ ≤ ϵw. We are also given the

knowledge that there exists at least one ground-truth choice of parameters w∗ ∈ RL with

F (t, x) = f0(t, x) +
∑L

ℓ=1w
∗
ℓfℓ(t, x), (6.37)

where the parameters w∗ are a-priori unknown. The function f0 represents prior knowledge of

system dynamics F , and the dictionary functions {fℓ} serve to describe unknown dynamics.

The tuples Dk = (tk, xk, yk) for k = 1..Ns observations are contained in the data D.

System parameters w that are consistent with data in D form a set

W = {w ∈ RL | ∀k : ∥yk − f(tk, xk;w)∥∞ ≤ ϵw}. (6.38)
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The L∞ term ∥yk − f(tk, xk;w)∥∞ describing W for each record k may be expanded into

∥yk − f0(tk, xk)−
∑L

ℓ=1wℓfℓ(tk, xk)∥∞. (6.39)

This L∞ constraint may be split into n absolute value constraints

|yik − fi0(tk, xk)−
∑L

ℓ=1wℓfiℓ(tk, xk)| ≤ ϵw. (6.40)

The positive and negative side of each absolute value constraint are

yik − fi0(tk, xk)−
∑L

ℓ=1wℓfiℓ(tk, xk) ≤ ϵw (6.41a)

yik − fi0(tk, xk)−
∑L

ℓ=1wℓfiℓ(tk, xk) ≥ −ϵw. (6.41b)

By sending all wℓ terms to the left-hand side as in

−
∑L

ℓ=1wℓfiℓ(tk, xk) ≤ ϵw − yik + fi0(tk, xk) (6.42a)∑L
ℓ=1wℓfiℓ(tk, xk) ≤ ϵw + yik − fi0(tk, xk), (6.42b)

new terms (Γ, h) may be defined as

Γikℓ = [−fiℓ(tk, xk); fiℓ(tk, xk)] (6.43a)

hik =

−yik + fi0(tk, xk)

yik − fi0(tk, xk)

 . (6.43b)

The polytope W may be described in terms of constants in (6.43) (equivalent to Equation (6.42)) as

W =
{
w ∈ RL

∣∣∣∀i, k :
∑L

ℓ=1 Γikℓwℓ ≤ ϵw + hik

}
, (6.44)

which will be written concisely as the polytope W = {w | Γw ≤ (ϵw + h)}.

Remark 6.6.1. The compactness and non-emptiness assumption of A4 is satisfied when the L∞

bound ϵw is finite and sufficiently many observations in D are acquired.

The set W as described in (6.44) has m = 2Nsn affine constraints, most of which are

redundant. These redundant constraints can be identified and dropped through the LP method of

[94]. The multiplier term ζ is m-dimensional, so lowering m by eliminating redundant constraints is

essential in creating tractable problems.
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6.7 Examples

Code to execute Lie robust counterparts for analysis and control and to replicate figures

and experiments is available at https://github.com/Jarmill/data_driven_occ. All

source code was developed in MATLAB 2021a. Dependencies include YALMIP [48] to form the

SDPs and MOSEK [49] to solve them. Unless otherwise specified, the SDR uncertainty set W

will be polytopic. Redundant constraints (non-exposed faces) in the polytope W were identified

and dropped through the LP method of [94]. When W is polytopic, the w(t) inputs of trajectory

samples (data-driven analysis) were acquired through hit-and-run sampling of the polytope W [95]

as implemented by [96]. In the case of semidefinite-bounded noise, the input w(t) was chosen by

choosing a uniformly random direction θ on the (L− 1)-sphere and solving the LMI maxw∈W θTw.

6.7.1 SIR System

A demonstration of the polytopic uncertainty arising from the data driven setting may

take place on an epidemic example. A basic compartmental epidemic model involves three states:

S (susceptible), I (infected), and R (removed). The population is assumed to be normalized such

that S + I +R = 1. Temporal dynamics of the Susceptible, Infected, Removed (SIR) system with

parameters (β, γ) are

S′ = −βSI I ′ = βSI − γI. (6.45)

The R trajectory with the dynamics R′ = γI may be recovered by the relation R = 1− S − I .

Figure 6.2a plots 100 true and ϵ = 0.1-corrupted observations of the SIR system with a

ground truth of β = 0.4, γ = 0.1. Each data-record enforces 4 constraints (positive and negative

sides for S and I), and there are 400 affine constraints in total. The 5-sided polytope ΘD is plotted in

Figure 6.2b along with its Chebyshev center in the asterisk at (βcheb, γcheb) = (0.0977, 0.4003) (the

Chebyshev center of a polytope is the center of the inscribed sphere with maximum radius).

Only 5 out of the 400 constraints describing ΘD in this SIR example are non-redundant.

The active constraints in Figure 6.3 are dotted black lines, all other inactive constraints are the gray

dotted lines. The polytope ΘD observed in Figure 6.2b is bordered by solid black lines.

Peak estimation to bound the maximum value of the infected population I is performed

on the (6.45) with observations in Fig. 6.2a. The L = 2 uncertain parameters are (β, γ). The (β, γ)

consistency set aligning with the observed data is the 5-sided polytope in Fig. 6.2. The peak estimate

over a time horizon of T = 40 days is Imax ≤ 0.511 at an order-3 SOS tightening of (6.36).

96

https://github.com/Jarmill/data_driven_occ


CHAPTER 6. ROBUST COUNTERPARTS AND DATA DRIVEN ANALYSIS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
100 Noisy Observations with =0.1

Ground Truth

Noisy Data

(a) Observed SIR system (b) Polytope of feasible (β, γ)

Figure 6.2: Observed and Corrupted SIR

6.7.2 Semidefinite-Disturbed Flow System

This subsection performs peak estimation of the Flow system (6.15) under a semidefinite-

constrained disturbance process:

f(t, x, w) =

 x2

−x1 − x2 + x31/3 + w1x1 + w2x1x2 + w3x3

 (6.46a)

W =

w ∈ R3 :


1 w1 w2

w1 1 w3

w2 w3 1

 ∈ S3+

 . (6.46b)

The set in (6.46b) is the standard convex elliptope/pillow spectahedron. Dynamics in (6.46)

start at X0 = [1.25; 0] and continue for T = 5 time units in the space X = [−0.5, 1.75]× [−1, 0.5].
The first 6 bounds of maximizing p(x) = −x2 along these trajectories, after performing a robust

counterpart, are p∗1:6 = [1, 1, 0.8952, 0.8477, 0.8471, 0.8470]. At order 6, the largest PSD matrix

constraint (for the 3× 3 SOS-matrix) is of size 3
(
3+6
6

)
= 252 in the variables (t, x) after performing

robust decomposition, while the non-decomposed largest PSD size is 3
(
6+6
6

)
= 2772 in the variables
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Figure 6.3: Active and inactive constraints describing ΘD in Figure 6.2b

Figure 6.4: Maximum value of I(t) over a time horizon of T = 40, with unknown (β, γ)

(t, x, w).

6.7.3 Data-Driven Flow System

This subsection will further extend the disturbed Flow system in (6.15) by the case where

ẋ2 is modeled by a cubic polynomial ẋ2 =
∑

degα≤3wαx
α1
1 xα2

2 with 10 unknown parameters/inputs

{wα}. The derivative ẋ1 = x2 remains known and there is no uncertainty in the first coordinate.

Table 6.1 in the Introduction refers to this cubic Flow setting.

Figure 6.6 visualizesN = 40 observed data points sampled within the initial setXsample =

{x | (x1 − 1.5)2 + x22 ≤ 0.42}. The true derivative values are the blue arrows and the ϵ = [0; 0.5]-

corrupted derivative observations are orange. The N = 40 points yield 2N = 80 affine constraints,
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Figure 6.5: Order-5 bound on minimal x2 for Flow (6.46) under elliptope-constrained noise

of which the polytope W has L = 33 faces (nonredundant constraints) and 7534 vertices.

Figure 6.7 displays Flow system trajectories for a time horizon of T = 5 starting from the

point X0 = (1.5, 0) (left, Figure 6.7a) and from the circle X0 = Xsample (right, Figure 6.7b). Each

case desires to maximize p(x) = −x2 over the state region of X = {x | ∥x∥22 ≤ 8}. The first 4 SOS

peak estimates in the point X0 case (Figure 6.7a) are d∗1:4 = [2.828, 2.448, 1.018, 0.8407]. The first

four estimates in the disc X0 case (Figure 6.7b) are d∗1:4 = [2.828, 2.557, 1.245, 0.894].

Figure 6.8 displays the result of distance estimation on the Flow system (3.9) with

N = 40 points and ϵ = [0; 0.5]. The dynamics model is the same as in the peak (6.7) with

ẋ = [x2; cubic(x1, x2)]. The initial point is X0 = [1; 0] in the state set X = [−1, 1.25] ×
[−1.25, 0.7], and trajectories are tracked for T = 5 time units. The distance function is the L2

distance and the red half-circle unsafe set is Xu = {x | 0.52 ≥ −(x1 + 0.25)2 − (x2 + 0.7)2,-

(x1 + 0.25)/
√
2 + (x2 + 0.7)2/

√
2 >= 0}. The first 5 bounds of the robust distance estimation

program are c∗1:5 = [1.698× 10−5, 0.1936, 0.2003, 0.2009, 0.2013].

6.7.4 Twist System

This section performs peak estimation on the Twist system in (5.34)

A total of N = 100 observations with a noise bound of ϵ = 0.5 are taken, and are plotted

in Figure 6.9. These N = 100 observations will induce 2Nn = 600 affine constraints on eventual
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Figure 6.6: Observed data of Flow system (3.9) within a circle

polytopes W .

All scenarios in this subsection will find peak estimates on the maximum value of p(x) =

x3 of the Twist system over the space X = {x | −1 ≤ x1, x2 ≤ 1, 0 ≤ x3 ≤ 1} and time horizon

T = 8 starting at X0 = [−1, 0, 0].
Figure 6.10 involves the L = 9 case where B1 is unknown (left) or when B3 is unknown

(right). The unknown B1 case in Figure 6.10a has a polytope W with m = 30 faces and peak bounds

of d∗1:3 = [1.000, 0.9050, 0.8174]. The known B3 case in Figure 6.10b also has m = 30 faces in its

polytope with peak bounds of d∗1:3 = [1.000, 0.9050, 0.8174]. The maximal PSD matrix size of the

Lie nonpositivity constraint is 2380 pre-decomposition and 70 post-decomposition.

When both parameters (B1, B3) are unknown, the polytope W has L = 18 dimensions

and m = 70 nonredundant faces. The first peak estimates on this system are d∗1:2 = [1.000, 0.9703]

as plotted in Figure 6.11. At degree 2, the maximal PSD matrix size in the Lie constraint falls

from 2300 pre-decomposition and to 35 post-decomposition. The experimental platform became

unresponsive in YALMIP when attempting to compile the degree d = 3 model.

6.7.5 Reachable Set Example

Figure 6.12 illustrates data-driven reachable set estimation on the Twist system from (5.34)

for a time horizon of T = 8 by SOS tightening to the Lie-robustified (6.20). The 100 observations
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(a) X0 = (1.5, 0) (b) X0 = Xsample

Figure 6.7: Minimizing x2 on Flow system (3.9) at order-4 SOS tightening

from this system are pictured in Figure 6.9, yielding a L = 9-dimensional polytope with 34 non-

redundant faces. As the order of tightening to program increases from 3 to 4, the red region (level set

of ω(x)) tightens to the spiraling attractor region of the T = 8 reachable set. The ‘volume’ in the

plot titles is not the true volume of the superlevel set {x | ϕ(x) ≥ 1}, but is instead the Lebesgue

estimates
∫
X ϕ(x)dx.

6.7.6 Region of Attraction Example

This example of ROA maximization will concentrate on a controlled version of the Flow

dynamics from (3.9) under L = 6 inputs

ẋ = Flow(x) +

w1 + w2x1 + w3x2

w4 + w5x1 + w6x2

 (6.47)

obeying the polytopic input limits

W =

w | ∥[w1;w4]∥∞ ≤ 0.1, ∥[w2;w3;w5;w6]∥∞ ≤ 0.15

∥[(w1 + w2 + w3); (w4 + w5 + w6)]∥∞ ≤ 0.3

 . (6.48)

The circle XT = {x | 0.12 − (x1 − 0.5)2 − (x2 − 0.5)2 ≥ 0} is the destination of

the ROA problem with a time horizon of T = 5 and a state space of X = [−1.5, 1.5]2. The

WSOS tightening of the Lie-robustified problem (6.22) yields bounds for the ROA volume of

d∗2:6 = [9.000, 9.000, 6.717, 5.620, 5.187].

101



CHAPTER 6. ROBUST COUNTERPARTS AND DATA DRIVEN ANALYSIS

Figure 6.8: Distance estimate of (3.9) at order 5

The destination set XT is drawn in the black circle in the left subplot of Figure 6.13. The

white area is an outer approximation of the true ROA, found as the superlevel set {x | ϕ(x) ≥ 1} at

order 6. The red area is the sublevel set {x | ϕ(x) ≤ 1}. The right subplot of Figure 6.13 draws the

degree-12 polynomial function ϕ(x).

6.8 Conclusion

This work formulated infinite-dimensional robust counterparts decomposing input-affine

Lie constraints in analysis and control problems. These robust counterparts may be approximated by

continuous multipliers without conservatism under compactness and regularity conditions. Elimina-

tion of the noise variables w allows for solution and analysis of formerly intractable problems using

the moment-SOS hierarchy. The robust counterpart method was demonstrated on peak estimation,

distance estimation, reachable set estimation, and BRS-maximizing control problems. Another

environment in which these robust counterparts may be employed is in data-driven systems analysis

with affinely-parameterized dictionaries and SDR noise.

The robust counterpart method may be used in other optimization domains with Lie

constraints, such as in optimal control input penalties [77] and maximum controlled invariant set
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Figure 6.9: 100 observations of Twist system (5.34)

estimation [97].

The Lie robust counterparts depend on input-affine dynamical structure and are therefore

restricted to continuous time systems (when nonlinear). One direction is to try and reduce the

complexity of analysis of discrete-time dynamics by finding sparse and exploitable structures other

than switching. Correlative sparsity is generally incompatible with robust counterparts, but further

investigation should lead to cases in which imposing that the multipliers ζ have a CSP [98]. Another

avenue is to incorporate warm starts into SDP solvers so system estimates can be updated as more

data gets added to D.
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(a) Unknown B1, Known B3 (b) Known B1, Unknown B3

Figure 6.10: Twist (5.34) system where either B1 or B3 are unknown.

Figure 6.11: Twist (5.34) with unknown (B1, B3)
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(a) Order 3 relaxation (b) Order 4 relaxation

Figure 6.12: Reachable set estimation of twist (5.34) system whereB1 is known andB3 are unknown.

Figure 6.13: Order 6 ROA for controlled Flow (3.9)

105



Chapter 7

Safety Quantification using Peak

Minimizing Control

7.1 Introduction

This chapter adds a third perspective to safety quantification, in addition to the safety

margin and distance estimation work from Chapter 5. The safety of trajectories will be quantified

by the maximum control effort (OCP cost) needed to crash the agent into the unsafe set. Distance

estimation does not tell the full story about safety; a trajectory may lie close to Xu in the sense of

distance c(x;Xu), but it could require a severe control effort to render the same trajectory unsafe.

An example of this type of safety result is if the tilting of the steering wheel of a car by a maximum

extent of 3◦ over the course of its motion would cause the car to crash. The process of analyzing

safety by peak-minimizing-OCP cost will be referred to as ‘crash safety’. This perspective will also

be used in the data-driven framework, in which a trajectory is labeled safe if it would require a large

constraint violation against any of its state-derivative datapoints in D in order to crash.

Let W ⊂ RL be a compact input set, and letW be the class of functions whose graphs

satisfy (t, w(t)) ∈ [0, T ] × W . Given a control-cost J(w), we can pose the following peak-
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minimizing free-terminal-time OCP:

Q∗ = inf
t, x0, w

sup
t′∈[0,t]

J(w(t′))

ẋ(t′) = f(t′, x(t′), w(t′)) ∀t′ ∈ [0, T ]

x(t | x0, w(·)) ∈ Xu

w(·) ∈ W, t ∈ [0, T ], x0 ∈ X0.

(7.1)

The variables of (7.1) are the stopping time t, the initial condition x0, and the input process w(·).
Assuming for the purposes of this discussion that J(0) = 0, ∀w ̸= 0 : J(w) > 0, and that J

possesses connected superlevel sets; the set x0 is unsafe if Q∗ = 0 because the process w(t) = 0 is

sufficient for the trajectory to reach a terminal set of Xu. The value of a nonzero Q∗ then measures

the amount of control effort (perturbation intensity) needed to render the trajectory unsafe. Connected

level sets are imposed to add interpretability to Q∗; a disconnected choice of J with multiple local

minima could yield a large input w with a low Q∗.

A running cost
∫ T
0 J(w(t′))dt yielding a standard-form (Lagrange) OCP may also be

applied, but we elect to use a peak-minimizing cost maxt′ J(w(t
′)) in order to penalize perturbation

intensity. The running-cost would penalize a low-magnitude control being applied for an extended

period of time, while peak-minimizing control reduces the intensity.

Peak-minimizing control problems, such as in (7.1), are a particular form of robust optimal

control in which the minimizing agents are (t, x0, w(·)) and the maximizing agent is t′ ∈ [0, t].

Necessary conditions for these robust programs may be found in [99]. Instances of peak-minimizing

control include minimizing the maximum number of infected persons in an epidemic under budget

constraints [100] and choosing flight parameters to minimize the maximum skin temperature during

atmospheric reentry [101, 102]. The work in [12] outlines conversions between peak-minimizing

OCPs and equivalent Mayer-form OCPs (terminal cost only).

This chapter transforms program (7.1) into the Mayer OCP using [12], relaxes the noncon-

vex OCP into an infinite-dimensional LP with the same objective value [7], and then lower-bounds

Q∗ by using the moment-SOS hierarchy [8, 27]. The robust counterpart method of Chapter 6 will be

used to simplify the infinite-dimensional LP when W and the graph of J are both SDR.

This chapter has the following structure: Section 7.2 reviews the peak-minimizing control

framework of [12]. Section 7.3 formulates an infinite-dimensional LP to solve (7.1) and calculates a

subvalue function to act as a proxy for risk. Section 7.4 applies the crash-safety framework towards

L∞-penalized data-driven analysis using robust Lie counterparts from Chapter 6. Section 7.5 forms
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SOS programs for crash-safety and tabulates their computational complexity. Section 7.6 evaluates

the safety of points inside X by a subvalue function of the crash-safety cost. Section 7.7 provides

demonstrations of crash-safety. Section 7.8 concludes the chapter. This chapter appears in [103] and

was coauthored by Mario Sznaier.

7.2 Peak Minimizing Control

This section reviews the peak-minimizing control problem and a simplified conversion

framework based on [12]. Given an objective θ : [0, T ]×X ×W → R, an initial condition x0, and

a fixed terminal time T , the peak-minimizing control problem is

P ∗ = inf
w∈W

sup
t′∈[0,T ]

θ(t′, x(t′ | x0, w(·)), w(t′)))

ẋ(t) = f(t′, x(t′), w(t′)) ∀t ∈ [0, T ].

(7.2)

The work in [12] details three different methods to convert a peak-minimizing control OCP

into a Mayer OCP: pure state constraint, mixed state constraint, and differential inclusion. We will

elect to use the first method in [12], which involves the augmentation of constant dynamics by a new

state ż = 0:
P ∗
z = inf

w∈W,z∈R
z

ẋ(t) = f(t, x(t), w(t)) ∀t ∈ [0, T ]

ż = 0 ∀t ∈ [0, T ]

z ≥ θ(t′, x(t′ | x0, w(·)), w(t′)) ∀t′ ∈ [0, T ].

(7.3)

The parameter z always remains an upper bound on p along trajectories, and the controller

w(·) is chosen to reduce this upper bound as much as possible.

Proposition 7.2.1 (Proposition 3.1 of [12]). The objectives P ∗ and P ∗
z are equal between (7.3) and

(7.2).

7.3 Crash-Safety Program

This section applies peak-minimizing control conversion to the crash-safety task in (7.1).
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7.3.1 Motivating Example

This subsection provides an example demonstrating how (7.1) can be used for safety

quantification. This example will perturb (3.9) by an uncertainty process restricted to ∀t : w(t) ∈
[−1, 1]:

ẋ =

 x2

−x1 − x2 + 1
3x

3
1

+ w

0
1

 . (7.4)

Trajectories evolve over a time horizon of T = 5 in the state set X = [−0.6, 1.75] ×
[−1.5, 1.5] with a maximum corruption of Jmax = 2. System dynamics are illustrated by the blue

streamlines in Figure 7.1. The red half-circle is the unsafe set Xu = {x | x2 ≤ −0.5, (x1 −
1)2 + (x2 + 0.5)2 ≤ 0.52}. Two trajectories of this system are highlighted. The green trajectory

starts from the top initial point X1
0 = [0; 1], and the yellow trajectory starts from the bottom initial

point X2
0 = [1.2966− 1.5]. The distance of closest approach to Xu is 0.2498 for both trajectories

(matching up to four decimal places). The 0.2498-contour of constant distance is displayed by the

red curve surrounding Xu.

Figure 7.1: Two trajectories with nearly the same distance but different crash-bounds
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The OCP solver CasADi [104] returns approximate bounds for (7.1) of Q∗ ≈ 0.3160 for

X1
0 (green) and Q∗ ≈ 0.6223 for X2

0 (yellow). The points (X1
0 , X

2
0 ) return nearly identical distances

of closest approach, but X2
0 may be judged as safer than X1

0 under the disturbance model in (3.9) due

to its higher crash-bound value. Degree-4 SOS tightenings of (7.5) developed in the sequel return

lower bounds of 0.3018 and 0.5273 respectively.

7.3.2 Assumptions

We will require the following assumptions:

A1 The sets [0, T ], [0, Jmax], X,W,Xu, X0 are all compact.

A2 The image f(t, x,W ) is convex for each fixed (t, x).

A3 The dynamics function f(t, x, w) is Lipschitz in the compact domain [0, T ]×X ×W .

A4 If x(t | x0, w) ∈ ∂X for some t ∈ [0, T ], x0 ∈ X0, w ∈ W , then x(t′ | x0) ̸∈ X ∀t′ ∈
(t, T ].

7.3.3 Crash-Safety Formulation

We use the peak-minimizing control conversion of [12] on program (7.1):

Theorem 7.3.1. The following program has the same optimal value as (7.1):

Q∗
z = inf

t, x0, z, w
z (7.5a)

ẋ(t′) = f(t′, x(t′), w(t′)), ż(t′)) = 0 ∀t′ ∈ [0, T ] (7.5b)

J(w(t′)) ≤ z ∀t′ ∈ [0, T ] (7.5c)

x(t | x0, w(·)) ∈ Xu (7.5d)

w(·) ∈W, t ∈ [0, T ], x0 ∈ X0, z ∈ [0, Jmax]. (7.5e)

Proof. This follows from Proposition 7.2.1 under the following changes:

1. Free terminal time t ∈ [0, T ]

2. Terminal state constraint in Xu

3. Input-state constraint in (7.5c)
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4. Free initial condition x0 ∈ X0

The state z upper-bounds the worst-case control supt′∈[0,t] J(w(t
′)), yielding the peak-control-

minimized cost Q∗
z = Q∗. The work in [12] allows the peak-minimized term to be minimized to

contain u.

7.3.4 Linear Programs

Define the following compact support sets involving w and z:

Z = [0, Jmax] Ω = {(w, z) ∈W × Z : J(w) ≤ z}. (7.6)

Let Lf be the Lie derivative associated with f for v(t, x, z) ∈ C1 as

Lfv(t, x, z, w) = (∂t + f(t, x, w) · ∇x)v(t, x, z). (7.7)

A measure LP for (7.5) in terms of an initial measure µ0, terminal measure µu, and

occupation measure µ is

q∗ = inf
µ0,µp,µ

⟨z, µu⟩ (7.8a)

µu = δ0 ⊗ µ0 + πtxz# L
†
fµ (7.8b)

⟨1, µ0⟩ = 1 (7.8c)

µ0 ∈M+(X × Z) (7.8d)

µu ∈M+([0, T ]×Xu × Z) (7.8e)

µ ∈M+([0, T ]×X × Ω). (7.8f)

Constraint (7.8a) is a Liouville equation in the sense of (3.6).

Lemma 7.3.2. There exists a feasible solution to (7.8b)-(7.8f) under A1-A4.

Proof. Let t∗ ∈ [0, T ] be a stopping time, x0 ∈ X0 be an initial condition, and w(·) ∈ W be an input

such that x(t∗ | x0, w(·)) ∈ Xu. Let z∗ be a feasible solution to ∀t ∈ [0, t∗] : (z∗, w(t)) ∈ Ω. Then

the probability measures can be set to µ0 = δx=x0,z=z∗ and µu = δt=t∗,x=x(t∗|x0,w(·)), z=z∗ , and µ

can be assigned to the occupation measure of t 7→ (t, x(t∗ | x0, w(·)), w(t)) in the times [0, t∗].

Remark 7.3.1. The process of 7.3.2 to generate a feasible measure solution may be used when only

A1 and A4 are active, thus certifying that m∗ ≤ Q∗.
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Theorem 7.3.3. Under assumptions A1-A5, programs (7.1) and (7.8) will have equal objectives

q∗ = Q∗.

Proof. Program (7.5) with optimum Q∗
z is a standard-form OCP with free terminal time and zero

running cost. Under assumptions A1-A5, Theorem 2.1 of [7] proves that Q∗
z = q∗. Section 6.3 of

[7] specifically discusses state-dependent controls (e.g. (w, z) ∈ Ω). Theorem 7.3.1 provides that

Q∗ = Q∗
z , which together implies that Q∗ = q∗.

An auxiliary function v ∈ C1 may be defined to form a dual LP to (7.8) as

d∗ = sup
γ∈R, v

γ (7.9a)

v(0, x, z) ≥ γ ∀(x, z) ∈ X0 × Z (7.9b)

v(t, x, z) ≤ z ∀(t, x, z) ∈ [0, T ]×Xu × Z (7.9c)

Lfv(t, x, z, w) ≥ 0 ∀(t, x, z, w) ∈ [0, T ]×X × Ω (7.9d)

v(t, x, z) ∈ C1([0, T ]×X × Z). (7.9e)

Theorem 7.3.4. Strong duality occurs with q∗ = d∗ between (7.8) and (7.9) under assumptions

A1-A5.

Proof. This holds by standard OCP LP duality arguments from [105, 7, 16].

7.4 Robust Crash-Safety and Data-Driven Analysis

This section motivates crash-safety in the context of data-driven analysis. This section will

remove the restriction that the performance function satisfies J(0) = 0, but will retain the property

that the level sets of J are connected.

7.4.1 Data-Driven Overview

We recall the data-driven setting of Section 6.6. We are given data D = {(tk, xk, yk)}Ns
k=1

and a dictionary of functions (f0, {fℓ}Lℓ=1) according to dynamics (6.1). There exists at least one

ground-truth choice of parameters w∗ ∈ RL such that

F (t, x) = f0(t, x) +
L∑
ℓ=1

w∗
ℓfℓ(t, x). (7.10)
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In the L∞-bounded polytopic framework, the crash-safety problem (7.5) aims to find a

minimum upper bound on data corruption in any data record needed to crash into the unsafe set:

Z∗ = inf
t, x0, z, w

z (7.11a)

ẋ(t′) = f0(t
′, x) +

∑L
ℓ=1wℓfℓ(t

′, x(t′)), ż(t′) = 0 ∀t′ ∈ [0, T ] (7.11b)

x(t | x0, w) ∈ Xu (7.11c)

x(0) ∈ X0 (7.11d)

z ≥ ∥f0(tk, xk) +
∑L

ℓ=1wℓfℓ(tk, xk)− yk∥∞ ∀k = 1..Ns (7.11e)

z ∈ [0, Jmax], w ∈ RL, t ∈ [0, T ]. (7.11f)

If the returned value of (7.11) is Z∗ = 0, then there exists some choice of model parameters w that

exactly fit the data D such that at least one trajectory x(·) starting from X0 is unsafe (crashes into

X0). Values of Z∗ greater than 0 are a certificate of safety in the model structure. A larger value of

Z∗ indicates that the data must be increasingly corrupted in order to render any trajectory unsafe.

7.4.2 Robust Data-Driven Program

The state constraint (7.11e) defines a z-scaled polytope W from (6.44). The data-derived

constant matrices Γ ∈ R2nT×L, h ∈ R2nT from (6.43) may be used describe constraint (7.11e) as

Γw(t) ≤ z1+ h. (7.12)

The performance function of the L∞-data-driven analysis is

J(w) = max
j

(h− Γw)j . (7.13)

The true corruption value is J(w∗).

Given a maximum upper-bound on data corruption Jmax, the support sets (Z,Ω) may be

defined for the data-driven case as

Z = [0, Jmax] Ω = {(w, z) ∈ RL × Z : Γw ≤ z1+ h}. (7.14)

The support set (7.14) is polytopic in the uncertainty w.

Theorem 7.4.1. The Lie constraint in (7.9d) may be robustified in a nonconservative manner into

Lf0v − (z1+ h)T ζ ≥ 0 ∀(t, x, z) ∈ [0, T ]×X × [0, Jmax] (7.15a)

(ΓT )ℓζ + fℓ · ∇xv = 0 ∀ℓ = 1..L (7.15b)

ζj ∈ C+([0, T ]×X × Z) ∀j = 1..2nT. (7.15c)
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Proof. See Theorem 6.4.2 for the robustification. We perform the following assignments to the

robust inequality in (6.6):

a0 = ∅ aℓ = ∅ ∀ℓ = 1..L (7.16a)

b0 = Lf0v bℓ = fℓ · ∇xv ∀ℓ = 1..L (7.16b)

A = −Γ G = ∅ (7.16c)

e = z + h K =
∏2nT
s=1 R≥0. (7.16d)

The parameters of this problem are (t, x, z) ∈ [0, T ]×X×Z. The elements e, b0, bℓ are all

continuous functions of the parameters, and the constraint matrixA is constant in the parameters.

7.5 SOS Programs

This section poses finite-dimensional SOS tightenings to the infinite-dimensional crash-

safety programs.

We will require a strengthening of assumption A1:

A5 The sets (X,Xu, X0, [0, T ], Z,Ω) are all Archimedean BSA sets and the dynamics f(t, x, w)

are polynomial.

7.5.1 Standard Crash-Safety

For a given degree d, define d̃ = d+ ⌊deg f/2⌋ as the dynamics degree of f(t, x, w). The

degree-d SOS tightening of program (7.9) is

q∗d = max
γ∈R, v

γ (7.17a)

v(0, x, z)− γ ∈ Σ[X0 × Z]≤d (7.17b)

z − v(t, x, z) ∈ Σ[[0, T ]×Xu × Z]≤d (7.17c)

Lfv(t, x, z, w) ∈ Σd̃[[0, T ]×X × Ω] (7.17d)

v(t, x, z) ∈ R[t, x, z]≤2d. (7.17e)

We will show that all measures in (7.8) are bounded in order to prove convergence of (7.17)

to the true value in (7.11).

Lemma 7.5.1. All measures (µ0, µu, µ) in (7.8) are bounded under A1-A5.
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Proof. All support sets are compact by assumption A1. The measure µ0 has mass 1 by (7.8c).

Substitution of v(t, x, z) = 1 into (7.8b) results in ⟨1, µu⟩ = ⟨1, µ0⟩ = 1, and applying v(t, x, z) = t

yields ⟨1, µ⟩ = ⟨t, µu⟩ ≤ T .

Theorem 7.5.2. Under assumptions A1-A5, then the sequence of bounds q∗d will converge as

limd→∞ q∗d = Q∗ to the optimum of (7.1).

Proof. This convergence will occur by Corollary 8 of [23], along with convergence in Theorem 7.3.3,

boundedness of measures in 7.5.1, the infinite-dimensional strong duality Theorem 7.3.4, and strong

duality between their finite-dimensional SDP truncations [21, Arguments from Theorem 4].

7.5.2 Robust Crash-Safety

We now apply the robust counterpart from (7.15) to (7.9) in order to form an SOS program

for the L∞ data-driven scenario. Define d̃ = d+maxℓ∈0..L ⌊deg fℓ/2⌋ as the dynamics degree of

(6.1). The L∞-bounded data-driven robust crash-safety SOS tightening at degree d is

q̃∗d = max
γ∈R, v

γ (7.18a)

v(0, x, z)− γ ∈ Σd[X0 × Z] (7.18b)

z − v(t, x, z) ∈ Σd[[0, T ]×Xu × Z] (7.18c)

Lf0v − (z1+ h)T ζ ∈ Σd̃[[0, T ]×X × Z] (7.18d)

coefftxz(−(Γ+)ℓζ + fℓ · ∇xv) = 0 ∀ℓ = 1..ℓ (7.18e)

v(t, x, z) ∈ R[t, x, z]≤2d. (7.18f)

ζj ∈ Σ[[0, T ]×X × Z]≤d̃−1 ∀j = 1..2nT. (7.18g)

Theorem 7.5.3. Under assumptions A1-A5 and assuming L∞ noise structure, the sequence of

optimal values from (7.18) will converge as limd→∞ q̃∗d = Q∗.

Proof. The Lie constraint may be robustified by Theorem (7.4.1). The SOS program in (7.18)

will converge to a strict version of (7.9) by Theorem (6.5.4) under the polynomial v restriction.

Strictness is not overly restrictive when performing smooth approximations, as shown in the proof of

Proposition 5 in [106].

Remark 7.5.1. The degree of ζ in (7.18g) is set to 2(d̃−1) so as to ensure that deg z1T ζ = 2d̃−1 ≤
2d̃ in (7.18d).
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7.5.3 Computational Complexity

Program (7.17) has three WSOS constraints, leading to Gram matrices of maximal size(
n+1+d

d

)
,
(
n+2+d

d

)
,
(n+L+2+d̃

d̃

)
. The performance of SDPs derived from (7.17) is dominated by

the largest size
(n+L+2+d̃

d̃

)
and scales as (n+ L+ 2)6d̃ or d̃4(n+L+2) (per-iteration complexity of

interior point methods moment-SOS).

The robustified program in (7.18) breaks up the Lie constraint’s maximal-size Gram matrix

dimension
(n+L+2+d̃

d̃

)
into one matrix of size

(n+2+d̃
d̃

)
(7.18d) and 2nT Gram matrices of size(n+1+d̃

d̃

)
(7.18g).

The nonredundant face identification method of [94] requires caution when attempting

to reduce complexity of (7.18). Faces of W that are active at z = z1 may no longer be active

at z = z2 ≥ z1 or vice versa. A bound on (7.18) computed using a subset of faces (constraints)

in D will necessarily be lower than using all faces. This conservatism can be reduced while still

eliminating faces by taking the union of active faces of the polytopes in w from (7.12) at a set of

values z ∈ [0, Jmax].

7.6 Subvalue Map

Program (7.9) returns the worst-case crash safety over a set of initial conditions X0. We

briefly discuss an extension of the crash-safety technique to assessing the safety of arbitrary initial

conditions.

7.6.1 Value Functions

We define the fixed-z value function of (7.5) (when starting at X0 = x′) as

V (x′, z) =


z z ∈ [0, Jmax], ∃t ∈ [0, T ], w(·) ∈ W | ∀t′ ∈ [0, t]

x(t | x0, w(·)) ∈ Xu

J(w(t′)) ≤ z

∞ otherwise.

(7.19)

The value function V (x′, z) is infinite if the control problem of steering a point from x′

to Xu is infeasible within the performance budget J(w) ≤ z. The value function of (7.5) when

116



CHAPTER 7. SAFETY QUANTIFICATION USING PEAK MINIMIZING CONTROL

restricted to the single initial condition x′ is

Q(x′) = inf
z∈[0,Jmax]

V (x′, z). (7.20)

The value functionQ(x′) will have an upper bound of Jmax ifQ(x′) is finite, and otherwise

will have a value of∞. We make no assumptions of continuity or boundedness of Q(x′), beyond

A1’s assurance that Jmax is finite.

7.6.2 Subvalue Approximations

We now use the moment-SOS hierarchy to develop subvalue maps to lower-bound Q(x′)

from (7.20).

Proposition 7.6.1. Any function v(t, x, z) that satisfies (7.9c) and (7.9d) obeys v(0, x, z) ≤ V (x′, z)

from (7.19) at all (x, z) ∈ X × Z.

Proof. Equations (7.9c) and (7.9d) are inequality constrained versions of the Hamilton-Jacobi-

Bellman equality constraints for an optimal value function v∗ [107]:

v∗(t, x′, z) = z ∀(t, x′, z) ∈ [0, T ]×Xu × Z (7.21a)

min
w|(w,z)∈Ω

Lfv∗(t, x′, z, w) = 0 ∀(t, x′, z) ∈ [0, T ]×X × Z. (7.21b)

Refer to the Section 4 of [8] and the proof of Proposition 1 of [106] for the establishment of subvalue

relations.

Let φ ∈ M+(X) be a probability distribution with easily computable moments (e.g.,

uniform distribution over X when X is a ball or a box), and Qmax ≥ Jmax be a finite control cap.

Theorem 7.6.2. The following program provides a subvalue function q(x) ≤ Q(x):

J∗ = sup

∫
X
q(x)dφ(x) (7.22a)

q(x) ≤ v(0, x, z) ∀(x, z) ∈ X × [0, Zmax] (7.22b)

q(x) ≤ Qmax ∀x ∈ supp(φ) (7.22c)

z ≥ v(t, x, z) ∀(t, x, z) ∈ [0, T ]×Xu × Z (7.22d)

Lfv(t, x, z, w) ≥ 0 ∀(t, x, z, w) ∈ [0, T ]×X × Ω (7.22e)

v ∈ C1([0, T ]×X × Z) (7.22f)

q ∈ C(X). (7.22g)
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Proof. Proposition 7.6.1 proves that v(0, x, z) ≤ V (x, z) from (7.19). Constraint (7.22b) imposes

that q(x) ≤ v(0, x, z) ≤ V (x, z) for all x ∈ X , which implies that q(x) ≤ infz v(0, x, z) for all

x ∈ X . From the definition of Q(x′) in (7.20) with Q(x′) ≤ infz V (x′, z), it therefore holds that

q(x) ≤ Q(x) for all x ∈ X .

Corollary 1. The objective J∗ from (7.22) is finite and is bounded above by J∗ ≤ Qmax.

Proof. Constraint (7.22c) requires that q(x) is upper-bounded by Qmax. The objective (7.22a) is

therefore upper-bounded by∫
X
q(x)dφ(x) ≤

∫
X
Qmaxdφ(x) ≤ Qmax

∫
X
dφ(x) = Qmax, (7.23)

given that φ is a probability distribution.

Remark 7.6.1. Let v be a subvalue solution to (7.22d)-(7.22f). Any point x′ ∈ X such that

infz∈Z v(0, x
′, z) > Jmax implies that Q(x′) =∞.

Remark 7.6.2. Without the Qmax cap in (7.22c), the optimal value of (7.22) could be J∗ = ∞ if

∃x′ ∈ X : Q(x′) =∞.

Define qd ∈ R[x]≤2d, vd ∈ R[t, x, z]≤2d as the polynomials obtained by solving the

degree-d SOS tightening of (7.22). Let Iu(x) be the indicator function

Iu(x)

0 x ∈ Xu

−∞ x ̸∈ Xu

. (7.24)

For a sequence of orders d′ = 1..d, a parametric function q1:d may be defined as

q1:d(x) = max(Iu(x), max
d′∈1..d

qd′(x)). (7.25)

Definition 7.6.1 ([60]). A sequence of continuous functions {qk(x)} converges almost uniformly to

Q(x) with respect to a measure φ ∈ M+(X) if ϵ > 0 : ∃A ⊆ X , such that qk → Q uniformly on

X \A and φ(A) < ϵ.

Theorem 7.6.3. The function q1:d(x) will converge almost uniformly to min(Qmax, Q(x)) on the

state-space supp(φ) ∈ X .
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Proof. Let ṽ ∈ R[t, x, z] be a polynomial subvalue function that obeys (7.22d)-(7.22f). Corol-

lary 2.5 of [60] proves that the parameterized program q1:d will converge φ-almost uniformly to

min(Qmax,minz ṽ(0, x, z)), resulting in

lim
k→∞

∫
X
|Q(x)− qk(x)|dφ(x) = 0. (7.26)

Increasing the degree of sublevel polynomials ṽ allows for the choice of admissible ṽ such that

ṽ(0, x, z) converges in an L1-sense to V (x, z) whenever V (x, z) ≤ Qmax [106, Propositions 5 and

6], thus proving the theorem.

Remark 7.6.3. The subvalue approximation q1:d in (7.25) is vulnerable to a Gibbs phenomenon,

which is common among all polynomial optimization methods [108, 109]. Remark 7.6.1 is vital in

establishing infeasibility of reaching Xu, but choosing Qmax = Jmax may lead to Gibbs phenomena

that distort the infeasibility Q(x′) = ∞ into q(x′) ≤ Jmax. Picking Qmax > Jmax (such as

Qmax = 4Jmax) allows for slack in the range of [Qmax − Jmax, Qmax], which hopefully could

contain the Gibbs phenomena when establishing infeasibility (safety up to Jmax).

Remark 7.6.4. The Lie constraint in (7.22e) may be robustified through the methods in 7.4 to produce

data-driven subvalue maps.

7.7 Examples

This section demonstrates the utility of the crash-safety framework. Robust decompositions

of the Lie constraint are applied in all examples. MATLAB R2021a code to generate examples

is available at https://github.com/Jarmill/crash-safety. All SDP are generated

using YALMIP [68] and solved using Mosek [49]. Finite-degree crash-bounds from (7.18) are

compared against OCP bounds found using the solver CasADi [104].

7.7.1 Single-Input Subvalue Comparison

This example demonstrates the computation of crash-bounds and the creation of crash-

subvalue functionals for system (7.4) with Jmax = 1 and Qmax = 4. This subvalue is constructed by

solving SOS tightenings of (7.22) in the space X = [−2, 2]2 and in the time horizon t ∈ [0, 5].
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7.7.1.1 Half-Circle

The first part of this example involves the half-circle respect to the unsafe set Xu = {x |
(x1 + 0.25)2 + (x2 + 0.7)2 ≤ 0.52, (0.95 + x1 + x2)/

√
2 ≤ 0}. Figure 7.2 draws the unsafe set

Xu in red. The color shading (colorbar) plots q1:5(x) clamped to the range [0, Jmax] = [0, 1]. The

integral objective values of SOS tightening (7.22) at degrees 1..5 are J∗
1:5 = [1.934× 10−7, 4.864×

10−7, 3.0794, 5.992, 8.260].

Figure 7.2: Subvalue function for Flow system (7.4) between degrees 1..5.

The black dot in Figure 7.2 is the specific initial point X0 = [1; 0]. Table 7.1 lists crash-

bounds on (7.4) starting at X0. The subvalue bound (7.22) is lower than the corresponding degree

bounds at the X0-specific program (7.9).

Table 7.1: Crash-bounds at X0 = [1; 0] under SOS tightenings

order 1 2 3 4 5
subvalue (7.22) 1.089× 10−9 1.607× 10−9 0.1473 0.3392 0.4053
specific (7.9) 1.117× 10−7 0.1843 0.4369 0.5092 0.5118

We now consider worst-case crash-bounds for the half-circle set with respect to the

perturbed flow system (7.4) and the circular initial set X0 = {x | 0.42 ≥ (x1 − 1)2 + x2}. Crash-

bounds as computed by (7.18) (SOS tightenings to (7.9)) in degrees 1..5 are [8.101× 10−8, 6.590×
10−2, 0.4054, 0.4631, 0.4638]. The degree-5 lower-bound of 0.4638 should be compared against the

numerical bound of 0.4639 produced by CasADi. The numerically solved trajectory (blue curve)
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Figure 7.3: Numerical optimal control yields worst-case Q∗ ≈ 0.4639 for the half-circle Xu

is plotted in Figure 7.3, along with the unsafe set Xu (red half-circle) and the initial set X0 (black

circle). The initial point of the controlled trajectory (blue dot) is x0 ≈ [1.3424; 0.2069].

7.7.1.2 Moon

The second part of this example has a nonconvex moon-shaped unsafe set

Xu = {x | 0.82− (x1− 0.4)2− (x2 +0.4)2 ≥ 0, (x1− 0.6596)2 +(x2− 0.3989)2− 1.162 ≥ 0}.
(7.27)

Figure 7.4 displays a controlled trajectory (blue curve) starting from X0 = [0; 0] (black circle) and

terminating in the Xu (red moon), as computed by CasADi.

Table 7.2 lists subvalue (7.22) and specific (7.9) crash-bounds for X0 = [0; 0] between

degrees 1..5. The objectives of the SOS tightenings to (7.22) are J∗
1..5 = [1.973 × 10−7, 1.323 ×

10−7, 1.027, 3.188, 4.502].

Table 7.2: Crash-bounds at X0 = [0; 0] for the moon (7.27) under SOS tightenings

order 1 2 3 4 5
subvalue (7.22) 8.770× 10−9 4.652× 10−10 −7.861× 10−2 −5.692× 10−3 7.721× 10−2

specific (7.9) 2.723× 10−8 0.1010 0.2912 0.3216 0.3224

Figure 7.5 plots the subvalue function q1:5(x) from (7.25) under a cap of Qmax = 2 (and

Jmax = 1). All values of q1:5 in Figure 7.5 are clamped to [0, Jmax].
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Figure 7.4: Numerical optimal control yields Q∗ ≈ 0.3232 for the moon Xu

7.7.2 Data-Driven Flow System

Data is collected for the Flow system (3.9) fromN = 40 samples with a ground-truth noise

bound of ϵ = 0.5 in the coordinate ẋ2. The parameterized polytope Ωz = {w | Aw ≤ b + z} (Ω

with fixed z value) has L = 10 dimensions and m = 2nT = 80. The minimum possible corruption

while obeying (6.37) under the cubic noise model is inf(w,z)∈Ω z = 0.4617.

The crash-safety problem (7.9) and subvalue problem (7.22) were solved with the unsafe

set Xu = {x | (x1 + 0.25)2 + (x2 + 0.7)2 ≤ 0.52, (0.95 + x1 + x2)/
√
2 ≤ 0} between t = [0, 5]

time units in the space X = {x ∈ R2 : ∥x∥22 ≤ 8}. The subvalue problem (7.22) integrates over the

uniform measure of the ball X .

Table 7.3 reports bounds for the crash-corruption Q(X0) by solving Lie-robustified SOS

tightenings of (7.9) and (7.22) from degrees 1..4 with Jmax = 1, Qmax = 4. The objective

function (integrals of q(x)) for the subvalue (7.22) are J∗
1:4 = [0.2193, 3.8185, 7.8326, 18.5945].

The subvalue-estimated control cost at X0 between degrees 1..4 is 0.3399 by Equation (7.25). The

subvalue-estimated bound is valid for all x ∈ X , and is therefore lower than the bound q∗4 = 0.5499

from (7.9) that focuses exclusively on the initial point X0.

Figure 7.6 plots the subvalue function from (7.25) on the data-driven flow system. Subval-

ues in the plot are clamped to the range [0, Jmax] = [0, 1].

Safety of trajectories starting in X0 is certified because the crash-bound q̃∗4 = 0.5499 is

greater than the ground-truth noise-bound ϵ = 0.5. Figure 7.7 uses the CasADi optimal control suite
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Figure 7.5: Subvalue map for the moon (7.27) on the flow system (7.4)

Table 7.3: Data-Driven Crash-bounds at X0 = [1; 0] under SOS tightenings

order 1 2 3 4
specific (7.9) 0.0582 0.4423 0.4864 0.5499
subvalue (7.22) 6.180× 10−3 0.1829 0.3399 -19.01

[104] to numerically solve the crash program (7.1). The numerical crash-bound of qCasADI = 0.5499

is approximately equal (up to four decimal places) to the crash-bound q∗4 = 0.5499.

The left plot of figure 7.8 shows the applied control of the L = 10 inputs. The right

plot demonstrates how the polytopic input constraint is obeyed with respect to the crash bound

qCasADI = 0.5499 (upper and lower black lines).

These crash-bounds should be compared against the L2 distance estimates of c∗1:5 =

[1.698 × 10−5, 0.1936, 0.2003, 0.2009, 0.2013] from Section 6.7.3. The distance estimates do

not indicate that adding an additional budget of 0.0499 constraint violation will cause at least one

trajectory to enter the unsafe set.

7.8 Conclusion

This chapter utilized peak minimizing control in order to perform safety analysis. Crash-

safety adds a new perspective on the safety of trajectories, covering some of the blind spots of

distance estimation and safety margins. Crash-safety may be applied in the context of data-driven

systems analysis by quantifying the minimum tolerable corruption in a noise model before a trajectory
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Figure 7.6: Subvalue for data-driven (3.9) between degrees 1..4

is at risk of being unsafe.

Future work involves attempting to reduce computational complexity of the Crash programs

(7.17) by identifying new kinds of structure (in addition to SDR robust decompositions) to hopefully

allow for real-time computation. Other extensions could include applying these methods to other

classes of systems (e.g., discrete-time, hybrid), and creating a stochastic interpretation of crash-

safety.
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Figure 7.7: Numerically computed crash-bound for data-driven Flow (3.9)

Figure 7.8: Applied control for the data-driven Flow crash system.
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Chapter 8

Distance-Maximizing Control

This chapter addresses the control problem of steering from an initial set X0 to a terminal

set XT in a specified time t ∈ [0, T ] while maximizing the distance of closest approach to an

unsafe set Xu. Chapter 5 presented the analysis problem of distance estimation (finding the distance

of closest approach). In contrast, this chapter focuses on the control program of maximizing the

minimum distance.

The distance-maximizing control problem with a point-unsafe-set distance function c(x;Xu) =

infy∈Xu c(x, y) and an admissible input set U (taking values in U ⊂ RL) is

Q∗ = sup
u, x0, t∗

inf t ∈ [0, t∗]c(x(t | x0, u(·));Xu) (8.1a)

ẋ(t) = f(t, x(t), u(t)) ∀t ∈ [0, t∗] (8.1b)

x(0) = x0 ∈ X0, x(T | x0, u(·)) ∈ XT (8.1c)

u ∈ U , t∗ ∈ [0, T ]. (8.1d)

The optimization variables of (8.1) are the control policy u(·) and the initial point x0 ∈ X0.

An example of distance maximizing control is in Figure 8.1. The initial set X0 is the black

circle, and the terminal set XT is the black ‘x’ symbol. The points X0 and XT are each a distance

of 1.5 away from Xu. The optimum value of Q∗ from (5.9) is therefore upper-bounded by 1.5, and

will attain this upper bound given an arbitrarily large time horizon T . Simple integrator dynamics

ẋ = u are used for steering with u ∈ [−1, 1]2 = U . The minimum possible time to travel from X0

to XT while while staying at a distance of 1.5 away from Xu is Tarc = 10.7124 time units. The

minimum-time control reaching an infinitesimally small distance away from Xu is Tmin = 7.2426.
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Constant-distance curves are plotted in black for time budgets T ∈ (Tmin, Tarc). As the time budget

T decreases, the agent gets closer to the unsafe set and ‘cuts corners.’

Tmin: 7.2426, Tarc: 10.7124
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Figure 8.1: Distance maximizing control avoiding a rectangular block

Section 8.1 presents the peak-minimizing-inspired [12] formulation of problem 8.1, along

with its measure and function LPs. Section 8.2 uses robust counterparts to simplify the Lie constraint

when c has an SDR graph and Xu is the union of SDR sets. Section 8.3 extends the distance-

maximizing control framework towards maximizing the distance of all points on a shape with respect

to the unsafe set (continuing the shape-distance estimation problem of Section 5.7). Section 8.4

concludes the chapter and outlines future work.

The distance-maximizing control work in Chapter 8 is performed in collaboration with

Mario Sznaier. This subject is under active development; the content of this chapter is primarily

theoretical. One of the main areas of future work is performing numerical testing and experiments.
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8.1 Distance Maximizing Control Program

This section provides reformulations of the distance-maximizing control program (8.1).

8.1.1 Assumptions

We posit the following assumptions:

A1 The sets [0, T ], X,Xu, X0, XT , U are all compact and X0 ⊂ X, Xu ⊂ X .

A2 The distance function c is continuous.

A3 The dynamics function f(t, x, u) is Lipschitz in the compact domain [0, T ]×X × U .

A4 If x(t | x0, u) ∈ ∂X for some t ∈ [0, T ], x0 ∈ X0, u ∈ U , then x(t′ | x0) ̸∈ X ∀t′ ∈ (t, T ].

A5 The image f(t, x, U) is convex for each fixed (t, x).

We also define Du as the Haussdorf distance between X and Xu with

Du = sup
x∈X

c(x;Xu). (8.2)

The distance Du is finite under the compactness (A1) and continuity (A2) assumptions.

8.1.2 Lifted Program

Problem (5.9) can be reformulated into a Mayer-form OCP (only terminal cost) through

the addition of a new state z using the method in [12].

Theorem 8.1.1. The following problem has the same objective as (8.1):

Q∗
z = sup

u(t)∈U,x0
z (8.3a)

ẋ(t) = f(t, x(t), u(t)), ż(t) = 0 ∀t ∈ [0, t∗] (8.3b)

z ≤ c(x;Xu) (8.3c)

x(0) = x0 ∈ X0, x(t
∗ | x0, u(·)) ∈ XT , z ∈ [0, Du]. (8.3d)

Proof. This proof follows by similar logic to the proof of Theorem 7.3.1. Program (8.3) involves a

maximization objective, a free terminal time, a terminal state constraint, a free initial condition, and

a sign-reversed support constraint (8.3c). The state z lower-bounds the worst-case distance of closest

approach inft∈[0,t∗] c(x(t | x0, u);Xu) at all times between t ∈ [0, t∗].
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The LP formulation of (8.3) will involve the following support sets:

Z = [0, Du] (8.4a)

Ωz = {(x, z) ∈ X × Z | z ≤ c(x;Xu)} (8.4b)

Ω = {(x, y, z) ∈ X ×Xu × Z | z ≤ c(x, y)}. (8.4c)

The sets in (8.4a) satisfy the projection relation of

Ωz = πxzΩ. (8.5)

8.1.3 Linear Programs

The Lie derivative used in this chapter is

∀v ∈ C1 : Lv(t, x, z) = ∂tv(t, x, z) + f(t, x, w) · ∇xv(t, x, z). (8.6)

A measure LP of (8.3) can be constructed with an initial measure µ0, a terminal measure

µt, and a relaxed occupation measure µ.

Theorem 8.1.2. The following LP in measures will produce an upper-bound of (8.1) (with q∗ ≥ Q∗)

under A2 and A4:

m∗ = sup
µ0,µp,µ

⟨z, µT ⟩ (8.7a)

µT = δ0 ⊗ µ0 + πtxz# L†µ (8.7b)

⟨1, µ0⟩ = 1 (8.7c)

µ ∈M+([0, T ]× Ωz × U) (8.7d)

µT ∈M+([0, T ]× Ωz), µ0 ∈M+(X0 × Z). (8.7e)

Proof. This proof will proceed by constructing a measure solution (µ0, µT , µ) from every controlled

trajectory satisfying the constraints of (8.1). Assume that x0 ∈ X0 is an initial condition, t∗ ∈ [0, T ]

is a stopping time, and u(·) ∈ U is an admissible input in the times [0, t∗] under the constraint x(t∗ |
x0, u(·)) ∈ XT . Define z∗ = inft∈[0,t∗] c(x(t | x0, u(·));Xu) as the distance of closest approach

along the controlled trajectory. Then the probability measures may be chosen as µ0 = δx=x∗0,z=z∗

and µT = δt=t∗,x=x(t|x0,u(·)),z=z∗ , and µ can be set to the occupation measure of t 7→ (t, x(t |
x0, u(·)), z∗, u(t)) in the times t ∈ [0, t∗].
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Remark 8.1.1. Because z is constant along trajectories, the measure µ0 ∈M+(X0 × Z) will be

supported in (x0, z) ∈ Ωz | x = x0 through the Liouville equation (8.7b) and the µT support in

(8.7e).

Theorem 8.1.3. Under assumptions A1-A5, m∗ = Q∗ from (8.1) and (8.7).

Proof. See the proof of (7.3.3), with modifications only for the supremizing objective.

Theorem 8.1.4. The dual LP of (8.7) in the auxiliary function v(t, x, z) and scalar γ is

q∗ = inf
γ∈R,v

γ (8.8a)

γ ≥ v(0, x, z) ∀X0 × Z (8.8b)

z ≤ v(t, x, z) ∀(t, x, z) ∈ [0, T ]× Ωz |x∈XT
(8.8c)

∂tv(t, x, z) + f(t, x, u) · ∇xv(t, x, z) ≥ 0 ∀(t, x, z, u) ∈ [0, T ]× Ωz × U (8.8d)

v ∈ C1([0, T ]×X × Z). (8.8e)

In addition, strong duality with m∗ = q∗ holds under assumptions A1-A5.

Proof. Use of OCP LP duality arguments from [105, 7, 16] will prove this theorem (just like in

Theorem 7.3.4).

8.1.4 SOS program

We will express (8.8) in terms of the support set Ω rather than the projection Ωz when

applying the Moment-SOS hierarchy. This change in support set will occur because instances where

Ω is BSA may lead to cases where the projection Ωz = πxzΩ may no longer be BSA.

Corollary 2. The following LP has the same optimal value and optimizers (γ ∈ R, v) as in (8.8):

q∗ = inf
γ∈R

γ (8.9a)

γ ≥ v(0, x, z) ∀(x, z) ∈ X0 × Z (8.9b)

z ≤ v(t, x, z) ∀(t, x, y, z) ∈ [0, T ]× Ω |x∈XT
(8.9c)

∂tv(t, x, z) + f(t, x, u) · ∇xv(t, x, z) ≥ 0 ∀(t, x, y, z, u) ∈ [0, T ]× Ω× U (8.9d)

v ∈ C1([0, T ]×X × Z). (8.9e)

Proof. This equivalence arises from the projection (8.5). The y variable is the coordinate on the

unsafe set Xu.
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8.1.4.1 SOS Formulation

In order to apply the moment-SOS hierarchy, we require an additional assumption:

A6 The sets X0, XT , X,Ω, U are all Archimedean.

Given a degree d, define the dynamics degree as d̃ = d + ⌊deg f/2⌋. The order-d SOS

truncation of (8.9) is:

q∗d =min γ ∈ R, vγ (8.10a)

γ − v(0, x, z) ∈ Σ[X0 × Z]d (8.10b)

v(t, x, z)− z ∈ Σ[[0, T ]×X × Z]d (8.10c)

∂tv(t, x, z) + f(t, x, u) · ∇xv(t, x, z) ∈ Σ[[0, T ]× Ω× U ]d̃ (8.10d)

v ∈ R[t, x, z]≤2d. (8.10e)

Theorem 8.1.5. Program (8.10) will converge as limd→∞ q∗d = q∗ to the objective in (8.9) under

A1-A6.

Proof. This convergence will occur by similar reasoning to the proof of Theorem 7.5.2.

8.1.4.2 Computational Complexity

The Lie constraint in (8.9d) has 2 + 2n+ L variables (t, x, y, z, u). The Gram matrix of

maximal size for (8.10) occurs in constraint (8.10d), and has size
(2+2n+L+d̃

d̃

)
.

This size can grow extremely quickly in (n,m, d̃). The maximal size of the (8.10d) for

(n = 3,m = 2, d̃ = 4) is 1001. The robust counterpart method of Chapter 6 may be applied when

the dynamics f are input-affine in u and the set U is SDR. Other methods of decreasing this size

includes symmetry [110], term sparsity [62], and network structure [64].

8.1.4.3 Unions of Unsafe Sets

Assume that the unsafe set Xu is the union of Nu (finite) Archimedean BSA sets:

Xu =

Nu⋃
k=1

Xk
u . (8.11)

We define support sets from (8.4a) for the union in (8.11) as

Ωall
u = {(x, z) ∈ X × Z | ∀k : z ≤ c(x;Xk

u)} (8.12a)

Ωall = {(x, {yk}Nu
k=1, z) ∈ X × ∪jX

k
u × Z | ∀k : z ≤ c(x, yk)}. (8.12b)
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The set Ωall involves (Nu + 1)n+ 1 variables (x, {yj}Nu
j=1, z) when each unsafe set Xj

u

is full-dimensional. An inordinately expensive measure LP may be built according to (8.12a) with

support set Ωall.

Fortunately, the support set (8.12a) possesses correlative sparsity (see Section 5.6) with

respect to the groups Ij = (x, yj , z) for each j = 1..Nu [61]. This type of correlative sparsity

decomposes a single maximal-size block for constraint (8.10d) of size
(2+m+n(Nu+1)+d̃

d̃

)
to Nu

blocks of maximal-size
(2+m+2n+d̃

d̃

)
. Similar savings exist for (8.10c), converting a single maximal-

size block of size
(2+n(Nu+1)+d

d

)
to Nu blocks of size

(
2+n+d

d

)
.

8.2 Robust Formulation for Distance-Maximizing Control

This section demonstrates how infinite-dimensional robust counterparts (from Chapter 6)

can be used to simplify constraints (8.9c)-(8.9d) by eliminating the extra variable y ∈ Xu. It will be

assumed in this section that the graph of c(x, y) and each set Xk
u in the union (8.11) are SDR. If the

set U is SDR and the dynamics f are input-affine, then the input variable u can also be eliminated by

using the infinite-dimensional robust counterparts from Chapter 6.

8.2.1 L2 and Union-of-Polytope Setting

This section will focus on the simplification of constraint (8.9c). We will work with the

specific case where c(x, y) = ∥x− y∥22 and Xu is the union of polytopes Xk
u = {x ∈ Rn | Γkx ≤

hk}. Each polytope Xk
u has describing matrices Γk ∈ Rmk×n, hk ∈ Rmk for all k ∈ 1..Nu.

Under these restrictions, the set Ωall from (8.12) is

Ωall = {(x, {yk}, z) ∈ X × (Rn)Nu × Z | ∀k : z ≤ ∥x− yk∥2}. (8.13)

For each given (x, z) ∈ XT × Z, we define the set W (x, z) as

W (x, z) = {{yk ∈ Rn}Nu
k=1 | ∀k : z ≤ ∥x− yk∥2, yk ∈ Xk

u}. (8.14)

The space W (x, z) in (8.14) has the constraint z ≤ ∥x− yk∥2, which is nonconvex in y.

We perform a lifting to induce convexity by adding new variables τk ≥ 0:

W̃ (x, z) = {{(τk, yk) ∈ Rn+1}Nu
k=1 | ∀k : z ≤ τk, ∥x− yk∥2 ≤ τk, yk ∈ Xk

u}. (8.15)

Proposition 8.2.1. Membership of {yk} ∈W (x, z) is equivalent to ∀{τk} : {(τk, yk)} ∈ W̃ (x, z).
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Proof. In constraint (8.15), each τk is bounded between [∥x− yk∥2,∞). Application of the ∀{τk}
quantifier in the statement of this proposition leads to the lower-τ -bound constraint z ≤ ∥x− yk∥2
from (8.14).

Membership in (8.15) can be written as ∀k ∈ 1..Nu:

hk − Γky ≥ 0, (x− yk, τk) ∈ Qn, τk − z ≥ 0. (8.16)

For each k ∈ 1..Nu, expression (8.16) can be written (as in the framework of (6.5)) with

variables wk = (yk, τk) using the parameters

A1
k = −Γk e1k = hk K1

k = Rmk
≥0 (8.17a)

A2
k =

−In 0

0 1

 e2k =

x
0

 K2
k = Qn (8.17b)

A3
k = 1 e3k = −z K3

k = R≥0, (8.17c)

forming the equations

∀k ∈ 1..Nu, i ∈ 1..3 : Aik[yk; τk] + eik ∈ Ki
k. (8.18)

Constraint (8.9c) can be expressed as

∀(t, x, z) ∈ [0, T ]×X × Z, {(τk, yk)} ∈ W̃ (x, z) : v(t, x, z)− z ≥ 0. (8.19)

8.2.2 Robust Linear Constraint

We will form a robust counterpart to (8.9c) by defining multipliers ζk(t, x, z), ωk(t, x, z),

ϕk(t, x, z), λk(t, x, z) against the constraints in (8.17).

Lemma 8.2.2. The robust counterpart (6.6) of (8.9c) under the L2 distance and the union-of-

polyhedra unsafe set Xu is

v − z ≥
Nu∑
k=1

hTk ζk − zω + xTϕk ∀(t, x, z) ∈ [0, T ]×XT × Z (8.20a)

Nu∑
k=1

−ΓTk ζk + ωk + (λk − 1Tnϕk) = 0n×1 (8.20b)

[ζk;ωk] ∈ Rmk+1
≥0 , (ϕk, λk) ∈ Qn ∀k ∈ 1..Nu. (8.20c)
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Proof. The uncertain parameters (yk, τk) are not present in the inequality v − z ≥ 0 (outside of the

support definition). Constraint (8.9c) can therefore be written in the context of (6.6) as

b0 = v(t, x, z)− z a0 = 0 (8.21a)

bk = 0n+1×1 ak = 0n+1×1 ∀k ∈ 1..Nu. (8.21b)

The expression in (8.20) is a specific instance of (6.6) with the correspondence in (8.21) and the

cones of (8.17).

Theorem 8.2.3. The multipliers in (8.20c) can be chosen to be continuous functions of (t, x, z) under

assumptions A1-A5.

Proof. The distance-maximizing control problem with L2 distance and SDR unsafe sets satisfies all

conditions of Theorem 6.4.2. Specifically:

A1’ The cones R≥0, Q
n in (8.17) are convex, pointed, and have nonempty interior. The non-

polyhedral cone (x − yk, τk) ∈ Qn obeys the Slater condition with an admissible interior-

cone-value of yk ∈ Xk
u , τk = 1 + ∥x− yk∥2.

A2’ The parameter set [0, T ]×XT × Z under assumptions A1 and A2.

A3’ The problem data (a0, bk) are zero, and (b0, e) are continuous (affine) in the parameters.

A4’ The matrices (Ak) are constant and both a• and G are zero.

Therefore, a continuous choice of multipliers exists.

8.2.3 Robust SOS Constraint

Theorem 8.2.4. The convergent degree-d SOS constraint formulation to (8.20) (with an auxiliary

function v ∈ R[t, x, z]≤2d) is

v − z ≥
Nu∑
k=1

hTk ζk − zω + xTϕk ∈ Σ[[0, T ]×XT × Z]d (8.22a)

coefftxz

(
Nu∑
k=1

−ΓTk ζk + ωk + (1Tn (qk − ϕk)

)
= 0n×1 (8.22b)

[ζk;ωk] ∈ (Σ[[0, T ]×XT × Z])mk+1 ∀k ∈ 1..Nu (8.22c)∑n
i=1 qki ϕki

ϕki qki

 ∈ Σ2[[0, T ]×XT × Z] ∀k ∈ 1..Nu, i ∈ 1..n. (8.22d)
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Proof. Refer to Theorem 6.5.4 regarding the SOS polynomial tightness, and to Section (6.5.3)

regarding the SOS-matrix representation of the SOC constraint in (8.22d) (with λk =
∑n

i=1 qik).

Application of the robust counterpart drops the Gram matrix of maximal size of
(
2n+d+2

d

)
in (8.10c) (when applying Correlative sparsity in the Xu-union) to 2

(
n+d+2

2

)
in (8.22). This Gram

maximal matrix size drops to
(
n+d+2

2

)
if the L1 or L∞ distances are used instead of the standard L2

distance.

8.2.4 Robust Lie Constraint Discussion

This section so far has focused on the terminal constraint (8.9c). An identical process

may be followed for the Lie constraint (8.9d), forming an SOS program as in (8.22) with variables

(t, x, z, u) ∈ [0, T ] × X × Z × U . The Gram matrix size for the Lie constraint would fall from(
2n+L+d+2

2

)
to 2

(
n+d+L+2

2

)
. When U is SDR and f is input-affine, the u variables may also be

included in the robust decomposition along with {(yk, τk)}k. The maximal-size Gram matrix for

the Lie constraint would then fall to 2
(
n+d+2

2

)
, which is the same maximal size as in the terminal

constraint.

8.3 Shape-Distance Maximization

This chapter continues the shape-distance analysis formulation 5.7 in the context of distance

maximizing control.

This setting will involve a shape S that is traveling according to an evolving orientation

φ(t). The shape and orientation are equipped with a body-to-global coordinate transformation

function R : S × Φ→ X . The initial and final sets of orientations are Φ0 and ΦT respectively. The

shape distance-maximizing control problem is

Q∗ = sup
u, x0, t∗

inf
t∈[0,t∗],s∈S

c(R(s;φ(t | φ0, u(·)));Xu) (8.23a)

φ̇(t) = f(t, x(t), u(t)) ∀t ∈ [0, t∗] (8.23b)

φ(0) = φ0 ∈ Φ0, φ(T | x0, u(·)) ∈ ΦT (8.23c)

u ∈ U , t∗ ∈ [0, T ]. (8.23d)

8.3.1 Assumptions

This section will use assumptions from 5.7 as modified for the controlled case:
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A1’ The sets [0, T ], Φ, Φ0, ΦT , S, X, Xu, U are compact and Φ0,ΦT ⊂ Φ.

A2’ The function f(t, φ, u) is Lipschitz in the compact [0, T ]× Φ× U .

A3’ The distance c(x, y) is continuous.

A4’ The coordinate transformation function R(s;φ) is continuous.

A5’ If φ(t | φ0, u)∈ ∂Φ for some t ∈ [0, T ], φ0 ∈ Φ0, u ∈ U , then φ(t | φ0, u) ̸∈ Φ ∀t′ ∈ (t, T ].

A6’ If ∃s ∈ S such that R(s;φ(t | φ0, u)) ̸∈ X or R(s;φ(t | φ0, u)) ∈ ∂X for some t ∈
[0, T ], φ0 ∈ Φ0, u ∈ U , then R(s;φ(t′ | φ0, u)) ̸∈ X ∀t′ ∈ (t, T ].

8.3.2 Shape Distance Maximizing Problem

Problem (8.23) can be converted into a Mayer-form OCP by adding a new state z [12]:

Q∗ = sup
u, x0, t∗

z (8.24a)

φ̇(t) = f(t, φ(t), u(t)), ż(t) = 0 ∀t ∈ [0, t∗] (8.24b)

z ≥ c(φ(R(s;φ), φ0, u); y) ∀y ∈ Xu, s ∈ S (8.24c)

φ(0) = φ0 ∈ Φ0, φ(T | x0, u(·)) ∈ ΦT (8.24d)

u ∈ U , t∗ ∈ [0, T ]. (8.24e)

The support sets of (x, z) are

Ωsu = {(φ, z) ∈ Φ× Z | ∀s ∈ S : z ≤ c(R(s;φ);Xu)} (8.25a)

Ωs = {(φ, s, y, z) ∈ Φ× S ×Xu × Z | z ≤ c(R(s;φ), y)}. (8.25b)

The LP of (8.24) involving an auxiliary function v(t, φ, z) (similar to (8.9)) is

q∗ = inf
γ∈R

γ (8.26a)

γ ≥ v(0, φ, z) ∀(φ, z) ∈ X0 × Z (8.26b)

z ≤ v(t, φ, z) ∀(t, φ, s, y, z) ∈ [0, T ]× Ωs |x∈XT
(8.26c)

∂tv(t, φ, z) + f(t, φ, u) · ∇xv(t, φ, z) ≥ 0 ∀(t, φ, s, y, z, u) ∈ [0, T ]× Ωs × U (8.26d)

v ∈ C1([0, T ]×X × Z). (8.26e)

The dominant computational cost of an SOS tightening of (8.26) will occur with the

2 + 2n+ L+Nω variables (t, φ, s, y, z, u) in (8.26d).
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8.3.3 Robust Counterparts

Robust counterparts from Section 8.2 may be applied if Xu and S are both unions of SDR

sets and the graph of c is SDR. The shape-modified set W̃ from (8.15) with Nu unsafe sets Xk
u and

Ns shapes Sk
′

has variables

w = {(τk, yk) ∈ Rn+1}Nu
k=1{sk′}

Ns
k′=1}, (8.27a)

leading to the constraint description of

W̃ s(φ, z) = {w ∈ RNu(n+1)+Nsn | ∀k, k′ : z ≤ τk, ∥R(sk′ ;φ)− yk∥2 ≤ τk , yk ∈ Xk
u , sk′ ∈ Sk

′}.
(8.27b)

The robust counterpart of (8.26c) and (8.26d) will be nonconservative when R(s;φ) is an

affine function, because conditions A3’ and A4’ from Theorem 6.4.2 will be satisfied.

In the case where R(s;φ) involves a rigid body transformation (such as in Section 5.8.3

with the rotating square) with affine transformation Aff(φ) and rotation Rot(φ), the description of

the R-involved constraint of (8.27b) is

∥Rot(φ)sk′ + Aff(φ)− yk∥2 ≤ τk, (8.28)

which can be expressed in conic form from (6.5) (involving only the variables wk′,k = [sk′ ; yk; τk])

as

A =

Rot(φ) −In 0

0 0 1

 e =


Aff(φ)

0

0

 K = Qn. (8.29)

The matrix A in (8.29) depends on the parameter φ, and therefore violates assumption A4’

of Theorem 6.4.2. We conjecture that for the specific rigid-body transformation case, the map Ψρ

from (A.10d) is Lower Semicontinuous. As a result, the main result of Theorem 6.4.2 will remain

valid (allowing for the choice of continuous multiplier functions). Future work will involve proving

this lower semicontinuity in the rigid body transformation case.

8.4 Conclusion

This chapter provided theory for distance-maximizing control. The distance-maximizing

control problem (8.1) can be transformed into a Mayer OCP through the peak-minimizing method of
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[12], and then solved by infinite-dimensional LPs in occupation measures [7]. However, these infinite-

dimensional LP and their derived finite-dimensional SDPs suffer from a large number of variables

(t, x, y, z, u) in (8.10d). Robust counterparts can be used to eliminate the unsafe-set coordinates y

when the graph of c is SDR (e.g., L2) and when Xu is the union of SDR sets. Distance-maximizing

control was also extended to maximize the distance between any point on a shape and the unsafe set

while steering to the destination.

Future work will involve experiments and verification. One area involves numerical

optimal control. I tried and failed to use the ACADOS, CASADI [104], and GPOPS OCP solvers

to approximate (8.1) numerically. The bounds of the undecomposed SOS programs (8.10) were

consistently poor in simple examples (almost always Du), and the large number of variables in

(8.10d) made it difficult to raise the SDP to high degrees (Mosek/Yalmip ran out of memory).

I also ran into time constraints when preparing this thesis regarding implementation of the

robust counterparts. Following the presentation of this thesis, I will implement the robust counterpart

programs and revisit numerical OCP solvers for (8.1).

One theoretical aspect of future work is changing the objective of (8.1a) to

Q∗ = sup
u, t∗

inf t ∈ [0, t∗], x0 ∈ X0c(x(t | x0, u(·));Xu). (8.30)

The initial condition x0 in (8.30) is chosen in an adversarial manner to form a worst-case

distance of closest approach. It is of vital interest to determine whether the objective (8.30) can be

expressed as part of a convex OCP LP and solved, or whether the adversarial x0 variable would

cause consistent nonconvexity.
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Chapter 9

Peak Estimation for Hybrid Systems

9.1 Introduction

This chapter interprets and extends the peak estimation problem to dynamical systems with

hybrid behavior. A hybrid system is a dynamical system that possesses both continuous-time and

discrete-time dynamics [111]. Hybrid systems have a wide array of applications, including walking

robots [112], power converters [113], sampled-data control [114], and systems biology [115]. In this

work (extending methods from [116]), the hybrid system is defined with respect to a series of spaces

known as ‘locations’ in which the hybrid trajectory evolves according to per-location ODE dynamics.

When the hybrid trajectory encounters a guard surface, it will transition to a (possibly) new location

according to a reset map and continue its ODE evolution. Peak estimation of hybrid systems equips

each location with a state function, and the output of the peak estimation problem is the maximum

state function value obtained across all locations by all hybrid systems trajectories starting from a set

of initial conditions in a given time horizon.

Measures and the Moment-SOS hierarchy have been applied to solve problems featuring

hybrid dynamical systems. Instances of these extensions include OCPs [116, 117, 118] and reachable

sets [119, 120]. Barrier functions to certify safety of hybrid system trajectories with respect to unsafe

sets may also be found by SOS programming [36].

The chapter is organized as follows. Section 9.2 introduces preliminaries about behavior

and execution of hybrid systems. Section 9.3 formulates an infinite-dimensional measure program for

peak estimation of hybrid system and its associated LMI relaxation. Section 9.4 extends the hybrid

peak estimation framework to safety analysis and possibly uncertain dynamical systems. Numerical

examples are presented in Section 9.5. The chapter is concluded in Section 9.6. This work appears in
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[121] and was coauthored by Mario Sznaier.

9.2 Hybrid Systems Preliminaries

The hybrid systems in this chapter are posed over a set of L locations. Each location

ℓ = 1..L has state variables xℓ contained in the space Xℓ ⊆ Rnℓ . The subsystems obey nominal

locally Lipschitz dynamics fℓ that satisfy

ẋℓ(t) = fℓ(t, xℓ(t)) ∀ℓ = 1..L. (9.1)

Available transitions between subsystems may be represented by a directed multigraph.

A multigraph is a graph where pairs of vertices may be connected by multiple distinct edges [122].

Let G = (V, E) be a multigraph where each of the L vertices of V corresponds to a location. Each

edge e ∈ E ⊂ V × V is a directed arc from a source src(e) to a destination dst(e). Self-loops with

src(e) = dst(e) are permitted in this class of multigraphs. Edges e are associated with a guard Se and

a reset map Re. The guard Se is a subset of Xsrc(e), and the reset map Re : Xsrc(e) → Xdst(e) effects

the transition. The hybrid system is fully encoded by the tupleH = (X, f,G, S,R) with attributes:

X = {Xℓ}Lℓ=1 State Spaces

f = {fℓ}Lℓ=1 Dynamics

G = (V, E) Transition Multigraph

S = {Se}e∈E Guard Surfaces

R = {Re}e∈E Reset Maps

Execution of a hybrid system with multigraph transitions is based on Algorithm 1 of [119]. An

additional input is a set of Zeno caps {Ne}e∈E which halt trajectory execution if any transition e is

traversed at least Ne times [123]. The output of the following Algorithm 2 is a system trajectory

x(t), as well as records T , C containing information about the times and locations of state transitions

respectively.

The trajectory x(t) is well-defined when the time horizon T and Zeno caps Ne for all

e ∈ E are finite and the guard surfaces Se are codimension-1. The trajectory x(t) induces a function

Loc : [0, T ] → 1..L which returns the residing location of x(t) at time t. Execution requires the

following assumption of transversality,
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Algorithm 2: Execution of Hybrid SystemH
Input : Initial Point x0, Initial Location ℓ0, Hybrid SystemH, Maximal Time T ,

Transition Caps N

Output : Trajectory of System x(t), Time Breaks T , Location Breaks C, Transition

Counts N
Initialize Trajectory t← 0, ℓ← ℓ0, x(0)← x0

Initialize Traces T ← {0}, C ← {ℓ}, N ← {0}e∈E
Loop

Follow dynamics x′(s) = fℓ(t, x(s)) until x(t) reaches a guard or t = T .

if t = T OR ̸ ∃Se : x(t) ∈ Se and src(e) = ℓ, OR ∃e : Ne = Ne then
halt

end

Find a guard Se with x(t) ∈ Se and src(e) = ℓ

Append t to T and dst(e) to C
Increment Ne ← Ne + 1

Transition to ℓ← dst(e), x(t)← Re(x(t))

EndLoop
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A0 Let xℓ(t) be a segment of this trajectory that emerged from a transition (ℓ′, ℓ) at time t−. For

all guards Se with src(e) = ℓ such that xℓ(t) ∈ Se, the dynamics vector f(t, xℓ(t)) possesses

a normal component with respect to the tangent space of Se at xℓ(t).

Remark 9.2.1. Assumption A0 implies that the time elapsed between any two resets is bounded

below by some δ > 0.

9.3 Peak estimation of hybrid systems

This section will formulate a measure LP to upper-bound (9.2).

9.3.1 Peak Program

Let X0 = {X0ℓ} be the set of initial conditions for system trajectories. Each of these

system trajectories lie inside the set X = {Xℓ}.
Each location ℓ has a state cost pℓ : Xℓ → R and a set of initial conditions X0ℓ ⊂ Xℓ.

Each pℓ is either bounded below or constant at −∞, and at least one pℓ is bounded. The goal of peak

estimation is to find the trajectory x(t) which maximizes the state cost across all trajectories and

locations

P ∗ = sup
t, ℓ0 x0

max
ℓ
pℓ(x(t | x0)) x(t) ∈ Xℓ

Dynamics follow Algorithm 2 with input (ℓ0, x0,H, T )

x0 ∈ X0ℓ0 . (9.2)

The optimization variables of (9.2) are the peak time t, initial location ℓ0, and initial state x0 ∈ Xℓ0 .

The inner maximization runs over all location-objective functions pℓ.

The following assumptions will be posed on problem (9.2):

A1 The set [0, T ], Xℓ, X0ℓ are compact ∀ℓ = 1..L.

A2 Problem (9.2) has a finite objective P ∗ <∞.

A3 Each dynamics function fℓ(t, xℓ) is Lipschitz over the compact set [0, T ]×Xℓ.

A4 If a trajectory at location ℓ reaches the boundary x(t | x0) ∈ ∂Xℓ and there does not exist

a guard Se with x(t | x0) ∈ Se and src(e) = ℓ, then x(t | x0) remains outside ∪ℓXℓ for all

t′ ∈ (t, T ].
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Assumption A4 is a hybrid version of the non-return assumption from Section 5.4.1.

9.3.2 Measures for Hybrid Systems

The control and reachability set programs in [119, 120, 124] define measures ρe supported

over the guardM+(Se) for each transition e ∈ E . For subsets A ⊂ [0, T ], Ce ⊂ Se and an initial

condition x0, the counting measure ρe records the number of times the trajectory, starting from

location src(e), enters the patch Ce of the guard Se with

ρe(A× Ce) =
∫
A

card
(

lim
t′→t−

x(t′ | x0) ∈ Ce
)
dt. (9.3)

The mass of the counting measure ρe is the expected number of times a trajectory will traverse the

transition with arc e. In a Zeno execution of transition e, the mass ⟨1, ρe⟩ will be unbounded, and

constraints such as ⟨1, ρe⟩ ≤ Ne may be imposed to cap the maximum number of transitions on arc

e. Let X0ℓ ⊆ Xℓ be a set of initial conditions defined on each space Xℓ in X . A distribution of initial

conditions over each location is µ0ℓ ∈ M+(X0ℓ) for ℓ = 1..L. Let T < ∞ be a final time, and

µpℓ ∈M+([0, T ]×Xℓ) be peak measures supported over each location-space. Trajectories following

dynamics x′(t) = fℓ(t, x(t)) in each spaceXℓ are tracked by occupation measuresM+([0, T ]×Xℓ).

Counting measures ρe ∈M+(Se) are set up over all guards to handle state transitions. The Liouville

equation with guard measures holding for all test functions vℓ ∈ C1([0, T ] × Xℓ) and locations

ℓ = 1..L is

µpℓ = δ0 ⊗ µ0ℓ + L†fℓµℓ +
∑

src(e)=ℓRe#ρe −
∑

dst(e)=ℓ ρe. (9.4)

For a location ℓ and edge e with src(e) = ℓ, the pushforward term Re# in (9.4) should be understood

as

⟨vℓ, Re#ρe⟩ = ⟨vℓ(t, Re(xℓ)), ρe⟩. (9.5)

The mass of the peak measure µpℓ is equal to the mass of the initial measure µ0ℓ plus the net flux due

to state transitions.

9.3.3 Measure Program

Problem (9.2) may be relaxed through an infinite-dimensional linear program in occupation

measures. The measures µ0ℓ are distributions of initial conditions and ρe are transition counting

measures, just as in the Liouville equation (9.4). The peak measures µpℓ are final measures with free
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terminal time between t ∈ [0, T ]. The measure program in terms of (µ0, µp, µ, ρ) for hybrid peak

estimation is (where ∀ℓ and ∀e may be expanded to ∀ℓ = 1..L and ∀e ∈ E)

p∗ = sup
∑L

ℓ=1⟨pℓ, µpℓ⟩ (9.6a)

µpℓ = δ0 ⊗ µ0ℓ + L†fℓµℓ ∀ℓ (9.6b)

+
∑

dst(e)=ℓRe#ρe −
∑

src(e)=ℓ ρe∑L
ℓ=1⟨1, µ0ℓ⟩ = 1 (9.6c)

⟨1, ρe⟩ ≤ Ne ∀e (9.6d)

µℓ, µpℓ ∈M+([0, T ]×Xℓ) ∀ℓ (9.6e)

µ0ℓ ∈M+(X0ℓ) ∀ℓ (9.6f)

ρe ∈M+(Se) ∀e. (9.6g)

Theorem 9.3.1. Solutions to (9.6) and (9.2) satisfy p∗ ≥ P ∗.

Proof. Let (x(t | x0, ℓ0), T , C) be a trajectory from the execution of Algorithm 2 that stops at

time t∗ ∈ [0, T ], and Loc(t) be the function returning the residing location of x(t) at time t. This

trajectory may be described by a tuple (ℓ0, x0, t
∗). Measures ∀ℓ : µ0ℓ, µpℓ, µℓ and ∀e : ρe that are

feasible solutions to constraints (9.6b)-(9.6g) may be formed from the trajectory x(t). The initial

measure µ0ℓ is δx=x0 for ℓ = ℓ0 and is the zero measure for ℓ ̸= ℓ0. The peak measure µpℓ is

δt=t∗ ⊗ δx=x(t∗|x0,ℓ0) for ℓ = Loc(t∗) and is also the zero measure for all other ℓ. Let Tℓ be the set

Tℓ = {t | t ∈ [0, t∗p],Loc(t) = ℓ} of times where x(t) is in location ℓ. Each relaxed occupation

measure µℓ may respectively be set to the occupation measure of t 7→ (t, x(t | x0, ℓ0)) in the times

t ∈ Tℓ. If the transition with edge e ∈ E is traversed Ne times along the trajectory x(t) at points

{(tei , xei )}
Ne
i=1 for xei ∈ Xsrc(e), the guard measure ρe may be defined as ρe =

∑Ne
i=1 δt=tei ⊗ δx=xei .

The objective p∗ is an upper bound on P ∗ because a set of measures (µ0ℓ, µpℓ, µℓ, ρe) constructed

from every trajectory x(t) satisfy the constraints of (9.6) with objective P ∗.

Remark 9.3.1. Setting a peak objective to pℓ(x) = −∞ is equivalent to constraining µpℓ to the zero

measure, because trajectories to maximize p(x) will not terminate in location ℓ. Likewise, a measure

µ0ℓ ∈M+(X0ℓ) where X0ℓ = ∅ is the zero measure.

Theorem 9.3.2. All measures involved in a solution to (9.6) are bounded.

Proof. Sufficient conditions for a measure to be bounded are that its mass is finite and its support is

compact. This setting satisfies the compact support requirement.
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Given that all measures (µ0, µp, µ, ρ) are nonnegative, their masses will also be nonnegative

numbers. The mass of the transition measures ρ are upper bounded by the Zeno constraints (9.6d)

under the assumption that all Ne are finite. Constraint (9.6f) upper bounds each mass ⟨1, µ0ℓ⟩. For

each location ℓ, choosing a test function vℓ(t, xℓ) = 1 for Liouville equation (9.6b) yields

⟨1, µpℓ⟩ = ⟨1, µ0ℓ⟩+
∑

dst(e)=ℓ⟨1, ρe⟩ −
∑

src(e)=ℓ⟨1, ρe⟩. (9.7)

Every term on the right-hand side of (9.7) is finite and ⟨1, µpℓ⟩ ≥ 0 by measure nonnegativity, so

each peak measure µpℓ has bounded mass. Utilizing a test function of vℓ(t, xℓ) = t with Lfℓt = 1

results in

⟨t, µpℓ⟩ = ⟨1, µℓ⟩+
∑

dst(e)=ℓ⟨t, ρe⟩ −
∑

src(e)=ℓ⟨t, ρe⟩. (9.8)

The terms ⟨t, µpℓ⟩, ⟨t, ρe⟩ are all finite due to bounded masses and compact support, so the

occupation measures µℓ also have finite mass and are bounded.

Theorem 9.3.3. The objectives in (9.2) and (9.6) will satisfy p∗ = P ∗ when [0, T ] ×
∏
ℓXℓ is

compact, each fℓ is Lipschitz, and p∗ is bounded above.

Proof. This statement may be proved by extending arguments from [116]. Theorem 17 of [116]

states there is no relaxation gap in measure LPs of an optimal control program with appropriate

assumptions, extending the ODE result of [7]. Free final time is already accounted for in [116]

by reference to Remark 2.1 of [16]. The ODE problem in [7] can handle initial conditions lying

in a set X0, so the method in [116] can similarly work with sets of initial conditions {X0ℓ}Lℓ=1 as

demonstrated by [117]. The work in [117] has ‘switching’ costs (possibly differing running and

terminal costs in each location), which is realized by the costs pℓ. The final modification between

this work and [116] is that problem (9.2) has finite Zeno caps Ne, while Assumption 3 of [116]

forbids Zeno trajectories. The allowance for free terminal time permits consequence 4 of Theorem

12 of [116] to read that there exists a constant C such that
∑

e⟨1, ρe⟩ ≤
∑

eNe = C. The three

modifications of [116] (free terminal time, multiple initial conditions, Zeno caps) are all cleared, so

p∗ = P ∗ under the compactness and Lipschitz assumptions.

9.3.4 Function Program

The measure program (9.6) is dual to an infinite-dimensional linear program in continuous

functions. The Lagrangian L of problem (9.6) with dual variables vℓ ∈ C1([0, T ] × Xℓ), γ ∈
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R, α ∈ R|E|
+ is

L =
∑L

ℓ=1⟨pℓ, µpℓ⟩+ ⟨vℓ(t, x), δ0 ⊗ µ0ℓ + L
†
fℓ
µℓ⟩ (9.9)

+ ⟨vℓ(t, x),
∑

dst(e)=ℓRe#ρe −
∑

src(e)=ℓ ρe − µpℓ⟩

+ γ(1−
∑L

ℓ=1⟨1, µ0ℓ⟩) +
∑

e∈E αe(Ne − ⟨1, ρe⟩).

The dual function program of (9.6) is

d∗ = inf
γ,α,v

sup
µ0ℓ,µpℓ,µℓ,ρe

L

d∗ = inf
γ∈R, α∈R|E|

+

γ +
∑

e∈E Neαe (9.10a)

∀ℓ : ∀xℓ ∈ X0ℓ :

γ ≥ vℓ(0, xℓ) (9.10b)

∀ℓ : ∀(t, xℓ) ∈ [0, T ]×Xℓ :

0 ≥ Lfℓvℓ(t, xℓ) (9.10c)

∀e : ∀(t, xsrc(e)) ∈ [0, T ]×Xsrc(e) :

vsrc(e)(t, xsrc(e))− vdst(e)(t, Re(xsrc(e))) ≥ −αe (9.10d)

∀ℓ : ∀(t, xℓ) ∈ [0, T ]×Xℓ :

vℓ(t, xℓ) ≥ pℓ(xℓ) (9.10e)

∀ℓ : vℓ(t, xℓ) ∈ C1([0, T ]×Xℓ). (9.10f)

The dual variables vℓ are auxiliary functions that decrease along trajectories (9.10c) and

along transitions (9.10d). The auxiliary functions upper bound the location-costs by (9.10e). The

dual variable αe will be zero if transition e is traveled at mostNe−1 times (complementary slackness

of (9.6g)).

Theorem 9.3.4. Programs (9.6) and (9.10) will possess equal objectives p∗ = d∗ when each Xℓ is

compact and (T,Ne) are each finite.

Proof. p∗ = d∗ : Strong duality follows by arguments from Theorem 2.6 of [23], specifically from

boundedness of measures (Theorem 9.3.2) and compactness (Assumption A2).
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9.3.5 Linear Matrix Inequality

The BSA sets containing measures in (9.6) are

∀ℓ : Xℓ = {xℓ | gℓi(xℓ) ≥ 0 | i = 1..N ℓ
c}

∀ℓ : X0ℓ = {xℓ | g0ℓi(xℓ) ≥ 0 | i = 1..N0ℓ
c } (9.11)

∀e : Se = {xsrc(e) | gei(xsrc(e)) ≥ 0 | i = 1..N e
c }.

Polynomials gℓi(x), g0ℓi(xℓ), gei(xsrc(e)) have finite degrees dℓi, d0ℓi, dei respectively

for each i, ℓ, e as appropriate. Let (m0ℓ,mpℓ,mℓ, re) be moment sequences of the measures

(µ0ℓ, µpℓ, µp, ρe). The Liouville equation (9.6b) may be expressed as a collection of affine con-

straints in the moment sequences. Substituting the test function v(t, xℓ) = xαℓ t
β into (9.6b) yields a

relation for each α ∈ Nnℓ , β ∈ N, ℓ ∈ 1..L:

0 = −⟨xαℓ tβ, µpℓ⟩+ ⟨xαℓ tβ, δt=0 ⊗ µ0ℓ⟩+ ⟨Lfℓx
α
ℓ t
β, µℓ⟩

+
∑

dst(e)=ℓ⟨Re(xℓ)αtβ, ρe⟩ −
∑

src(e)=ℓ⟨xαℓ tβ, ρe⟩. (9.12)

The expression Liouℓαβ(m
0ℓ,mpℓ,mℓ, rEℓ) = 0 is defined to abbreviate the affine constraint in

moment sequences induced by (9.12), where Eℓ = {e ∈ E | src(e) = ℓ or dst(e) = ℓ} is the set of

arcs including location ℓ. For a constant degree d ∈ N, define the quantities d′ℓ = d+ ⌈degfℓ/2⌉ − 1

and ke = degRe. The degree-d LMI relaxation of (9.6) with variables (m0ℓ,mpℓ,mℓ, re) is

p∗d =max
∑

ℓ

∑
α pℓαm

pℓ
α (9.13a)∑

ℓm
0ℓ
0 = 1 (9.13b)

∀ℓ : α ∈ Nnℓ , β ∈ N, |α|+ |β| ≤ 2d

Liouℓαβ(m
0ℓ,mpℓ,mℓ, rEℓ) = 0 by (9.12) (9.13c)

∀e : me
0 ≤ Ne (9.13d)

∀ℓ : Md(X
0ℓm0ℓ), Md(([0, T ]×Xℓ)mpℓ), Md′ℓ

([0, T ]×Xℓmℓ) ⪰ 0 (9.13e)

∀e : Mkede(Ser
e). ⪰ 0. (9.13f)

The affine constraints (9.13c)-(9.13d) implement a truncation of constraints (9.6d)-(9.6d)

in terms of finite-length moment sequences. Constraints (9.13e)-(9.13f) ensure that there exist

representing measures for the moment sequences. Solutions to the SDP generated from the LMI

(9.13) by raising the degree d will form a chain of upper bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗.
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Theorem 9.3.5. The sequence of upper bounds will satisfy limd→∞ p∗d = P ∗ when [0, T ]×
∏L
ℓ=1Xℓ

is Archimedean, ∀ℓ : fℓ(t, x)} are polynomial, and ∀e : Ne are finite.

Proof. The upper bound sequence will converge to p∗ when all sets are Archimedean, there exists an

interior point to constraints (9.6b)-(9.6g), and all measures (µ0ℓ, µpℓ, µℓ, ρe) have bounded moments

(Theorem 5 of [22] and Theorem 4.4 of [27]).

Let x0 be an initial point starting in some nonempty location Xℓ. The set of measures

where µ0ℓ = δx=x0 , µpℓ = δt=0 ⊗ δx=x0 and all other measures are the zero measure is an interior

point to (9.6b)-(9.6g) (trajectory starting at x0 with zero elapsed time). Given that each [0, T ]×Xℓ

is compact, it is sufficient that all measures have bounded masses in order for the measures to have

bounded moments. The masses of ρe are each upper bounded by the finite quantity Ne through

constraint (9.6g), and the sum of the masses of µ0ℓ are upper bounded by 1 through (9.6c). The sum

of constraint (9.6b) with test function vℓ = 1 along all ℓ is
∑L

ℓ=1⟨1, µpℓ⟩ =
∑L

ℓ=1⟨1, µ0ℓ⟩ = 1, so

each mass of µpℓ is finite. Lastly, the use of a test function of vℓ = t on each Liouville equation

in (9.6b) yields the finite expression ⟨1, µℓ⟩ = ⟨t, µp⟩ −
∑

dst(e)=ℓ⟨t, ρe⟩ +
∑

src(e)=ℓ⟨t, ρe⟩. The

sequence of upper bounds will therefore converge to p∗ as d → ∞ with p∗ = P ∗ from Theorem

9.3.3.

The sizes of the moment matrices in problem (9.13) are listed in Table 9.1. The computa-

tional complexity of numerical LMI solvers scale in a polynomial manner with the size of the largest

PSD matrix [16]. These PSD matrix sizes may be reduced if extant structure such as symmetry,

quotient, or sparsity structure is present in (9.6).

Table 9.1: Sizes of moment matrices in LMI (9.13)

Moment Md(m
0ℓ) Md(m

pℓ) Md′ℓ
(mℓ) Mdke(r

e)

Size
(
nℓ+d
d

) (
1+nℓ+d

d

) (1+nℓ+d
′
ℓ

d′ℓ

) (
1+nℓ+ked

ked

)

Remark 9.3.2. Guards with codimension-1 sets Se may replace their PSD localizing constraints

with linear equality constraints or quotient ring reductions in re.

Remark 9.3.3. Algorithm 1 may be used to attempt extraction of near-optimal trajectories if the

moment matrices ∀ℓ : Md(m
0ℓ),Md(m

pℓ) are low-rank.
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9.4 Extensions

This section details extensions to the previously presented peak estimation framework for

hybrid systems.

9.4.1 Uncertainty

Peak estimation for hybrid systems may be applied to systems with uncertainty, extending

the ODE case from Chapter 4. Let Wℓ ⊂ RNwℓ be a compact set of time-dependent disturbances for

each location. Each location obeys dynamics ẋℓ = f(t, xℓ(t), wℓ(t)), ∀t, ℓ : wℓ(t) ∈Wℓ, in which

there is no prior assumption of continuity on the process w(·). The uncertainty act as adversarial

optimal controls attempting to raise the peak functions (pℓ).

Uncertainty in this manner may be realized by adjusting the Liouville equation in (9.6b)

and occupation measure definitions in (9.6e) (where wℓ(t) acts as a Young measure/relaxed control

[45]) with

µpℓ = δ0 ⊗ µ0ℓ + πtx#L
†
fℓ
µℓ ∀ℓ (9.14a)

+
∑

dst(e)=ℓRe#ρe −
∑

src(e)=ℓ ρe

µℓ ∈M+([0, T ]×Xℓ ×Wℓ) ∀ℓ. (9.14b)

A particular form of time-dependent uncertainty is switching/polytopic structure. If the

system model is ẋℓ =
∑Ns

k wkℓfkℓ(t, x) for Ns switching modes and wkℓ ≥ 0,
∑

k wkℓ = 1, then

the Liouville equation in (9.14) may be expressed for occupation measures µkℓ ∈M+([0, T ]×X)

as

µpℓ = δ0 ⊗ µ0ℓ +
∑Ns

k L
†
fkℓ
µkℓ ∀ℓ (9.15a)

+
∑

dst(e)=ℓRe#ρe −
∑

src(e)=ℓ ρe

µℓ ∈M+([0, T ]×Xℓ) ∀ℓ. (9.15b)

Time-independent uncertainty restricted to a compact set Θ ⊂ RNθ may also be added by

adjoining to dynamics a new state ẋℓ = f(t, xℓ(t), θ, wℓ(t)), θ̇ = 0. This new state θ is preserved

between transition jumps, inducing lifted reset maps R̃s→t(xs, θ) = (R(xt), θ).
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9.4.2 Safety

This section verifies safety of hybrid system trajectories with respect to a group of unsafe

sets based on prior (ODE) work in Chapter 5. Let Xuℓ = {xℓ | pℓi(xℓ) ≥ 0, i = 1..Nu} be an

unsafe basic semialgebraic set for each location ℓ = 1..L.

Letting cℓ(xℓ, yℓ) be a distance function (cost) with a point-unsafe-set distance cℓ(xℓ;Xuℓ) =

minyℓ∈Xuℓ
cℓ(xℓ, yℓ), the distance estimation problem for hybrid systems is

Q∗ = inf
ℓ′∈1..Nu,t∈[0,T ],ℓ0,x0

cℓ(x(t | x0);Xuℓ′ )

Dynamics follow Algorithm 2 with input (ℓ0, x0,H, T )

x0 ∈ X0ℓ0 .

Following the procedure from [13], a joint-measure ηℓ(xℓ, yℓ) ∈M+(Xℓ ×Xuℓ) is added

for each unsafe set. The distance objective in (9.16) is replaced with an equivalent expectation over

the joint probability measure ⟨cℓ(xℓ, yℓ), ηℓ⟩.
The measure program for distance estimation with variables (µpℓ, µ0ℓ, µℓ, ηℓ, ρe) is

q∗ = inf
∑L

ℓ=1⟨cℓ(xℓ, yℓ), ηℓ⟩ (9.16a)

πxℓ# ηℓ = πxℓ# µpℓ ∀ℓ (9.16b)

Constraints (9.6b)-(9.6d) (9.16c)

Variables from (9.6e)-(9.6g) (9.16d)

∀ℓ : ηℓ(xℓ, yℓ) ∈M+(Xℓ ×Xuℓ). (9.16e)

9.5 Numerical Examples

Experiments are available at https://github.com/Jarmill/hybrid_peak_

est, and were written in MATLAB 2021a. Dependencies include Gloptipoly3 [30], Yalmip interface

[68], and Mosek [49]. All experiments were run on an 2.30 GHz Intel i9 CPU with 64.0 GB of RAM.

9.5.1 Two-Mode

This system is a modification of Example 2 of [36] to ensure improved numerical condi-

tioning. The two locations correspond to modes of ‘No Control’ (ℓ = 1) and ‘Control’ (ℓ = 2) with
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dynamics

f1(t, x) = [x2;−x1 + x3;x1 + (1 + x3)
2(2x2 + 3x3)]

f2(t, x) = [x2;−x1 + x3;−x1 − (2x2 + 3x3)]. (9.17a)

9.5.1.1 Two-Mode: Standard

Trajectories start in the initial set X01 = {x | ∥x∥22 = 0.22} (X02 = ∅), and evolve for a

time horizon of T = 20. The transition edges are E = {(1, 2), (2, 1)} with guard surfaces

S(1,2) = {x | x21/4 + x22 + x23 = 1.52} (9.18)

S(2,1) = {x | x21 + x22 + x23 = 0.22}.

Each transition has a trivial reset map Re(x) = x. The Zeno caps used in simulation were N(1,2) =

N(2,1) = 5 with total spaces of X1 = X2 = [−1.5, 1.5]3. Figure 9.1 plots system trajectories in

location 1 (left) and 2 (right), starting from the initial set X0 (gray region). The peak estimation

task for this system is to upper bound extreme values of p2(x) = x21 along system trajectories

(p1(x) = −∞). Solving the LMI (9.13) at orders 1-5 produces the sequence of upper bounds,

p∗1:5 = [2.250, 0.6514, 0.4643, 0.4076, 0.3958].

Figure 9.1: Deterministic Two-Mode Bound of x21 ≤ 0.3958 = p∗5
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9.5.1.2 Two-Mode: Uncertainty

Time-dependent uncertainty may be added to dynamics in (9.17) by defining a process

w(t) ∈ [−1, 1] under the dynamics f̃ℓ(t, x) = fℓ(t, x) + [0; 0;w]. The LMI bounds for x21 when w

is realized as switching-type uncertainty is p∗1:5 = [2.250, 1.4029, 1.0350, 0.9790, 0.9660]. System

trajectories and the order-5 bound of this noisy system are plotted in Figure 9.2.

Figure 9.2: Noisy Two-Mode Bound of x21 ≤ 0.9660 = p∗5

9.5.1.3 Two-Mode: Distance Estimation

Distance estimation is conducted for the deterministic two-mode system (9.17) with respect

to the half-sphere unsafe set

Xu = {x | 0.42 ≥ (x1 + 0.5)2 + (x2 + 0.5)2 + (x3 − 0.5)2, x3 ≥ 0.5}. (9.19)

The distance penalty c(x, y) = ∥x− y∥22 is used in locations ℓ = 1, 2 with the unsafe set Xu. LMI

lower bounds for the distance minℓminy∈Xu∥xℓ − y∥22 (via (9.16)) are p∗1:5 = [0, 0, 0, 2.799 ×
10−3, 7.942 × 10−3]. The output of distance estimation is plotted in Figure 9.3. The solid red

half-sphere is the set Xu, and the corona surrounding Xu is the set of all points with an L2 distance

at most 0.0891 =
√
p∗5 away from Xu.
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Figure 9.3: Deterministic Two-Mode Distance Bound of miny∈Xu∥x− y∥2 ≤ 0.0891 =
√
p∗5

9.5.2 Right-Left Wrap

This example has a single location X = [−1, 1]2 with nontrivial reset maps. The dynamics

in the single location are

ẋ =

−x2 + x1x2 + 0.5

−x2 − x1 + x31

 . (9.20)

System (9.20) has a stable equilibrium point at (−0.8128, 0.2758) and a saddle point at (−0.4288, 0.3499).
The following right→top and left→bottom transitions are defined with Zeno caps of N = 5

Sright→top = {x | x1 = 1, x2 ∈ [−1, 1]} Rright→top = [x2, x1]
T (9.21)

Sleft→bottom = {x | x1 = −1, x2 ∈ [−1, 1]} Rleft→bottom = [1− x2, x1]T .

The set X is invariant under these state transitions.

9.5.2.1 Right-Left: Standard

A peak estimation task to maximize p(x) = −(x1+0.5)2+(x2+0.5)2 is defined on system

dynamics (9.20) starting from the initial setX0 = {x | 0.22 = (x1−0.5)2+(x2+0.3)2} for a T = 5

time horizon. LMI upper bounds for this objective are p∗1:6 = [0, 0,−0.3644,−0.5259,−0.5659,−0.5721].
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Figure 9.4 plots the ODE system dynamics in (9.20). Figure 9.4b plots hybrid system

dynamics in cyan, starting from the black-circle X0. The p∗6 bound is indicated in the red circle of

radius
√
−p∗6 = 0.7564, in which no considered hybrid system trajectory is contained.

(a) System dynamics in (9.20) (b) Bound of p∗6 = −0.5721

Figure 9.4: Peak Estimation of Right-Left Wrap Dynamics (9.20) and (9.21)

9.5.2.2 Right-Left: Distance

This example involves the Right-Left system (9.20) under the sameX,X0, T parameters as

in Section 9.5.2.1. The half-circle unsafe set isXu = {x | 0.42 ≥ (x1−0.5)2+(x2+0.3)2, (−0.6−
x1 − x2)/

√
2 ≥ 0}. Using a distance penalty of c(x, y) = ∥x− y∥22 leads to L2 (square root) lower-

bounds of c∗1:6 = [0, 0, 0.1647, 0.2643, 0.2853, 0.2877]. Figure 9.5 pictures the set Xu in the red

half-circle, and the 0.2877-distance contour from the degree-6 SDP as the red points surrounding the

half-circle.

9.6 Conclusion

An existing peak estimation framework for ODE systems (discussed in Chapter 3) was

extended in this chapter to hybrid systems. A hierarchy of LMIs result in a (convergent) decreasing

sequence of upper bounds to the true peak value. Extensions to the hybrid peak estimation framework,

such as bounding the distance to unsafe sets (Chapter 5) and estimation of systems with uncertainty
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Figure 9.5: Distance bound of infy∈Xu∥x− y∥2 ≤ 0.2877

(Chapter 4), can be accomplished by modifying equations in the LP. Future work includes per-

forming peak-minimizing (L1-optimal) control of hybrid systems, applying numerical techniques to

perform peak estimation on more complicated systems (e.g., rigid body dynamics in robotics), and

generalizing analysis of deterministic hybrid dynamics to Markov Decision Processes.
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Chapter 10

Value-at-Risk Peak Estimation

10.1 Introduction

This chapter analyzes maximal (1 − ϵ)-quantile statistics of a state function p(x) for

Stochastic Differential Equation (SDE) trajectories evolving in a compact set X . An example of this

type of quantile statistic for trajectory analysis is in establishing that there exists at least one time

with a 1% chance of the aircraft exceeding a height of 100 meters. This task of quantile estimation

is related to peak and value-at-risk estimation, and will also be referred to as the ‘chance-peak’

problem.

The ϵ-Value-at-Risk (VaR) is the value at which there is an ϵ-probability of exceedance

[125]. Control and portfolio design typically aims to minimise the VaR. One specific VaR-upper-

bounding coherent risk measure [126] that results in convex programs is the conditional VaR risk

measure [127, 128]. The conditional VaR has been utilized for stochastic optimal control in [129], and

for approximation of discrete-time risk-bounded sets using exponential and logarithmic inequalities

with Markov Decision Processes in [130]. In contrast, the chance-peak approach upper-bounds the

maximum VaR of the continuous-time SDE state distribution of x(t) across all times. We will solve

this problem by maximizing the Cantelli and Vysochanskij-Petunin (VP) upper bounds for the VaR.

Chance constraints are an adjacent topic to VaR optimization in which a probability inequal-

ity must hold as a hard constraint. Chance-constrained programs have a wide variety of application

in control theory [131, 132, 74], and are generally intractable to solve explicitly. Approximation

methods for chance constraints include the Cantelli [133] and VP [134] inequalities, and application

of these tail-bounds in control include [135, 136]. The scenario approach for randomized constraint

generation will converge in probability to the chance-constrained optimum, but carries a risk of
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failure and may require a large number of samples [137]. The moment-SOS hierarchy of SDPs

will converge to the chance-constrained optimal solution under appropriate boundedness conditions

[138].

The chance-peak problem is also related to a family of optimal stopping problems which

can be solved using occupation measures. The peak estimation work in [5] (reviewed in Chapter 3)

also accounts for the stochastic case, in which finding the expectation of p(x) in time is maximized.

Dynamics are phrased in terms of their infinitesimal generator (Feller process) in order to pose the LPs

in [5]. Such LPs will converge to the true solution of the stopping problem under mild convergence,

regularity, and well-posedness assumptions. The moment-SOS hierarchy of finite-dimensional SDPs

will converge to the infinite-dimensional LP optimum if all problem data (e.g., dynamics, constraint

sets) are polynomial-representable [27]. Instances of the moment-SOS hierarchy being used to solve

stochastic problems include expectation-maximization of Lévy processes [139], option pricing [140],

[141], infinite-time averages [142], and Reach-Avoid sets [143].

This chapter has the following structure: Section 10.2 gives an overview of SDEs and

occupation measures. Section 10.3 proposes an infinite-dimensional Second-Order Cone Program

(SOCP) to upper-bound the chance-peak problem in terms of occupation measures and analyzes its

strong duality properties. Section 10.4 reviews the moment-SOS hierarchy and presents a hierarchy

of SDPs that approximate the infinte-dimensional chance-peak SOCP. Section 10.5 details extensions

to the chance-peak framework: analysis of exit-time statistics, distance of closest approach, and

switching processes. Section 10.6 provides numerical examples of the chance-peak problem on ODE

and SDE systems. Section 10.7 concludes the chapter. Appendix A.7 proves strong duality properties

for a class of measure programs with linked semidefinite constraints. Appendix A.8 applies this

general strong duality proof to the chance-peak SOCP.

This work appeared in [144] and is coauthored by Matteo Tacchi, Mario Sznaier, and

Ashkan Jasour. The content of Appendix A.7 (generalized strong duality) is solely authored by

Matteo Tacchi.

10.2 Preliminaries

This section will review VaR and SDEs.
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10.2.1 Probability Tail Bounds and Value-at-Risk

Let ξ be a univariate probability measure ξ(ω) ∈ M+(R) for a coordinate ω ∈ R, with

⟨1, ξ⟩ = 1 and |⟨ω, ξ⟩|, ⟨ω2, ξ⟩ <∞ (finite first and second moments). In this chapter, we define the

ϵ-VaR of ξ as follows:

V aRϵ(ξ) = sup {λ ∈ R | ξ([λ,∞)) ≥ ϵ} . (10.1)

Let σ2 = ⟨ω2, ξ⟩ − ⟨ω, ξ⟩2 be the variance of the probability distribution ξ.

The Cantelli bound for VaR is [133]

V aRϵ(ξ) ≤ σ
√
1/(ϵ)− 1 + ⟨ω, ξ⟩ = V aRcantϵ (ξ). (10.2a)

The VP bound for the VaR is [134]

V aRϵ(ξ) ≤ σ
√
4/(9ϵ)− 1 + ⟨ω, ξ⟩ = V aRV Pϵ (ξ). (10.2b)

The Cantelli bound is applicable for any probability distribution ξ(ω) and value ϵ ∈ [0, 1].

The VP bound is sharper than the Cantelli bound, but is only valid when ξ is unimodal and ϵ ≤ 1/6.

10.2.2 Stochastic Differential Equations

Let (Ω,F ,P) be a probability space with time-indexed filtrationFt,X ⊂ Rn be a compact

set, and w be n-dimensional Wiener process. An Itô SDE with a drift function f and diffusion

function g is [145]

dx = f(t, x)dt+ g(t, x)dw. (10.3)

In this chapter, trajectories will start from an initial set X0 ⊆ X and will remain within

X in times t ∈ [0, T ] by virtue of stopping at the boundary ∂X . Define τX as a stopping time

(random variable) corresponding to the time at which the process (10.3) starting from X0 touches

the boundary ∂X for the first time. A process of (10.3) starting from an initial condition x(0) ∈ X0

in times t ∈ [0, T ] is

x(t) = x(0) +

∫ τX∧T

t=0
f(t, x)dt+

∫ τX∧T

t=0
g(t, x)dw. (10.4)

Solutions of (10.4) are unique if there exists finite constants C,D > 0 such that for all

(t, x, x′) ∈ [0, T ]×X2, the following Lipschitz and Growth conditions hold [146]:

D∥x− x′∥2 ≥ ∥f(t, x)− f(t, x′)∥2 + ∥g(t, x)− g(t, x′)∥2

C(1 + ∥x∥2) ≥ ∥f(t, x)∥2 + ∥g(t, x)∥2. (10.5)
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The Lipschitz and Growth conditions will hold if (f, g) are locally Lipschitz and the setX is compact.

Distributions of the densities of (10.4) may be computed by solving a Fokker-Planck equation with

absorbing boundary conditions on ∂X [147, 148].

The generator L associated with the SDE is a linear operator with ∀v(t, x) ∈ C2([0, T ]×
X):

Lv(t, x) = ∂tv + f(t, x) · ∇xv +
1

2
g(t, x)T

(
∇2
xxv
)
g(t, x). (10.6)

The ∇2
xxv term arises from the Itô Lemma. Let τ be a stopping time adapted to the

filtration, defined by τ = τX ∧ T . The occupation measure µ ∈M+([0, T ]×X) corresponding to

the stopping time τ , initial distribution µ0 ∈M+(X0), and dynamics (10.3) is ∀A ⊆ [0, T ], B ⊆ X
is

µ(A×B) =

∫
X0

∫ τ

t=0
IA×B ((t, x(t | x0))) dt dµ0(x0). (10.7)

The initial measure µ0 ∈ M+(X0), the occupation measure µ from (10.7), and the

terminal measure µτ ∈ M+([0, T ] ×X) defined by following (10.3) (from µ0 until the stopping

time τ ) are all related by Dynkin’s formula [149]:

⟨v, µτ ⟩ = ⟨v(0, x), µ0(x)⟩+ ⟨Lv, µ⟩ ∀v ∈ C2. (10.8)

Dynkin’s formula is an SDE generalization of the Liouville equation for ODEs (2.8).

Equation (10.8) may be equivalently written in weak form as

µτ = δ0 ⊗ µ0 + L†µ. (10.9)

An expectation-maximizing optimal stopping problem for the SDE in (10.3) with a reward

function of p(x) in the region [0, T ]×X , when starting at the initial condition x(0) ∼ µ0 ∈M+(X0),

is P ∗ = supEµ0 [p(x(τ))]. This expectation-maximization problem has the same expression as (3.2),

but with a generator (10.6):

p∗ = sup ⟨p, µτ ⟩ (10.10a)

µτ = δ0 ⊗ µ0 + L†µ (10.10b)

⟨1, µ0⟩ = 1 (10.10c)

µ, µτ ∈M+([0, T ]×X) (10.10d)

µ0 ∈M+(X0). (10.10e)

Any µ that is part of a feasible solution (µ, µ0, µτ ) for (3.2b)-(3.2e) will be referred to as

a relaxed occupation measure. Program (3.2) satisfies p∗ ≥ P ∗, and tightness (p∗ = P ∗) is achieved
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under the assumptions of Lipschitz continuity and Growth (10.5), compactness of [0, T ]×X , and

continuity of p(x).

10.3 Peak Value-at-Risk Estimation for Stochastic Systems

This section will present the chance-peak problem statement, and will also derive the

infinite-dimensional SOCP to upper bound the chance-peak quantile statistic.

10.3.1 Problem Statement

Let ϵ ∈ [0, 1] be a value for the quantile statistic, X be a compact set, X0 ⊆ X be a set of

initial conditions, and (10.4) be the solution to an SDE evolving from x(0) ∈ X0 that remains within

X until it stops. For a given initial probability distribution µ0 ∈M+(X0), and for all t ∈ [0, T ], let

x(t) be the stochastic process of (10.4) at time t, and let µt ∈M+(X) be its probability distribution

(with x(t) stopping at ∂X).

10.3.1.1 Assumptions

The following assumptions will be posed throughout this chapter,

A1 The set [0, T ]×X is compact and X0 ⊆ X .

A2 The functions (f, g) satisfy (10.5).

A3 The state function p(x) is continuous on X .

A4 The initial measure µ0 ∈M+(X0) is a given probability distribution (⟨1, µ0⟩ = 1).

10.3.1.2 VaR Problem

Problem 10.3.1. The chance-peak problem to find the ϵ-VaR of p(x) is

P ∗ = sup
t∗∈[0,T ]

V aRϵ(p#µt∗) (10.11a)

dx = f(t, x)dt+ g(t, x)dw (10.11b)

from t = 0 until a stopping time of τX ∧ t∗ (10.11c)

x(0) ∼ µ0. (10.11d)
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The pushforward p#µt∗ from (10.11a) is the univariate probability distribution of p(x) at

the state distribution x ∼ µt∗ .

10.3.1.3 Tail-Bound Upper Bound

Let r be the constant factor multiplying σ in (10.2) such that

rcant =
√

1/(ϵ)− 1 rV P =
√
4/(9ϵ)− 1. (10.12)

It is further assumed that the VP-bound will only be used if its conditions are satisfied (ϵ ≤ 1/6,

unimodal). The distribution of p(x) with respect to the state distribution µt∗ is univariate, for which

the relation in (10.1) and the constants in (10.2) can be used to upper-bound on Problem 10.3.1. We

will use the notation ⟨p2, µt∗⟩ to refer to ⟨p(x)2, µt∗(x)⟩.

Problem 10.3.2. The tail-bound program that upper-bounds the chance-peak (10.11) with constant

r is

P ∗
r = sup

t∗∈[0,T ]
r
√
⟨p2, µt∗⟩ − ⟨p, µt∗⟩2 + ⟨p, µt∗⟩ (10.13a)

dx = f(t, x)dt+ g(t, x)dw (10.13b)

from t = 0 until a stopping time of τX ∧ t∗ (10.13c)

x(0) ∼ µ0. (10.13d)

10.3.2 Nonlinear Measure Program

Problem 10.3.2 can be upper-bounded by an infinite-dimensional convex program in a

given initial probability distribution µ0, terminal measure µτ , and relaxed occupation measure µ,

using the generator L in (6.13) as

p∗r =sup r
√
⟨p2, µτ ⟩ − ⟨p, µτ ⟩2 + ⟨p, µτ ⟩ (10.14a)

µτ = δ0 ⊗ µ0 + L†µ (10.14b)

µτ , µ ∈M+([0, T ]×X). (10.14c)

Theorem 10.3.3. Program 10.14 is an upper bound on (10.13) with p∗r ≥ P ∗
r under A1-A4.

Proof. Let t∗ be a stopping time in [0, T ], and let x0 ∈ X0 be an initial condition. Measures

(µ0, µ, µτ ) that satisfy (10.14b) may be constructed from this (t∗, x0) by µt∗ as the state distribution
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of (10.4) at time t∗ given µ0, and µ as the occupation measure in (10.7) associated to this SDE

trajectory with distribution µ0. Because the feasible set to constraint (10.14b) contains measures

induced by all possible provided SDE trajectories starting from µ0, it holds that p∗r ≥ P ∗
r .

Remark 10.3.1. The initial distribution µ0 ∈M+(X0) may be optimized to find a supremal p∗r over

all probability distributions in X0 variable by adding the constraint ⟨µ0, 1⟩ = 1 to (10.14).

10.3.3 Measure Second-Order Cone Program

The nonlinear measure program (10.14) may be recast as an infinite-dimensional SOCP.

Lemma 10.3.4. Let Jr(a, b) = r
√
b− a2 + a be the objective (10.14a) with a = ⟨p(x), µτ ⟩ and

b = ⟨p(x)2, µτ ⟩. For any convex set C ∈ R× R+ with (a, b) ∈ C, the following pair of programs

have the same optimal value (in which Q3 = {(s, κ) ∈ R3 × R+ | ∥s∥2 ≤ κ} is an SOC cone):

sup
(a,b)∈C

a+ r
√
b− a2 (10.15)

sup
(a,b)∈C, z∈R

a+ rz : ([1− b, 2z, 2a], 1 + b) ∈ Q3. (10.16)

Proof. The new variable z is introduced under the constraint
√
b− a2 ≥ z, implying that z2+a2 ≤ b.

The SOCP equivalence follows from the power-representation of
√
b− a2 from [89, 150], with the

steps of

([1− b, 2z, 2a], 1 + b) ∈ Q3 (10.17a)

(1− b)2 + 4(z2 + a2) ≤ (1 + b)2 (10.17b)

(1 + b2)− 2b+ 4(z2 + a2) ≤ (1 + b2) + 2b (10.17c)

4(z2 + a2) ≤ 4b. (10.17d)

Theorem 10.3.5. An infinite-dimensional SOCP with the same optimal value and set of feasible

solutions as (10.14) given µ0 is

p∗r =sup rz + ⟨p, µτ ⟩ (10.18a)

µτ = δ0 ⊗ µ0 + L†µ (10.18b)

u = [1− ⟨p2, µτ ⟩, 2z, 2⟨p, µτ ⟩] (10.18c)

(u, 1 + ⟨p2, µτ ⟩) ∈ Q3 (10.18d)

µ, µτ ∈M+([0, T ]×X), z ∈ R, u ∈ R3. (10.18e)
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Proof. This results from an application of Lemma 10.3.4 to the objective term (10.14a). The

optimization variables are now (µτ , µ, z, u).

Corollary 3. Program (10.18) is convex.

Proof. The objective (10.18a) is affine in (z, µτ ). Constraints (10.18b)-(10.18e) are convex (affine

for (10.18b) and SOC for (10.18d)), ensuring convexity of (10.18).

Remark 10.3.2. Problem (10.18) has an infinite-dimensional affine constraint in (10.18b) and a

finite-dimensional SOC constraint in (10.18d).

10.3.4 Dual Second-Order Cone Program

The Lagrangian dual of (10.18) is a program with infinite-dimensional linear constraints

and a finite-dimensional SOC constraint. This dual involves a function v(t, x) ∈ C2([0, T ]×X) and

a constant y ∈ R3 as variables.

We will use the following expression of (10.18) with an explicitly written SOC variable q

linked with linear constraints to the measures (µ0, µτ , µ).

Lemma 10.3.6. The following program has the same optimal value as (10.18):

p∗r =sup (r/2)q2 + ⟨p, µτ ⟩ (10.19a)

q1 + ⟨p2, µτ ⟩ = 1 (10.19b)

q3 − 2⟨p, µτ ⟩ = 0 (10.19c)

q1 + q4 = 2 (10.19d)

µτ − L†µ = δ0 ⊗ µ0 (10.19e)

q = ([q1, q2, q3], q4) ∈ Q3 (10.19f)

µ, µτ ∈M+([0, T ]×X). (10.19g)

Proof. This formulation is obtained from (10.18) through the change of variable q = (u, 1+⟨p2, µτ ⟩),
the replacement of z with q2/2 using the second coordinate of constraint (10.18c), adding the first

coordinate of (10.18c) and the last coordinate of (10.18d) to derive (10.19d).
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Theorem 10.3.7. The dual program of (10.18) with weak duality d∗r ≥ p∗r under Assumptions A1-A3

is

d∗r = inf y1 + 2y3 +

∫
X0

v(0, x0)dµ0(x0) (10.20a)

Lv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (10.20b)

v(t, x) + y1 p
2(x)− 2 y2 p(x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (10.20c)

([y1 + y3,−(r/2), y2], y3) ∈ Q3 (10.20d)

y ∈ R3, v ∈ C2([0, T ]×X). (10.20e)

Strong duality with d∗r = p∗r holds under Assumptions A1-A4.

Proof. Dual formulation: this formulation is obtained by applying the standard Lagrangian duality

method to (10.19). v is the Lagrange multiplier corresponding to constraint (10.19e), and y is the

Lagrange multiplier corresponding to constraints (10.19b)-(10.19d). Conversely, µ is the Lagrange

multiplier corresponding to constraint (10.20b), µτ is the Lagrange multiplier corresponding to

constraint (10.20c), and q is the Lagrange multiplier corresponding to (10.20d). The cost in (10.20a)

corresponds to the right-hand sides of constraints (10.19b)-(10.19e), while the right-hand side of

(10.20c) and the second coordinate −(r/2) in (10.20d) correspond to the cost in (10.19a).

Strong duality: see Appendix A.8.

This strong duality property is an important feature of the infinite-dimensional problem at

hand: it means that one may equivalently solve moment relaxations of (10.19) and sums-of-squares

relaxations of (10.20).

10.4 Finite Moment Program

This section will upper-bound (10.18) utilizing a converging hierarchy of SDPs in increas-

ing degree and size.

10.4.1 Moment Program

The following assumptions are required to utilize the moment-SOS hierarchy in approxi-

mating (10.18):

A5 The sets X0 and X are Archimedean BSA sets.
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A6 The functions f(t, x), g(t, x) are polynomial vectors and p(x) is a polynomial scalar.

Let (m0,m,mτ ) be moment sequences corresponding to the measures (µ0, µ, µτ ) respec-

tively. For each monomial xαtβ with α ∈ Nn, β ∈ N, define the operator Dynαβ(m
0,m,mτ ) as the

linear relation induced by Dynkin’s formula (10.9),

⟨xα, µ0⟩δβ0 + ⟨L(xαtβ), µ⟩ − ⟨xαtβ, µτ ⟩ = 0. (10.21)

Define the dynamics degree d̃ as

d̃ = d+max(⌊deg f/2⌋,deg g − 1). (10.22)

Problem 10.4.1. For d ≥ deg(p), the order-d moment problem that upper-bounds problem (10.18),

with variables (τ , ) given µ0 is

p∗r,d =max
z∈R

rz + Lmτ (p(x)) (10.23a)

Dynαβ(m
0,mτ ,m) = 0 ∀(α, β) ∈ Nn+1

≤2d (10.23b)

s = [1− Lmτ (p(x)
2), 2z, 2Lmτ (p(x))] (10.23c)

(s, 1 + Lmτ (p(x)
2)) ∈ Q3 (10.23d)

Md(([0, T ]×X)mτ ) ⪰ 0 (10.23e)

Md̃(([0, T ]×X)m) ⪰ 0. (10.23f)

Constraint (10.23b) is a finite-dimensional truncation of the infinite-dimensional (10.18b).

The following boundedness result is required to ensure convergence:

Lemma 10.4.2. All of (µ, µτ , z) are bounded in (10.18) under A1-A3.

Proof. A sufficient condition for a measure to be bounded (all moments are bounded) is that it has

finite mass and is supported on a compact set. Compactness of [0, T ]×X holds by A1. Assumption

A1 imposes that ⟨1, µ0⟩ = 1. By substituting v(t, x) = 1 to (10.8) in (10.18b), it holds that

⟨1, µτ ⟩ = ⟨1, µ0⟩ = 1. Performing the same step with v(t, x) = t yields T ≥ ⟨t, µτ ⟩ = ⟨1, µ⟩. It

therefore holds that ⟨p, µτ ⟩ and ⟨p2, µτ ⟩ are bounded, and ⟨p2, µτ ⟩ is bounded from below by 0. The

SOC constraint (10.18d) ensures that z is finite, demonstrating that all variables are bounded.

Remark 10.4.1. The relation p∗d ≥ p∗r ≥ P ∗
r will still hold when [0, T ]×X is noncompact (violating

A1 and A5), but it may no longer occur that limd→∞ p∗r,d = p∗r (the conditions Lemma 10.4.3 will no

longer apply).
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Theorem 10.4.3. Under assumptions A1-A6, (10.23) inherits the strong duality property of its infinite-

dimensional counterpart (10.18), and its optima will converge to (10.18) i.e. limd→∞ p∗r,d = p∗r .

Proof. Strong duality is proved almost identically in the finite dimensional setting as in the infinite

dimensional setting of Theorem 10.3.7 by using the same arguments as in the proof of [23, Proposition

6].

Convergence is a direct consequence of [23, Corollary 8] (when extending to the case with

finite-dimensional SOC variables) through Lemma 10.4.2.

Remark 10.4.2. The relation p∗d ≥ p∗r ≥ P ∗
r will still hold when [0, T ]×X is noncompact (violating

A1 and A5), but it may no longer occur that limd→∞ p∗r,d = p∗r (the conditions Lemma 10.4.3 will no

longer apply).

10.4.2 Computational Complexity

At order-d, the size of the moment matrices corresponding to the measures is described in

Table 10.1.

Table 10.1: Size of Moment Matrices in LMI (10.23)

Matrix: Md̃(m) Md(m
τ )

Size:
(n+1+d̃

d̃

) (
n+1+d

d

)
The LMI in (10.23) must be converted to SDP-standard form by introducing equality

constraints between the entries of the moment matrices in order to utilize symmetric-cone Interior

Point Methods (e.g., Mosek [49]). The per-iteration complexity of an SDP involving a single moment

matrix of size
(
n+d
d

)
scales as n6d [140]. The scaling of an SDP with multiple moment and localizing

matrices generally depends on the maximal size of any PSD matrix. By Table 10.1, this size is(n+1+d̃
d̃

)
with a scaling impact of (n + 1)6d̃. The complexity of using this chance-peak routine

increases in a jointly polynomial manner with the degree d̃ and the number of states n.

10.5 Extensions

This section outlines extensions to the developed chance-peak framework.
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10.5.1 Exit-Time Statistics

This extension builds upon the work of [151] in estimating expectations of functions upon

first exit of the region X . The exit time distribution of the SDE in (10.4) is the class of trajectories

that stop according to the stopping time τX . The program (3.2) is modified in [151] by adding a

support constraint µτ ∈M+(∂X)). Averaged statistics of the exit time distribution (expectations of

p#µτ ) may be computed by substituting different choices of p into the ∂X-adjusted (3.2), and this

expectation is bounded from above and below with no relaxation gap in [151]. An example of this

kind of statistic is finding the mean (stopping) time at which the trajectory exits by estimating ⟨t, µτ ⟩.
We can adapt this methodology to bound 1− ϵ quantile values of the exit time distribution

by restricting µτ ∈M+(∂X) constraint in Program (10.18) and (10.18e) by

p∗r =sup rz + ⟨p, µτ ⟩ (10.24a)

µτ = δ0 ⊗ µ0 + L†µ (10.24b)

u = [1− ⟨p2, µτ ⟩, 2z, 2⟨p, µτ ⟩] (10.24c)

(u, 1 + ⟨p2, µτ ⟩) ∈ Q3 (10.24d)

µ ∈M+([0, T ]×X), z ∈ R, u ∈ R3. (10.24e)

µτ ∈M+([0, T ]× ∂X). (10.24f)

The optimal value (10.24) is a (Cantelli or VP) upper-bound on the exit time quantity

V aRϵ(p#µτ ).

10.5.2 Switching

The chance-peak scheme may also be applied to switched stochastic systems. The methods

outlined in this section are an extension of the ODE approach from Section 4.2.3, and are similar to

duals of constraints found in [141]. Assume that there are Ns ∈ N subsystems indexed by ℓ = 1..Ns.

Each subsystem has individual dynamics

dx = fℓ(t, x)dt+ gℓ(t, x) (10.25)

for each switching index ℓ = 1..Ns. A switched SDE trajectory is a distribution x(t) and a switching

function S : [0, T ] → (1..Ns) under the constraint that x(t) satisfies (10.25) whenever S(t) = ℓ

(the ℓ-th subsystem is active). A specific trajectory of a switched SDE starting from an initial point

x0 ∈ X will be expressed as x(t | x0, S). No dwell time constraints are imposed on the switching

sequence S; instead, switching can occur arbitrarily quickly in time.
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GeneratorsLℓ may be defined for each subsystem in (10.25) according to ∀v ∈ C2([0, T ]×
X :

Lℓv(t, x) = ∂tv + fℓ · ∇xv + gTℓ (∇2
xxv)gℓ/2 ∀ℓ = 1..Ns. (10.26)

Let µ ∈M+([0, T ]×X) be the total occupation measure of the switched SDE trajectory

x(t | x0, S). The total occupation measure may be split into disjoint subsystem occupation measures

∀ℓ : µℓ ∈M+([0, T ]×X) under the relation
∑Ns

ℓ=1 µℓ = µ. The mass of a subsytem’s occupation

measure ⟨1, µℓ⟩ is the total amount of time that the trajectory x(t | x0, S) spends in subsystem

S(t) = ℓ.

Dynkin’s equation (10.9) for switching-type uncertainty is

µτ = δ0 ⊗ µ0 +
∑Ns

ℓ=1 L
†
ℓµℓ. (10.27)

The chance-peak problem in (10.18) modified for switching uncertainty is

p∗r =sup rz + ⟨p, µτ ⟩ (10.28a)

µτ = δ0 ⊗ µ0 + L†µ (10.28b)

u = [1− ⟨p2, µτ ⟩, 2z, 2⟨p, µτ ⟩] (10.28c)

(u, 1 + ⟨p2, µτ ⟩) ∈ Q3 (10.28d)

µτ ∈M+([0, T ]×X), z ∈ R, u ∈ R3. (10.28e)

µℓ ∈M+([0, T ]× ∂X) ∀ℓ = 1..Ns. (10.28f)

10.5.3 Distance Estimation

The chance-peak methodology developed in this chapter can be applied towards bounding

(probabilistically) the distance of closest approach to an unsafe set (using the framework from

Chapter 5). Let Xu ⊂ X be an unsafe set, and let c(x, y) be a metric in X . The point-set distance

function with respect to Xu is c(x;Xu) = infy∈Xu c(x, y). The output of a chance-distance program

is an infimal value c∗ such that there exists some time in which the probability of traveling closer

than c∗ to Xu is at least ϵ.

The chance-distance C∗ is the negative of the bound P ∗ obtained from solving (10.11)

with objective p(x) = −c(x;Xu). Because the objective c(x;Xu) is not generally polynomial

(even when c(x, y) is polynomial), the LMI (10.23) cannot directly be posed in terms of c(x;Xu).

One method to maintain a polynomial structure is to add time-constant states dy = 0dt+ 0dw to
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dynamics (10.3) in x and form the state support set (x, y) ∈ X ×Xu. When Xu is full-dimensional

inside X ⊂ Rn, the occupation measure µ(t, x, y) ∈ M+([0, T ] × X × Y ) will have a moment

matrix of size
(
1+2n+d

d

)
at each fixed degree d.

This size can be reduced by decomposing the peak measure µ̂τ ∈M+([0, T ]×X × Y )

into a joint measure η(x, y) ∈M+(X × Y ) and a peak measure µτ (t, x) ∈M+([0, T ]×X) that

are equal in the x marginal. The chance-distance SOCP under this decomposition is

p∗r =sup
z∈R

rz + ⟨−c(x, y), η(x, y)⟩ (10.29a)

⟨v, µτ ⟩ = ⟨v(0, x0), µ0(x0)⟩+ ⟨Lv, µ⟩ ∀v ∈ C2([0, T ]×X) (10.29b)

⟨θ(x), µτ (t, x)⟩ − ⟨θ(x), η(x, y)⟩ = 0 ∀θ ∈ C(X) (10.29c)

s = [1− ⟨c2, η⟩, 2z, 2⟨−c, η⟩] (10.29d)

(s, 1 + ⟨c2, η⟩) ∈ Q3 (10.29e)

η ∈M+(X ×Xu) (10.29f)

µ, µτ ∈M+([0, T ]×X). (10.29g)

Constraint (10.29c) enforces equality in the x-marginals between µτ and η. The Moment

matrices of η and µ respectively in the LMI program derived from (10.29) have sizes
(
2n+d
d

)
and(n+1+d̃

d̃

)
. Unfortunately, the squaring operation ⟨c2, η⟩ causes mixed multiplications in variables

even when c is additively separable as c(x, y) =
∑n

i=1 ci(xi, yi), thus forbidding the application of

correlative sparsity ([61] and Section 5.6) to reduce the complexity of LMIs from (10.29).

10.6 Numerical Examples

MATLAB (2022a) code to replicate experiments is available at https://github.

com/Jarmill/chance_peak. Dependencies include Mosek [49] and YALMIP [68].

10.6.1 Two States

Example 1 of [152] is the following two-dimensional cubic polynomial SDE

dx =

 x2

−x1 − x2 − 1
2x

3
1

 dt+
 0

0.1

 dw. (10.30)

This example performs chance-peak maximization of p(x) = −x2 starting at the point

(Dirac-delta initial measure µ0)X0 = [1, 1] withX = [−1, 1.4]×[−2, 1.25] and T = 5. Trajectories
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of (10.30) are displayed in cyan in Figure 10.1 starting from the black-circle X0, and four of these

trajectories are marked in non-cyan colors. The ϵ = 0.5 row of Table 10.2 displays the bounds

on the mean distribution as solved through finite-degree SDP truncations of (3.2). The bounds

at ϵ = {0.15, 0.1, 0.05} are obtained through the VP expression in (10.2b) and solving the SDPs

obtained from (10.23). The dotted and solid red lines in Figure 10.1 are the ϵ = 0.5 and ϵ = 0.15

bounds respectively at order 5.

Table 10.2: Chance-Peak estimation of the Stochastic Flow System (10.30) to maximize p(x) = −x2

order 1 2 3 4 5 6
ϵ = 0.5 1.5131 0.8818 0.8773 0.8747 0.8745 0.8744
ϵ = 0.15 2.6614 1.6660 1.6113 1.5842 1.5771 1.5740
ϵ = 0.1 3.2699 2.0757 1.9909 1.9549 1.9461 1.9427
ϵ = 0.05 4.6380 2.9960 2.8441 2.7904 2.7772 2.7715

Table 10.3: Solver time (seconds) to compute Table 10.2

order 1 2 3 4 5 6
ϵ = 0.5 0.716 0.380 0.449 0.625 1.583 4.552
ϵ = 0.15 0.275 0.262 0.443 0.727 2.756 5.586
ϵ = 0.1 0.223 0.268 0.380 1.364 2.882 3.143
ϵ = 0.05 0.227 0.242 0.390 1.261 2.923 7.539

Figure 10.1: Trajectories of (10.30) with ϵ = {0.5, 0.15} bounds
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10.6.2 Three States

An SDE modification of the Twist system (5.34) is

dx =


−2.5x1 + x2 − 0.5x3 + 2x31 + 2x33

−x1 + 1.5x2 + 0.5x3 − 2x32 − 2x33

1.5x1 + 2.5x2 − 2x3 − 2x31 − 2x32

 dt+


0

0

0.1

 dw. (10.31)

This second example performs chance-peak maximization of p(x) = x3 starting at the

point X0 = [0.5, 0, 0] with X = [−0.6, 0.6] × [−1, 1] × [−1, 1.5] and T = 5. VP bounds from

solving the SDEs from (3.2) and (10.23) are recorded in Table 10.4 in the same manner as in Table

10.2. Figure 10.2 plots trajectories and bounds of (10.31) starting from the black-circle X0 point,

with four of these trajectories visibly distinguished. The solid red plane in Figure 10.2 is the ϵ = 0.15

bound on x3 at order 6, and the translucent red plane is the ϵ = 0.5 bound on x3 (also at order 6).

Table 10.4: Chance-Peak estimation of the Stochastic Twist System (10.31) to maximize p(x) = x3

order 1 2 3 4 5 6
ϵ = 0.5 1.4682 0.9100 0.8312 0.8231 0.8211 0.8201
ϵ = 0.15 2.4017 1.6097 1.4333 1.3545 1.3318 1.3202
ϵ = 0.1 2.8852 1.9707 1.7453 1.6283 1.5877 1.5739
ϵ = 0.05 3.9768 2.7834 2.4426 2.2333 2.1622 2.1267

Table 10.5: Solver time (seconds) to compute Table 10.4

order 1 2 3 4 5 6
ϵ = 0.5 0.694 0.428 1.939 5.196 19.201 83.679
ϵ = 0.15 0.281 0.328 0.999 4.755 21.108 96.985
ϵ = 0.1 0.228 0.325 1.083 5.172 22.596 119.823
ϵ = 0.05 0.264 0.325 1.294 4.516 22.357 115.820

10.6.3 Exit-Time

This example uses the setting of Example 7.4 of [151]. The dynamics are standard

Brownian motion in n = 3 dimensions with f = 03 and g = 13. The initial condition is X0 = 03

with a support set of X = {x ∈ R3 |
∑3

i=1 x
4
i ≤ 1}. The considered boundary is ∂X = {x ∈ R3 |∑3

i=1 x
4
i = 1}.

Chance-peak bounds for the first arrival time ⟨t, µτ ⟩ are displayed in Table 10.6. The

order-1 estimates are dual infeasible and are marked by∞.
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Figure 10.2: Trajectories of (10.31) with ϵ = 0.5 (transparent red) and ϵ = 0.15 (solid red) bounds

Table 10.6: Chance-Peak Exit-Statistic estimation of Standard Brownian Motion System

order 1 2 3 4 5
ϵ = 0.5 ∞ 0.0642 0.0642 0.0642 0.0642
ϵ = 0.15 ∞ 0.1833 0.1375 0.1375 0.1375
ϵ = 0.1 ∞ 0.2300 0.1614 0.1614 0.1614
ϵ = 0.05 ∞ 0.3292 0.2113 0.2113 0.2113

10.6.4 Switching

We utilize a modification of Example C from [141] for this final example. The two

subsystems involved are:

dx =

−2.5x1 − 2x2

−0.5x1 − x2

 dt+
 0

0.25x2

 dw (10.32a)

dx =

−x1 − 2x2

2.5x1 − x2

 dt+
 0

0.25x2

 dw. (10.32b)

Switched SDE trajectories start from an initial condition of X0 = (0, 1) and are tracked in

the state set X = [−2, 2]2 with a time horizon of T = 5. The chance-peak problem is solved to find

bounds on p(x) = −x2.

Figure (10.3) plots switched SDE trajectories along with ϵ = {0.5, 0.15} bounds (at

order-6). Table 10.7 lists these discovered bounds.

173



CHAPTER 10. VALUE-AT-RISK PEAK ESTIMATION

Figure 10.3: Trajectories of (10.32) with ϵ = {0.5, 0.15} bounds

Table 10.7: Chance-Peak upper-bounds for p(x) = −x2 for the Switched System (10.32)

order 1 2 3 4 5 6
ϵ = 0.5 0.8491 0.4304 0.3823 0.3630 0.3487 0.3352
ϵ = 0.15 1.5613 0.9953 0.9328 0.9076 0.8918 0.8853
ϵ = 0.1 1.9358 1.2888 1.2162 1.1865 1.1687 1.1609
ϵ = 0.05 2.7764 1.9469 1.8516 1.8120 1.7891 1.7799

Table 10.8: Solver time (seconds) to compute Table 10.7

order 1 2 3 4 5 6
ϵ = 0.5 0.665 0.362 0.389 0.570 1.755 2.499
ϵ = 0.15 0.284 0.257 0.295 0.587 1.812 3.718
ϵ = 0.1 0.222 0.237 0.281 1.636 2.364 3.191
ϵ = 0.05 0.224 0.251 0.291 0.906 1.735 2.638

10.6.5 Distance Estimation

This example will involve distance estimation of a modification of the second subsystem

of (10.32):

dx =

−x1 − 2x2

2.5x1 − x2

 dt+
 0

0.1

 dw. (10.33)

This L2 chance-distance task takes place at a time horizon of T = 5 with sets X0 = [0; 0.75],

X = [−1.25, 1]× [−1, 1], and Xu = {y ∈ R2 | 0.12 ≥ (y1+1)2+(y2+1)2}. Distance estimation

was accomplished by maximizing VaRs of the function −∥x− y∥22 in (10.29).
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System trajectories of (10.33) are displayed in Figure 10.4, in which the unsafe half-circle

set Xu is drawn in solid red. Squared distance lower bounds from solving SDPs arising from moment

programs of (10.29) are listed in Table 10.9. Negative distance lower-bounds are truncated to 0 in

Table 10.9. This example demonstrates how chance-peak distance bounds for distance estimation are

very conservative, and improving the quality of these bounds is a vital area for future work.

Figure 10.4: Trajectories of (10.33) with ϵ = {0.5, 0.15} bounds

Table 10.9: Chance-Peak squared distance lower bounds for System (10.33)

order 1 2 3 4 5 6
ϵ = 0.5 0.5667 1.1929 1.2337 1.2425 1.2490 1.2506
ϵ = 0.15 0.0000 0.0000 0.0000 0.0000 0.0182 0.0235
ϵ = 0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ϵ = 0.05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10.7 Conclusion

This chapter considered the chance-peak problem, which involved finding upper bounds

on the quantiles of state functions p(x) achieved by SDE systems. The true (1− ϵ)-quantile statistic
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Table 10.10: Solver time (seconds) to compute Table 10.9

order 1 2 3 4 5 6
ϵ = 0.5 0.761 0.507 0.512 1.772 6.569 21.331
ϵ = 0.15 0.361 0.346 0.453 1.233 5.836 23.930
ϵ = 0.1 0.314 0.344 0.482 1.522 5.172 21.034
ϵ = 0.05 0.321 0.384 0.485 1.711 5.954 26.974

P ∗ (10.11) is upper-bounded by the Cantelli/VP approximation P ∗
r (10.13), which in turn is upper

bounded by an infinite-dimensional SOCP p∗r (10.18) and its moment-SOS finite-dimensional SDPs,

yielding p∗r,d with limd→∞ p∗r,d = p∗d. Each of these upper-bounds contribute valuable information

towards the analysis of SDEs.

Future work includes finding conditions under which the measure-based upper-bounding

does not add conservatism (e.g., cases where p∗r = P ∗
r ), and utilizing higher-moment tail-probability

inequalities to obtain closer estimates to the VaR [153]. Another avenue involves developing

stochastic optimal control strategies to minimize quantile statistics. Other aspects could include

extension of Switching methods towards more general Lévy processes [154, 139].
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Chapter 11

Peak Estimation for Time-Delay Systems

11.1 Introduction

This chapter presents an algorithm to upper bound extreme values of a state function

attained along trajectories of a Delay Differential Equation (DDE) (time-delay system). The dynamics

of a DDE depend on a history of the state, in contrast to an ODE in which the dynamics are a function

only of the present values of state [155, 156, 157, 158]. This chapter will involve analysis of DDEs

in a state space X ⊂ Rn over a time horizon T < ∞ with a single fixed discrete bounded delay

τ ∈ (0, T ).

Trajectory evolution of a DDE depends on an initial history xh : [−τ, 0]→ X rather than

simply an initial condition x0 ∈ X for a corresponding ODE. The evaluation at time t for a trajectory

starting with a history xh will be denoted as x(t | xh). A function class H of histories may be

defined, allowing for the definition of differential inclusions of DDEs. A peak estimation problem

may be defined on a time-delay system to find the maximum value of a state function p along system

trajectories given a class of initial historiesH as

P ∗ = sup
t∗∈[0,T ], xh(·)

p(x(t∗ | xh)) (11.1a)

ẋ = f(t, x(t), x(t− τ)) ∀t ∈ [0, T ] (11.1b)

x(t) = xh(t) ∀t ∈ [−τ, 0] (11.1c)

xh(·) ∈ H. (11.1d)

The variables in Problem (11.1) are the stopping time t∗ and the initial history xh. Problem

(11.1) is a DDE version of the (generically nonconvex) ODE peak estimation program studied in
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[5, 6]. The peak estimation task in (11.1) is an instance of a DDE OCP with a free terminal time and

a zero running (integrated) cost.

This work uses measure-theoretic methods in order to provide certifiable upper bounds on

the peak value P ∗ from (11.1). The first application of measure-theoretic methods towards DDEs was

in [159], in which the control input was relaxed into a Young Measure [45] (probability distribution at

each point in time) [160]. This Young-Measure-based relaxed control yields the OCP optimal value

in the case of a single discrete time delay under convexity, regularity, and compactness assumptions.

However, the Young Measure control programs may result in a lower bound when there are two or

more delays in the system dynamics (there exist Young-Measure solutions that do not correspond to

OCP solutions) [161, 162]. Adding new measures and constraints allows for the construction of tight

Young Measure OCP approximations at the cost of significantly more complicated programs [163].

Use of the moment-SOS hierarchy towards analysis of DDEs includes finding stability

and safety certificates [164, 165, 166]. Prior work on using occupation measures for problems in

time delays includes ODE-Partial Differential Equation (PDE) models in [167, 168], a Riesz-frame

system in [169], and a gridded LP framework for optimal control given a single history xh in [170].

Peak estimation has been conducted on specific time-delay systems such as the forced Liénard model

[171] and compartmental epidemic models [11].

This chapter is organized as follows: Section 11.2 formalizes notation and summarizes

concepts in measure theory, time-delay, occupation measures, and ODE peak estimation. Section 11.3

defines Measure-Valued (MV)-solutions for free-terminal-time DDE trajectories to create a primal-

dual pair of LPs in order to upper-bound (11.1). Section 11.4 applies the Moment-SOS hierarchy

towards generating SDPs to upper-bound the peak-estimation measure LP. Section 11.5 extends

the DDEs peak framework by allowing for distance estimation, shaping constraints on histories,

and uncertainty. Section 11.6 provides examples of DDE peak estimation. Section 11.7 concludes

the chapter. Appendix A.9 extends the MV-solution framework towards continuous-time systems

with proportional delays and discrete-time systems with long time delays. Appendix A.10 performs

the proof of strong duality for the DDEs peak estimation LPs. Appendix A.11 finds and analyzes

structural properties of DDE OCPs subvalue functionals. Appendix A.12 reduces conservatism

of OCP approximations by performing spatio-temporal partitioning and applying double-integral

subvalue functionals. Appendix A.13 introduces a more conservative but computationally simpler

notion of MV-solution for DDEs.

This work appeared in [172] and is coauthored by Milan Korda, Victor Magron, and Mario

Sznaier.
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11.2 Time Delay Background

A single-variable function g(t) is Piecewise Continuous (PC) over the domain [a, b] if there

exist B ∈ N\{0} and a finite number of time-breaks t0 = a < t1 < t2 < · · · < tB < b = tB+1

such that the function g(t) is continuous in each interval [tk, tk+1) for k = 0..B. The class of PC

functions from the time interval [−τ, 0] to X is PC([−τ, 0], X).

Given a PC state history t 7→ xh(t), t ∈ [−τ, 0], a unique forward trajectory x(t | xh)
of (11.1b) exists on t ∈ [0, T ] if the function (t, x0, x1) 7→ f(t, x0, x1) is locally Lipschitz in all

variables.

Trajectories of time-delay systems with the form of (11.1b) with f locally Lipschitz satisfy

a smoothing property as shown in Figure 11.1. The order of derivatives that are continuous will

increase by 1 every τ time steps [158]. An example of such a time-delay system with increasing

continuity is visualized in Figure 11.1 with system dynamics

x′(t) = −2x(t)− 2x(t− 1). (11.2)

-1 0 1 2 3 4 5

time

-1

-0.5

0

0.5

1

1.5

2

x
(t

)

Increasing Continuity

Figure 11.1: Continuity of (11.2) trajectories increases every τ = 1 time step

Figure 11.2 plots multiple trajectories of (11.2) whose histories are lines passing through

xh(0) = 1, but whose evolution after time t = 0 is different.

The behavior of time-delay systems may change and bifurcate as the time delays change.

A well-studied example of ẋ = −x(t− τ) is plotted in Figure (11.3) [158], in which the system is

stable (to x = 0) for all bounded PC histories with τ ∈ [0, π/2), has bounded oscillations for some

initial histories at τ = π/2 (e.g., constant xh in time), and is unstable (divergent oscillations to ±∞)

for all similar histories with τ > π/2 [158].
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Figure 11.2: All histories pass through xh(0) = 1
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Figure 11.3: Bifurcation of stability as τ exceeds π/2 in ẋ = −x(t− τ)

Problem (11.1) involves a class of histories H. In this chapter, we will impose that H is

graph-constrained:

Definition 11.2.1. The history classH is graph-constrained ifH is the set of histories whose graph

lies within a given set H0 ⊆ [−τ, 0]×X ,

H = {xh ∈ PC([−τ, 0], X) | (t, xh(t)) ∈ H0 ∀t ∈ [−τ, 0]},

and there are no other continuity restrictions on histories.
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11.3 Peak Linear Programs

This section will formulate a primal-dual pair of LPs, each of which upper-bounds Problem

(11.1) in objective.

11.3.1 Assumptions

The following assumptions will be imposed on the peak estimation Problem (11.1):

A1 The sets {[−τ, T ], X0, H0, X} are all compact with τ < T .

A2 The function f is Lipschitz inside [0, T ]×X2.

A3 Any trajectory x(· | xh) with xh ∈ H such that x(t | xh) ̸∈ X for some t ∈ [0, T ] also

satisfies x(t′ | xh) ̸∈ X for all t′ ≥ t.

A4 The objective p is continuous.

A5 The history classH is graph-constrained by H0 ⊂ [−τ, 0]×X .

In the case where τ > T , the delayed state t 7→ x(t− τ) is fully specified in time [0, T ]

without requiring dynamics information, and (11.1) reduces to a peak estimation problem over ODEs.

All tracked histories inH are bounded due to assumption A1 (since the range X is compact). The

nonreturn assumption A3 ensures that a trajectory cannot leave and then return to X to produce a

lower value of p, given that the occupation-measure-based techniques used in this chapter can only

track trajectories while they are in X .

11.3.2 Measure-Valued Solution

The initial set X0 is the t = 0+ slice of H0. Equation (11.3) describes the measures

(µh, µ0, µp, µ̄0, µ̄1, ν) that will be used to form a free-terminal-time MV-solution to the DDE (11.1b)
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with multiple histories (inH):

History µh ∈M+(H0) (11.3a)

Initial µ0 ∈M+(X0) (11.3b)

Peak µp ∈M+([0, T ]×X) (11.3c)

Time-Slack ν ∈M+([0, T ]×X) (11.3d)

Occupation Start µ̄0 ∈M+([0, T − τ ]×X2) (11.3e)

Occupation End µ̄1 ∈M+([T − τ, T ]×X2). (11.3f)

The joint (relaxed) occupation measure µ̄ ∈ M+([0, T ] ×X2) is constructed from the

sum µ̄ = µ̄0 + µ̄1. An MV solution to the DDE in (11.1b) is a set of measures from (11.3) that

satisfy three types of constraints: History-Validity, Liouville, Consistency.

11.3.2.1 History-Validity

The first History-Validity constraint is that µ0 should be a probability distribution over

the initial state condition (at t = 0). The second is that the history measure µh should represent an

averaged occupation measure of histories that are defined between [−τ, 0], which implies that the

t-marginal of µh should be Lebesgue-distributed. The two History-Validity constraints are

⟨1, µ0⟩ = 1, πt#µh = λ[−τ,0]. (11.4)

11.3.2.2 Liouville

The true occupation measure (t, x0, x1) 7→ µ̄(t, x0, x1) has a time t, a current state

x0 = x(t | xh), and an external input x1 ∈ X with x1(t) = x(t − τ | xh). Use of the Liouville

equation in (2.8) applied to the joint occupation measure µ̄ = µ̄0 + µ̄1 leads to

µp = δ0 ⊗ µ0 + πtx0# L
†
f (µ̄0 + µ̄1). (11.5)

11.3.2.3 Consistency

The x1 input of f from the Liouville equation (11.5) is not arbitrary; it should be equal to

a time-delayed x1(t) = x0(t− τ). This requirement will be imposed by a Consistency constraint.

182



CHAPTER 11. PEAK ESTIMATION FOR TIME-DELAY SYSTEMS

Lemma 11.3.1. Let x(·) be a solution to (11.1b) for some history xh with an initial time of 0 and a

stopping time of t∗ ∈ [0, T ]. Then the following two integrals are equal for all ϕ ∈ C([0, T ]×X):(∫ t∗

0
+

∫ min(T,t∗+τ)

t∗

)
ϕ(t, x(t− τ))dt

=

(∫ 0

−τ
+

∫ min(t∗,T−τ)

0

)
ϕ(t′ + τ, x(t))dt′. (11.6)

Proof. This follows from a change of variable with t′ ← t− τ .

Equation (11.6) inspires a Consistency constraint for the free-terminal-time MV-solution

in (11.3). The left-hand-side of (11.6) may be generalized to

⟨ϕ(t, x1), µ̄0(t, x0, x1) + µ̄1(t, x0, x1)⟩+ ⟨ϕ(t, x), ν(t, x)⟩, (11.7)

in which µ̄0 is supported in times [0,min(t∗, T−τ)], µ̄1 is supported in times [T−τ, t∗] if t∗ > T−τ ,

and the slack measure ν implements the [t∗,min(T, t∗ + τ)] limits. The right-hand-side of (11.6)

may be interpreted as

⟨ϕ(t+ τ, x), µh(t, x)⟩+ ⟨ϕ(t+ τ, x0), µ̄0(t, x0, x1)⟩. (11.8)

Define Sτ as the shift operator Sτϕ(t, x) = ϕ(t + τ, x). With an abuse of notation, the

pushforward operation Sτ# applied to a measure (such as µh) will have the expression

⟨ϕ, Sτ#µh⟩ = ⟨Sτϕ, µh⟩ = ⟨ϕ(t+ τ, x), µh(t, x)⟩. (11.9)

The Consistency constraint inspired by Lemma 11.3.1 is

πtx1# (µ̄0 + µ̄1) + ν = Sτ#(µh + πtx0# µ̄0). (11.10)

Remark 11.3.1. Equation (11.10) may also be written as πtx1# (µ̄0 + µ̄1) ≤ Sτ#(µh + πtx0# µ̄0). The

associated slack measure is ν.
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11.3.3 Measure Program

An infinite-dimensional LP in terms of the measures from (11.3) to upper-bound Problem

(11.1) is

p∗ = sup ⟨p, µp⟩ (11.11a)

⟨1, µ0⟩ = 1 (11.11b)

πt#µh = λ[−τ,0] (11.11c)

µp = δ0 ⊗ µ0 + πtx0# L
†
f (µ̄0 + µ̄1) (11.11d)

πtx1# (µ̄0 + µ̄1) + ν = Sτ#(µh + πtx0# µ̄0) (11.11e)

Measure Definitions from (11.3). (11.11f)

Remark 11.3.2. Membership in the history classH is imposed by the History-Validity constraint

(11.11c) and through support of µh in (11.3a).

Definition 11.3.1. An MV-solution to the DDE (11.1b) with free-terminal-time and histories inH is

a tuple of measures that satisfy (11.11b)-(11.11f) and (11.3a)-(11.3d).

Theorem 11.3.2. Under assumptions A1-A5, (11.11) will upper bound (11.1) with p∗ ≥ P ∗ whenH
is graph-constrained.

Proof. This proof will proceed by demonstrating that every (t∗, xh) candidate from (11.1) may

be expressed by a unique MV-solution from Defn. 11.3.1. The history measure µh is the [−τ, 0]
occupation measure of x(t), and the initial measure µ0 is the Dirac-delta δxh(0+). The peak measure

µp is the Dirac-delta δt=t∗ ⊗ δx=x(t∗|xh). The relaxed occupation measures (µ̄0, µ̄1, ν) will now be

considered. For convenience, define z(t) = (t, x(t | xh), x(t− τ | xh)) as the delay embedding of

the trajectory x(t | xh). In the case where t∗ ∈ [0, T − τ ], then µ̄0 is the [0, t∗] occupation measure

of z(t), µ̄1 is the zero measure, and ν is the [t∗, t∗ + τ ] occupation measure of (t, x(t − τ | xh)).
Alternatively, when t∗ ∈ (T−τ, T ], µ̄0 is the [0, T−τ ] occupation measure of z(t), µ̄1 is the [T−τ, t∗]
occupation measure of z(t), and ν is the [t∗, T ] occupation measure of (t, x(t− τ | xh)). All of the

measures in (11.3) have been defined for each input (t∗, xh), which proves that p∗ ≥ P ∗.

Appendix A.9 uses these methods to form MV-solutions to systems with other delay

structures (proportional delay, long-delay discrete-time systems).
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Remark 11.3.3. The proof of Theorem 11.3.2 provides a unique MV solution for each DDE trajectory.

Additionally, each DDE trajectory given an initial condition xh is unique under the Lipschitz

assumption A2.

We note that MV solutions are not necessarily unique (for a given terminal time distribution)

when the history measure µh is supported on the graph of more than one curve. As an example,

Figure 11.4 shows two sets of curves under the dynamics ẋ(t) = −2x(t)− 3x(t− 1) in the times

t ∈ [0, 5]. The history occupation measure µh = 0.5λ[−1,0]⊗δx=1+0.5λ[−1,0]⊗δx=−1 is supported

in the set µh ∈ [−1, 0]× {−1, 1}. The superposition of each set of red and blue curves each have

the same history measure µh, but the switch that takes place on the bottom plot (e.g. blue: xh(t) = 1

for t ∈ [−1,−0.5), xh(t) = −1 for t ∈ [0.5, 0]) yields a different trajectory going forward in time.

Figure 11.4: The same µh leads to different trajectories in times (0, 5]
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11.3.4 Function Program

The dual program of (11.11) with variables (γ, ξ, v, ϕ) is

d∗ = inf
γ∈R

γ +

∫ 0

−τ
ξ(t)dt (11.12a)

ξ(t) + ϕ(t+ τ, x) ≥ 0 ∀(t, x) ∈ H0 (11.12b)

γ ≥ v(0, x) ∀x ∈ X0 (11.12c)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (11.12d)

ϕ(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (11.12e)

Lfv(t, x0) + ϕ(t, x1) ≤ ϕ(t+ τ, x0) ∀(t, x0, x1) ∈ [0, T − τ ]×X2 (11.12f)

Lfv(t, x0) + ϕ(t, x1) ≤ 0 ∀(t, x0, x1) ∈ [T − τ, T ]×X2 (11.12g)

ξ ∈ C([−τ, 0]) (11.12h)

v ∈ C1([0, T ]×X) (11.12i)

ϕ ∈ C([0, T ]×X). (11.12j)

Theorem 11.3.3. There is no duality gap between (11.11) and (11.12).

Proof. See Appendix A.10.

We pose the following conjecture based on [7, 161]:

Conjecture 11.3.1. Assume that A1-A5 hold. Additionally, assume that T > τ > 0 and the image-set

f(t, x0, X) is convex for all fixed t ∈ [0, T ], x0 ∈ X . Then there is no relaxation gap between (11.1)

and (11.11) (p∗ = P ∗).

Proving Conjecture 11.3.1 is the subject of ongoing work.

Appendix A.11 contains a further discussion of the continuity and structural aspects of the

dual solution in (11.12) as applied to bounding costs on DDE OCPs.

11.4 Peak Moment Program

This section will briefly review the moment-SOS hierarchy [27] in order to approximate-

from-above Program (11.11) by a sequence of finite-dimensional SDPs.
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11.4.1 Moment Program

Additional assumptions are required in order to approximate (11.11) using the moment-

SOS hierarchy:

A6 The sets H0, X0, and X are Archimedean BSA sets.

A7 Both p and f are polynomials.

Let the measures (µh, µ0, µp, µ̄0, µ̄1, ν) have associated pseudo-moment sequences (mh,

m0,mp, m̄0, m̄1,mν) respectively. Let α ∈ Nn and β ∈ N be multi-indices that define monomial

test functions xα0 t
β . For each multi-index tuple (α, β), the operator Liouαβ(m0,mp, m̄0, m̄1) may

be derived from the linear relations induced by the Liouville equation (11.11d) (in which δβ0 = 1 is

a Kronecker delta):

0 = ⟨xα, µ0⟩δβ0 + ⟨L(xα0 tβ), µ̄0 + µ̄1⟩ − ⟨xαtβ, µτ ⟩. (11.13)

Similarly, the operator Consαβ(mh,mν , m̄0, m̄1, ) may be derived from the consistency constraint

(11.11e) by

0 =⟨xα1 tβ, µ̄0 + µ̄1⟩+ ⟨xαtβ, ν⟩ − ⟨xα(t+ τ)β, µh⟩ (11.14)

− ⟨xα0 (t+ τ)β, µ̄0⟩.

Given a degree d ∈ N, the dynamics degree d̃ ≥ d may be defined as d̃ = d+ ⌊deg f/2⌋.

Problem 11.4.1. Program (11.11) is upper-bounded by the following order-d LMI in pseudo-

moments:

p∗d =max
∑

α∈Nn pαm
p
α (11.15a)

m0
0 = 1 (11.15b)

∀(α, β) ∈ Nn+1
≤2d :

mh
β =

∫ 0
−τ t

βdt = −(−τ)β+1/(β + 1) (11.15c)

Liouαβ(m0,mp, m̄0, m̄1) = 0 (11.15d)

Consαβ(mh,mν , m̄0, m̄1) = 0 (11.15e)

Md((X0)m
0), Md̃((H0)m

h) ⪰ 0 (11.15f)

Md(([0, T ]×X)mp), Md̃(([0, T ]×X)mν) ⪰ 0 ⪰ 0 (11.15g)

Md̃(([0, T − τ ]×X
2)m̄0) ⪰ 0 (11.15h)

Md̃(([T − τ, T ]×X
2)m̄1) ⪰ 0. (11.15i)

187



CHAPTER 11. PEAK ESTIMATION FOR TIME-DELAY SYSTEMS

The objective (11.15a) is the pseudo-moment version of ⟨p, µp⟩. Constraints (11.15c)

and (11.15b) are History-Validity constraints from (11.4) when applied to the pseudo-moments

(mν ,m0). Constraints (11.15d) and (11.15e) are the Liouville and Consistency constraints respec-

tively. Constraints (11.15f)-(11.15i) are support constraints necessary for the pseudo-moments to

have representing measures.

Boundedness of all moments of measures in (11.3) is required to obtain convergence of

(11.15) to (11.11) as d→∞.

Lemma 11.4.2. All measures from (11.3) in an MV-solution (Defn. 11.3.1) are bounded under

assumptions A1-A7.

Proof. Boundedness of a measure’s mass and support is a sufficient condition that all of the measure’s

moments are bounded. Assumption A1 ensures compactness, with the requirement from Defn. 11.2.1

that H0 ⊆ [−τ,X] and X0 ⊆ X . The remainder of this proof will involve finding upper bounds on

the masses of all measures in (11.3).

The initial measure µ0 has a mass of 1 and the history measure µh has a mass of τ by

the History-Validity constraints (11.11b) and (11.11c). Substitution of the test function v(t, x) = 1

in the Liouville (11.11d) leads to ⟨1, µp⟩ = ⟨1, µ0⟩ = 1. Since T is finite, the moment ⟨t, µp⟩ ≤
⟨1, µp⟩ (supt∈[0,T ] t) = T is also finite. Use of the test function v(t, x) = t into the Liouville

(11.11d) yields ⟨t, µp⟩ = ⟨1, µ̄0 + µ̄1⟩ ≤ T . Because µ̄0 and µ̄1 are both nonnegative Borel

measures, it holds that ⟨1, µ̄0⟩ ≤ T and ⟨1, µ̄1⟩ ≤ T . The final constraint involves substitution of

ϕ(t, x) = 1 into the Consistency (11.11e), resulting in

⟨1, µ̄0 + µ̄1⟩+ ⟨1, ν⟩ = ⟨1, µh⟩+ ⟨1, µ̄0⟩ (11.16)

⟨1, ν⟩ = ⟨1, µh⟩ − ⟨1, µ̄1⟩ = τ − ⟨1, µ̄1⟩.

Given that µ̄1 and ν are nonnegative Borel measures and cannot have negative masses, the mass ⟨1, ν⟩
is constrained within [0, τ ]. All masses are demonstrated to be finite, thus proving boundedness.

Remark 11.4.1. Neglecting the History-Validity constraint (11.11c) allows for µh in (11.16) to have

infinite mass, violating the boundedness principle.

Theorem 11.4.3. The optima in (11.15) will converge as limd→∞ p∗d = p∗ to (11.11) under assump-

tions A1-A6.

Proof. This follows from Corollary 8 of [23] under the boundedness condition in Lemma 11.4.2.
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Remark 11.4.2. Assumption A6 can be generalized to cases where the sets (H0, X0, X) are the

unions of BSA sets. As an example, consider H0 = H1
0 ∪ H2

0 in which πtH1
0 = [−τ,−τ̃ ] and

πtH2
0 = [−τ̃ , 0] for some τ̃ ∈ (0, τ). Then the pseudo-moments mh = mh

1 +mh
2 can be implicitly

constructed from Md((H
1
0 )m

h
1), Md((H

2
0 )m

h
2) ⪰ 0.

11.4.2 Computational Complexity

The size of the order-d PSD moment matrices associated with the pseudo-moment se-

quences (mh, m0, mp, m̄0, m̄1,mν) are listed in Table 11.1.

Table 11.1: Size of Moment Matrices in LMI (11.15)

Matrix: Md(m
0) Md̃(m

p) Md(m
h)

Size:
(
n+d
d

) (
n+1+d

d

) (n+1+d̃
d̃

)
Matrix: Md(m̄

0) Md̃(m̄
1) Md(m

ν)

Size:
(2n+1+d̃

d̃

) (2n+1+d̃
d̃

) (n+1+d̃
d̃

)
The largest size written in Table 11.1 is

(2n+1+d̃
d̃

)
, which occurs with the pseudo-moment

sequences (m̄0, m̄1) associated to the two joint occupation measures (µ̄0, µ̄1). Equality constraints

between entries of the moment matrices must be added to convert the LMI into an SDP for use in

symmetric-cone Interior Point Methods. The per-iteration complexity of solving an SDP derived

from an order-d LMI involved in the moment-SOS hierarchy scales as O(n6d) [27] with n. In the

case of LMI (11.15), the computational complexity of solving (11.15) will scale approximately as

(2n+ 1)6d̃ (based on m̄0, m̄1).

11.5 Extensions

This section discusses several extensions to the DDE peak estimation framework.

189



CHAPTER 11. PEAK ESTIMATION FOR TIME-DELAY SYSTEMS

11.5.1 Distance Estimation

The distance estimation framework of Chapter 5 may also be applied towards DDEs. The

DDE distance estimation program with metric c and unsafe set Xu ⊂ X is

P ∗ = inf
t∗∈[0,T ], xh(·)

c(x(t∗ | xh);Xu) (11.17a)

ẋ = f(t, x(t), x(t− τ)) ∀t ∈ [0, T ] (11.17b)

x(t) = xh(t) ∀t ∈ [−τ, 0] (11.17c)

xh(·) ∈ H. (11.17d)

Safety in program (11.17) is measured pointwise: a trajectory is safe if x(t | xh) ̸∈ Xu

for every time t ∈ [0, T ]. Safety ensuring that the entire history is never contained within Xu

(∃s ∈ [−τ, 0] | x(t− s | xh) ̸∈ Xu∀t ∈ [0, T ]) is a more challenging separate problem and will not

be considered here.

The MV-solution in (11.3) may be applied to (11.17) to create a DDE version of the DDE

distance estimation task in (5.11) by adding a joint probability measure η:

c∗ = inf ⟨c, η⟩ (11.18a)

πx#µ
p = πx#η (11.18b)

⟨1, µ0⟩ = 1 (11.18c)

πt#µh = λ[−τ,0] (11.18d)

µp = δ0 ⊗ µ0 + πtx0# L
†
f (µ̄0 + µ̄1) (11.18e)

πtx1# (µ̄0 + µ̄1) + ν = Sτ#(µh + πtx0# µ̄0) (11.18f)

η ∈M+(X ×Xu) (11.18g)

Measure Definitions from (11.3). (11.18h)

The distance estimation program only affects the cost (11.18a). This change is orthogonal

to the modification in dynamics necessary to create a DDE MV-solution from the ODE program.

11.5.2 Shaping Constraints

Assumption A5 imposes that the classH is graph-constrained. Some applications involve

further structure in the function classH, such as requiring that the histories inH are constant in time

between t ∈ [−τr, 0]. Examples of these constant histories for the system in (11.2) starting within

the black box (H0) are plotted in Figure 11.5.
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Figure 11.5: Constant histories in the black box

These types of structure in histories may be realized by adding constraints to µh. A method

to ensure that the histories in µh are constant in time between t ∈ [−τ, 0] is by requiring µh to be the

occupation measure of the system ẋ = 0 through a Liouville equation

⟨v(0, x), µ0⟩ = ⟨∂tv(t, x), µh⟩+ ⟨v(−τ, x), µ0⟩ ∀v ∈ C([−τr, 0]). (11.19)

11.5.3 Multiple Time Delays

A DDE with multiple time-delays 0 < τ1 < τ2 < . . . < τr for (r, τr) finite and a history

xh ∈ PC([−τr, 0], X) is

ẋ(t) = f(t, x(t), x(t− τ1), . . . , x(t− τr)) (11.20)

x(t) = xh(t), ∀t ∈ [−τr, 0].

A peak estimation problem for (11.20) with history classH and objective p(x) is

P ∗ = sup
t∗∈[0,T ], xh(·)

p(x(t∗ | xh)) (11.21a)

ẋ = f(t, x(t), x(t− τ1), . . . x(t− τr)) ∀t ∈ [0, T ] (11.21b)

x(t) = xh(t) ∀t ∈ [−τr, 0] (11.21c)

xh(·) ∈ H. (11.21d)

A multiple-time-delay MV-solution for the peak estimation problem (11.21) is (for i =
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1..r):

History µhi ∈M+(H0 ∩ ([−τi,−τi−1]×X)) (11.22a)

Initial µ0 ∈M+(X0) (11.22b)

Peak µp ∈M+([0, T ]×X) (11.22c)

Time-Slack νi ∈M+([0, T ]×X) (11.22d)

Occupation Start µ̄0 ∈M+([0, T − τ ]×X2) (11.22e)

Occupation End µ̄i ∈M+([T − τi, T − τi−1]×X2). (11.22f)

The Lie derivative operator Lf with respect to (11.20) for v ∈ C1([0, T ]×X) is

Lfv(t, x0) = ∂tv(t, x0) + f(t, x0, x1, . . . , xr) · ∇x0v(t, x0). (11.23)

The multiple-time-delay peak estimation LP for (11.21) problem of p(x) is

p∗ = sup ⟨p, µp⟩ (11.24a)

⟨1, µ0⟩ = 1 (11.24b)

πt#µhi = λ[−τi,−τi−1] ∀i = 1..r (11.24c)

µp = δ0 ⊗ µ0 + πtx0# L
†
f (µ̄0 +

∑r
i=1 µ̄i) (11.24d)

πtx1# (µ̄0 +
∑r

i=1 µ̄i) + νi = Sτi#(
∑i

j=1 µhj + πtx0# (µ̄0 +
∑i−1

j=1 µ̄i)) ∀i = 1..r (11.24e)

Measure Definitions from (11.22). (11.24f)

Theorem 11.3.2 can be extended to the multiple-time-delay case to prove that P ∗ ≤ p∗

between (11.21) and (11.24). Even if Conjecture 11.3.1 holds in the single-delay case, it is unlikely

the conjecture is satisfied in the multiple-delay case due to findings in [163].

11.5.4 Uncertainty

This extension subsection will discuss three types of uncertainty that can affect DDEs

dynamics: time-independent, time-dependent, and unknown-delay.

11.5.4.1 Time-independent Uncertainty

Time-independent uncertainty θ ∈ Θ for a set Θ can be added to dynamics by adjoining

the state θ following θ̇ = 0 to (11.1b). This same process occurs in Section 4.2.1 for the ODE case.
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11.5.4.2 Time-dependent Uncertainty

Time-dependent uncertainty may be implemented by a Young Measure approach as in

Section 4.2.2. Given dynamics ẋ(t) = f(t, x(t), x(t− τ), w(t)) for w(t) ∈W , the joint occupation

measures representing trajectories are µ̄0 ∈M+([0, T − τ ]×X2×W ) and µ̄1 ∈M+([T − τ, T ]×
X2 ×W ). No substantial changes are required to the Liouville nor consistency constraints.

Input delays may also be introduced into dynamics with ẋ(t) = f(t, x(t), x(t−τ), w(t), w(t−
τ)) under the state history xh and input history wh (defined in times t ∈ [−τ, 0]). The associated

joint occupation measures are now µ̄0 ∈ M+([0, T − τ ] × X2 × W 2) and µ̄1 ∈ M+([T −
τ, T ] × X2 ×W 2), each involving variables (t, x0, x1, w0, w1). The state-input history class is

H ∈ PC([−τ, 0], X ×W ), and its history occupation measure now includes an input component

µh ∈M+([−τ, 0]×X ×W ).

While the Liouville equation stays the same as (11.5), the consistency constraint ensures

that the w1 coordinate contains a delayed copy of w0 with

πtx1w1
# (µ̄0 + µ̄1) = Sτ#(µh + πtx0w0 µ̄0). (11.25)

11.5.4.3 Unknown Delays

This extension focuses on dynamics where the time-independent (constant) delay is un-

known but fixed in the finite range of τ ∈ [τ
¯
, τ̄ ]. The unknown delay τ must be treated as an

additional state with τ̇ = 0.

The following support sets may be defined:

Ωh = {(τ, t, x) | τ ∈ [τ
¯
, τ̄ ], (t, x) ∈ H0 |τ} (11.26a)

Ω0 = {(τ, t, x0, x1) | τ ∈ [τ
¯
, τ̄ ], t ∈ [0, T − τ ], (x0, x1) ∈ X2} (11.26b)

Ω1 = {(τ, t, x0, x1) | τ ∈ [τ
¯
, τ̄ ], t ∈ [T − τ, T ], (x0, x1) ∈ X2}. (11.26c)
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An MV-solution in the unknown-delay case has the form

History µh ∈M+(Ωh) (11.27a)

History Slack µ̄h ∈M+(Ωh) (11.27b)

Initial µ0 ∈M+(X0 × [τ
¯
, τ̄ ]) (11.27c)

Peak µp ∈M+([0, T ]×X × [τ
¯
, τ̄ ]) (11.27d)

Time-Slack ν ∈M+([0, T ]×X × [τ
¯
, τ̄ ]) (11.27e)

Occupation Start µ̄0 ∈M+(Ω0) (11.27f)

Occupation End µ̄1 ∈M+(Ω1). (11.27g)

The Liouville and Consistency constraints in the unknown-delay case are unchanged as

compared to the known-delay system (with the new state τ̇ = 0).

However, the history-validity constraints have the following form:

⟨1, µ0⟩ = 1 (11.28a)

δt=0 ⊗ (πτ#µ0) = δt=−τ̄ ⊗ (πτ#µ0) + (∂t)#(π
tτ
# (µh + µ̂h)) (11.28b)

πt(µh + µ̂h) = λ[−τ̄ ,0]. (11.28c)

Constraint (11.28a) ensures that the initial distribution µ0 is a probability measure. Constraint

(11.28b) imposes that τ(t) is constant in time between t = [−τ̄ , 0]. Constraint (11.28c) is a

domination term that requires the history xh to be defined in times [−τ̄ , 0].
It is an open problem to extend consistency constraints and MV-solutions towards cases

where the delay τ(t) is time-dependent (such as ˙τ(t) ∈ [−B,B]).

11.6 Numerical Examples

All experiments were developed in MATLAB 2021a, and code is available at https:

//github.com/Jarmill/timedelay. Dependencies include Gloptipoly [30], YALMIP [48],

and Mosek [49] in order to formulate and solve moment-SOS LMIs and SDPs.

In this section, a notational convention where (x1, x2) correspond to coordinates of x ∈ X
will be used. All sampled histories in visualizations are piecewise-constant inside H0 with 10

randomly-spaced jumps between [−τ, 0].
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11.6.1 Epidemic Model

This section provides an example of an MV-solution and peak estimation given a single

history in a compartmental epidemic model. Many diseases have incubation periods during which

there is a delay between initial infection and infectious potential. In the current COVID-19 pandemic,

this incubation period appears to be between 2-14 days, with a median of 5 days [173]. The epidemic

dynamics with time delays are

S′(t) = −βS(t)I(t) (11.29a)

I ′(t) = βS(t− τ)I(t− τ)− γI(t) (11.29b)

R′(t) = γI(t). (11.29c)

There exists also exists a ‘latent’ stateL′(t) = βS(t)I(t)−βS(t−τ)I(t−τ) such that S+I+R+L =

1. The setting discussed in this section is β = 0.4, γ = 0.1, T = 30.

Figures 11.6a and 11.6b display simulations of this epidemic model as τ changes under

a constant state history with R = 0. The black curve in Figures 11.6a and 11.6b is the plot of I(t)

at τ = 0. As the incubation period τ , the time t∗ at which the peak is achieved is delayed (moves

rightwards) in a monotonically increasing manner. The other colored curves in each plot have delays

τ ∈ 1..9. In Figure 11.6a with Ih = 0.1, the peak infected population decreases as the delay τ

increases. Conversely in Figure 11.6b with Ih = 0.2, the peak infected population increases as the

delay increases.
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Figure 11.6: Peak infected population vs. time delay
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For the peak estimation example, a constant history is assumed with an initial infection

rate of Ih = 0.2 and an incubation period of τ = 9, forming the initial history S(t) = 1− Ih, I(t) =
Ih, R(t) = 0 between t ∈ [−9, 0].

For numerical purposes, the dynamics are scaled such that t̃ ∈ [0, 1] with an effective

delay of τ̃ = τ/T = 0.3. Only the x = (S, I) subsystem is considered to form the state set

X = {S ≥ 0, I ≥ 0, S + I ≤ 1}, and the joint occupation measures (µ̄0, µ̄1) have variables

(t, S0, I0, S1, I1).

Peak estimation is employed to bound the maximum infection rate over the course of the epi-

demic. This peak estimation program maximizes ⟨I, µp⟩ under the constraint that (µp, µ̄, {ν0, ν1}, ν̂1)
is a free-time MV-solution of dynamics (11.29).

Figure 11.7 displays the output of peak estimation, where the order-3 LMI relaxation

bounds the maximal infection rate at 56.89%. The moment matrix M3[yp] is approximately rank-1

(second largest eigenvalue of M3[yp] = 2.448× 10−5), and the extracted optimum from M3[yp] by

Algorithm 1 is (S∗, I∗) = (0.0561, 0.5689) occurring at t∗ = 15.636 days.
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Figure 11.7: SIR peak estimation and recovery at order 3

11.6.2 Delayed Flow System

A time-delayed version of the Flow system from [36] is

ẋ(t) =

 x2(t)

−x1(t− τ)− x2(t) + x1(t)
3/3

 . (11.30)
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Figure 11.8 plots the delayed Flow system (11.30) without lag (τ = 0 in blue) and with

a lag (τ = 0.75 in orange) starting from the constant initial history xh(t) = (1.5, 0), ∀t ∈ [−τ, 0]
(black circle).
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Figure 11.8: Comparison of delayed Flow systems (11.30) with lags τ = 0 and τ = 0.75 in times

t ∈ [0, 20]

The time-zero set of allowable histories is X0 = {x ∈ R2 | (x1 − 1.5)2 + x22 ≤ 0.42}.
The history class H will be the set of functions xh ∈ PC([−τ, 0]) whose graphs (t, x(t)) are

contained within the cylinder H0 = [−0.75, 0] × X0. No further requirements of continuity are

posed on histories in H. The considered peak estimation aims to find the minimum value of x2

(maximize p(x) = −x2) for trajectories following (11.30) starting from H0, within the state set

X = [−1.25, 2.5] × [−1.25, 1.5] and time horizon T = 5. The first five bounds on the maximum

value of −x2 by solving (11.15) are p∗1:5 = [1.25, 1.2183, 1.1913, 1.1727, 1.1630].

Figure 11.9 plots trajectories and peak information associated with this example. The black

circle is the initial set X0. The initial histories inside X0 are plotted in grey. These sampled histories

are piecewise constant with 10 uniformly spaced jumps (moving to a new point uniformly sampled

in X0) within [−0.75, 0]. The cyan curves are the DDE trajectories of (11.30) starting from the grey

histories. The red dotted line is the p∗5 bound on the minimum vertical coordinate of a point on any

trajectory starting fromH up to T = 5.

Distance estimation is performed on the Flow system 11.30 with an L2 metric, a time

horizon of T = 8, arbitrarily varying histories in H0, a time horizon of τ = 0.5, and a half-circle

unsafe set Xu = {x | 0.52 ≥ (x1 + 0.5)2 + (x2 + 1)2, (1.5 + x1 + x2). The recovered distance

estimates up to degree 4 from SDP relaxations of (11.18) are c∗1:4 = [1.1897 × 10−4, 4.0420 ×
10−4, 0.1572, 0.1820]. Figure 11.10 plots the set Xu in red along with its c∗4 = 0.1820 certified
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Figure 11.9: Minimize x2 on the delayed Flow system (11.30)

distance contour.

Figure 11.10: Minimize c(x;Xu) on the delayed Flow system (11.30)

11.6.3 Delayed Time-Varying System

This example involves peak estimation of a DDE version of the time-varying Example 2.1

of [6] with

ẋ(t) =

x2(t)t− 0.1x1(t)− x1(t− τ)x2(t− τ)
−x1(t)t− x2(t) + x1(t)x1(t− τ)

 . (11.31)

The considered support parameters are τ = 0.75, T = 5, and X = [−1.25, 1.25] ×
[−0.75, 1.25]. The time-zero set is the disk X0 = {x ∈ R2 | (x1 + 0.75)2 + x22 ≤ 0.32}.
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The only restriction on allowable histories H is that their graphs are contained in the history set

H0 = [−0.75, 0]×X0.

Solving the SDP associated with the LMI (11.15) to maximize the peak function p = x1

yields the sequence of five bounds p∗1:5 = [1.25, 1.25, 1.1978, 0.8543, 0.718264618]. Figure 11.11

plots system trajectories and the p∗5 bound on x1 using the same visual convention as Figure 11.9

(black circle X0, grey histories xh(t), cyan trajectories x(t | xh), red dotted line x1 = p∗5).

Figure 11.11: Maximize x1 on the delayed time-varying (11.31)

Figure 11.12 plots the corresponding trajectory and bound information in 3d (t, x1, x2).

The black circles denote the boundary of H0. The history structure inside H0 between times

[−0.75, 1] is clearly visible in grey.

Figure 11.12: A 3d plot of (11.31) and its x1 bound

The peak estimation of p = x2 under the same system parameters leads to the sequence of
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five bounds p∗1:5 = [1.25, 1.25, 0.9557, 0.9138, 0.9112].

11.7 Conclusion

This chapter presented a formulation of MV-solutions for free-terminal-time DDEs with

multiple histories (Definition 11.3.1). These MV-solutions are formed by the conjunction of Validity,

Liouville and Consistency constraints. These MV-solutions may be used to provide upper bounds on

peak estimation problems over DDEs by Program (11.11).

A vital area for future work is determining the conditions under which P ∗ = p∗ between

(11.1) and (11.11) (Conjecture 11.3.1). Other areas for future work include applying MV-solutions

to other problems (such as reachable set and positive-invariant set estimation) and formulating

delay-dependent MV-solutions.
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Conclusion

This thesis solved peak estimation and safety quantification problems by extending an

existing occupation measure framework. The measure LPs are successively approximated by a

sequence of SDPs. Structure may be exploited (if present) to reduce the computational complexity

of solving the SDPs. Combinations of peak estimation variations can be performed by merging

together constraints in the measure LP formulations. Combinations of uncertainty and distance

estimation may be particularly valuable in aeronautic applications, such as when there are uncertain

wind patterns and the unsafe set is a mountain.

Part 1 reviewed the theory of peak estimation, introduced a rank-based recovery algorithm

to attempt extraction of optimal trajectories, and provided an OCP framework for peak estimation

with bounded uncertainties (time-independent, time-dependent, and switching). Part 1 concluded by

adapting peak estimation for the safety margin and distance-of-closest-approach safety quantification

schemes.

Part 2 formulated infinite-dimensional robust counterparts for Lie constraints in order

to eliminate the input-affine and SDR-constrained uncertainties and to render SOS tightenings of

the LP computationally tractable. The robust counterparts have applications in data-driven peak

and reachable set estimation. Peak-minimizing control was reviewed to define the crash-based

safety quantification technique and the distance-maximizing control problem. Both crash-safety and

distance-maximizing-control use the robust counterpart theory to generate solvable programs.

Part 3 applied peak estimation to non-ODE models. Hybrid systems were treated based

on existing hybrid OCP methods, to which Zeno caps were introduced to ensure that the measure

LP remained bounded. Peak estimation was adapted to SDEs by upper bounding the VaR using the

chance-peak framework. DDEs were approached for peak estimation by defining free-terminal-time
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MV-solutions.

The main area for future work is in speeding up the execution time of SDPs derived from

the moment-SOS hierarchy. This can include finding additional decomposable structure that could be

used to bring down the runtime (e.g., network [64]), using Spectral Bundle methods [174, 175] rather

than Interior Point Methods, Harmonic Hierarchies for polynomial optimization [176], or employing

non-symmetric interior point methods [177]. One goal of such methods is to use the results of

Chapter 11 to perform peak estimation of large-scale epidemic networks. Further effort is needed

in Chapter 8 regarding experiments and implementation. Other research focuses include closing

theoretical gaps, such as in performing a no-relaxation-gap proof for DDE peak estimation and

optimal control (Conjecture 11.3.1), and in improving the VaR bounds for SDE using high-degree

moments.
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Chapter A

Appendices

A.1 Proof of Strong Duality for Distance Estimation in Theorem 5.4.5

This proof will follow the method used in Theorem 2.6 of [40] to prove duality.

The two programs (5.11) and (5.17) will be posed as a pair of standard-form infinite-

dimensional LPs using notation from [40]. The following spaces may be defined:

X ′ = C(X0)× C([0, T ]×X)2 × C(X ×Xu) (A.1)

X =M(X0)×M([0, T ]×X)2 ×M(X ×Xu).

The nonnegative subcones of X ′ and X respectively are

X ′
+ = C+(X0)× C+([0, T ]×X)2 × C+(X ×Xu) (A.2)

X+ =M+(X0)×M+([0, T ]×X)2 ×M+(X ×Xu).

The cones X ′
+ and X+ in (A.2) are topological duals under assumption A1, and the

measures from (5.11e)-(5.11f) satisfy µ = (µ0, µp, µ, η) ∈ X+. The spaces Y and Y ′ may be

defined as

Y ′ = C(X)× C1([0, T ]×X)× R (A.3)

Y =M(X)× C1([0, T ]×X)′ × 0. (A.4)

We express Y+ = Y and Y ′
+ = Y ′ to maintain a convention with [40] given there are no affine-

inequality constraints in (5.11). We equip X with the weak-* topology and Y with the (sup-norm

bounded) weak topology. The arguments ℓ = (w, v, γ) from problem (5.17) are members of the set

Y ′
+.
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The linear operators A′ : Y ′
+ → X ′

+ and A : X+ → Y+ induced from constraints

(5.11b)-(5.11d) may be defined as

A(µ) = [πx#µp − πx#η, δ0 ⊗ µ0 + L
†
fµ− µp, ⟨1, µ0⟩] (A.5)

A′(ℓ) = [v(0, x)− γ,w(x)− v(t, x),Lfv(t, x),−w(x)].

The last pieces needed to convert (5.11) into a standard-form LP are the cost vector

c = [0, 0, 0, c(x, y)] and the answer vector b = [0, 0, 1] ∈ Y ′. Problem (5.11) is therefore equivalent

to (with ⟨c,µ⟩ = ⟨c, η⟩)

p∗ = inf
µ∈X+

⟨c,µ⟩ b−A(µ) ∈ Y+. (A.6)

The dual LP to (A.6) in standard form is (with ⟨ℓ,b⟩ = γ)

d∗ = sup
ℓ∈Y ′

+

⟨ℓ,b⟩ A′(ℓ)− c ∈ X+. (A.7)

The operators A and A′ are adjoints with ⟨A(ℓ),µ⟩ = ⟨ℓ,A′(µ)⟩ for all ℓ ∈ Y ′
+ and

µ ∈ X+.

The sufficient conditions for strong duality and attainment of optimality between (A.6) and

(A.7) as outlined in Theorem 2.6 of [40] are that:

R1 All support sets are compact (A1).

R2 All measure solutions have bounded mass (Lemma 5.5.1).

R3 All functions involved in the definitions of c and A are continuous (A2, A3).

R4 There exists a µfeas ∈ X+ with b−A(µfeas) ∈ Y+.

The requirements R1 and R2 hold by Assumption A1 and Lemma 5.5.1 respectively.

R3 is valid given that c(x, y) is C0 (A3), the projection map πx is continuous, and the mapping

(t, x) 7→ Lfv(t, x) is C0 for v ∈ C1 and f Lipschitz (continuous) (A2). A feasible measure µfeas

may be constructed from the process in Theorem 5.4.1 from a tuple T , therefore satisfying R4.

Strong duality between (5.11) and (5.17) is therefore proven after satisfaction of all four

requirements.

A.2 Continuity of Multipliers

This section will prove Theorem 6.4.3. Along the way, it will form a general condition for

lower semicontinuity of robust counterparts.
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A.2.1 Set-Valued Preliminaries

We first review concepts in set-valued analysis. Given spaces Y and Z, a set-valued

function F : Y ⇒ Z is a mapping between the power sets F : 2Y → 2Z . A set E ⊂ Y is inside the

domain Dom(F ) if F (E) ̸= ∅. In this section, we will be utilizing point-set maps (F : Y → 2Z).

Definition A.2.1 (Definition 1.4.2 of [178]). The function F is lower semicontinuous at y ∈ Dom(F )

if, for every sequence {yk} converging to y ({yk} → y), there exists a converging sequence

{zk ∈ F (y)} converging to an element z ∈ F (y). The map F is lower semicontinuous if it is

lower semicontinuous at each y ∈ Dom(F ).

Definition A.2.2. Let F0, F1 be set-valued maps Y ⇒ Z. The containment relation F0 ⊆ F1 holds

if ∀y ∈ Y : F0(y) ⊆ F1(y).

Remark A.2.1. Lower semicontinuity in Definition A.2.1 is also called inner semicontinuity in

[179].

Definition A.2.3 (Definition 1 of [180]). A family of set-valued maps {Sρ : Y ⇒ Z}ρ≥0 is a

ρ-decreasing family if ∀ρ ≥ ρ′ ≥ 0, y ∈ Y : Sρ ⊆ Sρ′ .

Definition A.2.4 (Definition 2 of [180]). A ρ-decreasing family {Sρ}ρ≥0 is dense if S0(y) ⊆
Closure (∪ρ>0Sρ(y)) for all y ∈ Y .

Definition A.2.5 (Definition 3 of [180]). A ρ-decreasing family {Sρ}ρ≥0 is pseudo-lower-continuous

at y if for all sequences {yk} → y, parameters ρ > ρ′ > 0, and points z ∈ Sρ(y), there exists an

N ∈ N and a sequence {zk} → z such that ∀k ≥ N : zk ∈ Sρ′(yk). The family is pseudo-lower-

continuous if it is pseudo-lower-continuous at all y ∈ Y .

Corollary 4 (Excerpt of Remark 5 of [180]). If a ρ-decreasing family {Sρ}ρ≥0 is pseudo-lower-

continuous and dense, then S0 is lower semicontinuous.

A.2.2 Lower Semicontinuity of Strict Robust Counterpart Multipliers

This subsection will analyze continuity properties of the strict semi-infinite inequality (6.7).

The following assumptions are required:

A1’ The assumptions of Theorem 6.2.1 are satisfied (convex pointed cones with nonempty interiors

satisfying Slater conditions).
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A2’ The parameter set Y is compact.

A3’ The problem data (a0, b0, bℓ, es) of (6.8) are all continuous functions of y ∈ Y .

A4’ The problem data (aℓ, As, Gs) are all constant in y.

Remark A.2.2. Continuity of problem data in A4’ over Y implies that all problem entries are finite.

Define the following quantities based on (6.6):

Z = K∗ × RL e = [e1; e2; . . . ; eNs ] (A.8a)

a• = [a1, a2, . . . , aL] b• = [b1; b2; . . . ; bL] (A.8b)

A = blkdiag(A1, A2, . . . ANs) G = blkdiag(G1, G2, . . . GNs). (A.8c)

We define a ρ-indexed family of set-valued maps Sρ : Y ⇒ Z as the ρ-modified solution

map to (6.6):

Sρ>0(y) =

(ζ, β) ∈ Z :

eT ζ + aT0 β + ρ ≤ b0
GT ζ = 0

AT ζ + aT• β = b•

 , (A.9a)

S0(y) =

(ζ, β) ∈ Z :

eT ζ + aT0 β < b0

GT ζ = 0

AT ζ + aT• β = b•

 . (A.9b)

The semi-infinite strict program (6.7) has a solution at the parameter y if S0(y) ̸= ∅.

Lemma A.2.1. The family {Sρ}ρ≥0 from (A.9) is a ρ-decreasing family (Def. A.2.3).

Proof. The tolerance ρ only appears in the linear inequality eT ζ+aT0 β+ρ ≤ b0. The maps therefore

satisfy ∀ρ > ρ′ ≥ 0 : Sρ ⊆ Sρ′ .

Theorem A.2.2. The mapping S0 from (A.9b) is lower semicontinuous.

Proof. This theorem will be proved using Proposition 3 of [180]. Define the following maps:

ϕ(y) = −b0 (A.10a)

γ(ρ) = ρ (A.10b)

ξ(y, ζ, β) = −(eT ζ + aT0 β) (A.10c)

Ψρ(y) =

(ζ, β) ∈ Z :

GT 0

AT aT•

ζ
β

 =

0
b•

 . (A.10d)
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Note that Ψρ(y) in (A.10d) is independent of ρ, that b• is a continuous function of y (A3’), and

(G,A, a•) are constant in terms of y (A4’). The map Ψρ(y) is additionally lower-semicontinuous

(and Lipschitz) w.r.t. perturbations in b•(y) by extension of arguments in Theorem 2.2 of [181] to

the conic case (noting that Ψρ is constant in its left-hand side). The mapping Sρ from (A.9) may be

expressed in terms of arguments defined in (A.10), as in

Sρ>0(y) = {(ζ, β) ∈ Ψρ(y) : ξ(y, ζ, β) ≥ ϕ(y) + γ(ρ)}, (A.11a)

S0(y) = {(ζ, β) ∈ Ψρ(y) : ξ(y, ζ, β) > ϕ(y)}. (A.11b)

Given that ξ is lower semi-continuous (continuous by A3’), ϕ is upper-semicontinuous (continuous

by A3’), Ψρ is dense and pseudo-lower-continuous (lower semicontinuous and ρ-independent),

and γ is monotonically increasing; it holds by Proposition 3 of [180] that {Sρ}ρ≥0 is dense and

pseudo-lower-continuous. Corollary (4) then ensures that S0 is lower semicontinuous.

A.2.3 Continuity of Lie Multipliers

We now use the results from Section A.2.2 to prove Theorem 6.4.3.

We begin by recalling the association in (6.24) between the Lie constraint and robust

counterpart parameters. Assumptions A1-A4 and A1’-A4’ are all active in this section. The

parameter set in the Lie setting is Y = [0, T ]×X ×W , and the solution set is Z =
∏Ns
s=1K

∗
s with

β = ∅.

A ρ-decreasing family Sρ (A.9) may be constructed from (6.24). This family has a lower-

semicontinuous map S0 by Theorem A.2.2.

We now review a condition for a continuous selection:

Definition A.2.6. Let F : Y ⇒ Z be a set-valued map. The function σ : Y → Z is a selection for

F if ∀y ∈ Y : σ(y) ∈ F (y).

Theorem A.2.3 (Michael’s Theorem, Thm. 9.1.2 of [178]). Let Y be a compact metric space and

Z be a Banach Space. If F : Y ⇒ Z has closed convex images for each y ∈ Y , then there exists a

continuous selection σ for F .

Note that Michael’s Theorem does not require that the images of F in Z should be compact.

Michael’s theorem requires closed convex images. The images of S0 are convex, but additional

knowledge is needed to ensure that the mappings are closed:
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Lemma A.2.4. Given that the Lfv(t, x, w) < 0 relation holds strictly in the compact space Ω =

[0, T ]×X ×W with Lfv continuous, the function Lfv attains its maximal value.

We now prove Theorem 6.4.3:

Proof. Define τ as τ = max(t,x,w)∈Ω < 0 from Lemma A.2.4. All mappings {Sρ}ρ∈[0,τ ] are equal

to each other, and therefore both Sτ and S0 are closed. S0 satisfies all requirements of Michael’s

Theorem A.2.3 and therefore has a continuous selection for the Lie multipliers. The below minimal

map is one such continuous selection (Prop. 9.3.2 in [178]):

m(S0(t, x, w))
.
=

{
ζ ∈ S0(t, x, w) : ∥ζ∥ = min

y∈S0(t,x,w)
∥y∥
}
. (A.12)

Remark A.2.3. We note that the minimum-norm selection A.12 may be used to prove continuity of

multipliers when Y is noncompact by Proposition 9.3.2 of [178] and arguments from Theorem 2 of

[86]. Problem instances with noncompact Y will introduce conservatism when applying polynomial

approximations, given that the Stone-Weierstrass theorem cannot be applied in the noncompact

setting.

A.3 Integral Costs and Robust Counterparts

This appendix discusses Lie nonnegativity constraints with a cost J(t, x, w):

Lfv(t, x, w) + J(t, x, w) ≥ 0 ∀(t, x, w) ∈ [0, T ]×X ×W. (A.13)

Constraints with (A.13) appear in OCPs involving integral costs:

inf
w

∫ T
0 J(t, x(t), w(t))dt ẋ(t) = f(t, x(t), w(t)), x(0) = x0. (A.14)

The expression in (A.13) is an inequality relaxation [7] of the Hamilton-Jacobi-Bellman constraint

[107]:

min
w∈W

Lfv(t, x, w) + J(t, x, w) = 0 ∀(t, x) ∈ [0, T ]×X. (A.15)

Integral costs with peak estimation are discussed in Equation (5.2) of [6].

This appendix will assume that Assumptions A1-A4 are active.

Representations of (A.13) in standard robust form (6.6) will be worked out for the specific

cases of L∞, L1, and quadratic running costs. Results will be reported as the combination of an

extended SDR uncertainty set W̃ (such that πwW̃ = w) and terms (a, b) to form (6.6).
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A.3.1 L-infinity Running Cost

This subsection will involve a running cost J(t, x, w) = ∥Cw∥∞ for a matrix C ∈ Rc×L

with c ≥ L and rank(C) = L. A new term w̃ ∈ R may be introduced to form the lifted SDR

uncertainty set

W̃∞ = {w ∈W, w̃ ∈ R : 1cw̃ − Cw ≥ 0, 1cw̃ + Cw ≥ 0}. (A.16)

The weighted L∞-running cost Lie term from (A.13) is

Lfv(t, x, w) + ∥Cw∥∞ ≥ 0 ∀(t, x, w) ∈ [0, T ]×X ×W.

=Lfv(t, x, w) + w̃ ≥ 0 ∀(t, x, w, w̃) ∈ [0, T ]×X × W̃∞. (A.17)

The correspondence in (6.6) for the L∞ running cost is (A.17) w̃ by

b0 = Lf0v(t, x, w) a0 = 0 (A.18a)

bℓ = fℓ · ∇xv(t, x, w) aℓ = 0 ∀ℓ ∈ 1..L (A.18b)

bL+1 = 1 aL+1 = 0. (A.18c)

A.3.2 L1 Running Cost

This subsection has a running cost of J(t, x, w) = ∥w∥1, as performed by [82]. The

standard L1 lift as reported in [71] introduces w̃ ∈ RL under the constraint

W̃1 = {w ∈W, w̃ ∈ RL : w̃ − w ≥ 0, w̃ + w ≥ 0}. (A.19)

The L1-running cost Lie term from (A.13) is

Lfv(t, x, w) + ∥w∥1 ≥ 0 ∀(t, x, w) ∈ [0, T ]×X ×W.

=Lfv(t, x, w) + 1TLw̃ ≥ 0 ∀(t, x, w, w̃) ∈ [0, T ]×X × W̃1. (A.20)

The correspondence in (6.6) for the L1 case (A.20) is:

b0 = Lf0v(t, x, w) a0 = 0 (A.21a)

bℓ = fℓ · ∇xv(t, x, w) aℓ = 0 ∀ℓ ∈ 1..L (A.21b)

bℓ′ = 1 aℓ′ = 0 ∀ℓ′ ∈ L+ 1..2L. (A.21c)
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A.3.3 Quadratic Running Cost

This subsection will discuss the standard convex quadratic cost

J(t, x, w) = xTPx+ wTRw + 2wTNx P ∈ Sn+, R ∈ SL+, N ∈ RL×n. (A.22)

Let Ξ = [Q,NT ; N,R] be a matrix with factorization (Ξ1/2)TΞ1/2 = Ξ. The cone

description with mixed quadratic uncertainty is

W̃2 = {w ∈W, w̃ ∈ R : (Ξ1/2[x;w], w̃, 1/2) ∈ QLr }. (A.23)

The quadratic-cost Lie expression from (A.13) is

Lfv(t, x, w) + xTPx+ wTRw + 2wTNx ≥ 0 ∀(t, x, w) ∈ [0, T ]×X ×W

=Lfv(t, x, w) + w̃ ≥ 0 ∀(t, x, w, w̃) ∈ [0, T ]×X × W̃2. (A.24a)

The correspondence in (6.6) for the mixed quadratic case case (A.24a) is

b0 = Lf0v(t, x, w) a0 = 0 (A.25a)

bℓ = fℓ · ∇xv(t, x, w) aℓ = 0 ∀ℓ ∈ 1..L (A.25b)

bL+1 = 1 aL+1 = 0. (A.25c)

Lemma A.3.1. Lower semicontinuity (Theorem 6.4.3) and convergence (Theorem 6.5.4) is preserved

in the mixed set (A.23) (after accounting for the sign changes with the strict Lfv > 0).

Proof. Let [Ξ1/2
x , Ξ

1/2
w ] be a column-wise partition of Ξ1/2 corresponding to the x and w multiplica-

tions. The rotated SOC constraint in (A.23) may be expressed with parameters

Amix =


Ξ
1/2
w 0

0L×1 1

0L×1 0

 emix =


Ξ
1/2
x x

0

1/2

 (A.26a)

Gmix = ∅ Kmix = QLr (A.26b)

forming the conic constraint

Amix[w; w̃] + emix ∈ Kmix. (A.27)

Now consider the assumptions in Section A.2.2. A3’ is satisfied because emix is a continuous (affine)

function of x and does not involve t. A4’ is also satisfied because Amix is constant in (t, x) and

Gmix = ∅. Assumptions A1-A4 ensure that A1’ and A2’ are fulfilled, completing the proof.
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A.4 Polynomial Approximation of the Auxiliary Function

This appendix uses arguments from [6] to prove that Problem (6.16) may be approximated

with ε-accuracy by a polynomial auxiliary function. Assumptions A1-A4 are in place, ensuring that

Ω = [0, T ]×X ×W is compact.

Let ε > 0 be an optimality bound, and let v(t, x) ∈ C1([0, T ] × X) be an auxiliary

function that satisfies constraints (6.16c) and (6.16d) with

sup
x∈X0

v(0, x) ≤ d∗ + ε. (A.28)

The i-th coordinate of dynamics ẋ = F (t, x, w) = f0(t, x) +
∑L

w=1wℓfℓ(t, x) from (6.1)

is indexed by Fi(t, x, w).

A tolerance η > 0 may be chosen as (Equation 4.10 of [6]):

η <
ε

max
(
2, 2T, 2T∥F1∥C0(Ω), . . . , ∥Fn∥C0(Ω)

) . (A.29)

A polynomial approximation of the C1 function v may be performed by Theorem 1.1.2

of [182] to find a polynomial w ∈ R[t, x] such that ∥v(t, x) − w(t, x)∥C1(Ω) < η uniformly. The

perturbed auxiliary function,

V (t, x) = w(t, x) + ε(1− t/(2T )), (A.30)

satisfies the following strict inequalities from (6.16) (equation 4.12 in [6]),

d∗ + (5/2)ε > V (0, x) ∀x ∈ X0 (A.31a)

LF (t,x,w)V (t, x) < 0 ∀(t, x, w) ∈ Ω (A.31b)

V (t, x) < p(x) ∀(t, x) ∈ [0, T ]×X. (A.31c)

There then exists some finite d such that the polynomial V (t, x) with an optimal solution

of (at most) d∗ + (5/2)ε has degree d [6].

A.5 Polynomial Approximation of Multipliers

Let (ζc(y), βc(y)) be a continuous selection of multipliers of S0(y) (A.9b) (guaranteed to

exist by Michael’s Theorem A.2.3). This section will prove that there exists a polynomial choice

(ζp(y), βp(y)) that is also a continuous selection for S0.
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A.5.1 Continuous Parameterization

Considering the map Gρ(y) from (A.10d), let Φ(y) be the matrix inside the Gρ(y) affine

constraint:

Φ =

GT 0

AT aT•

 . (A.32)

Assumption A4’ imposes that Φ is constant in y. Define H as a constant matrix whose columns

span the nullspace of Φ, in which N is the nullity of Φ. Let r be the following least-squares solution

(ignoring the conic constraint ζ ∈ K∗):

θ = Φ+[0; b•]. (A.33)

The vector θ(y) is a continuous function of y given that b• is continuous (A3’) and Φ is

constant.

The set of solutions to Gρ(y) may be expressed using (ζ, β) = (θ +Hψ) as

Gρ(y) = {(θ +Hψ) | ψ ∈ RN , (θ +Hψ) ∈ Z}. (A.34)

We will partition (θ,H) according to the resident cones Ks and free values Rr by

ζs = θs +Hsψ ∀s = 1..Ns (A.35a)

β = θβ +Hβψ. (A.35b)

Given that (ζc, βc) are a continuous selection of (A.9b) satisfying (A.10d), there exists a

continuous ψc : Y → RN from (A.34) such that (ζc, βc) = θ +Hψc.

A.5.2 Polynomial Approximation

We will use the Stone-Weierstrass theorem to approximate the function ψc : Y → Rn by a

polynomial vector ψp ∈ R[y]N in the compact space Y up to a tolerance ϵ > 0 with

sup
y∈Y
∥ψc(y)− ψp(y)∥∞ ≤ ϵ. (A.36)

In order to pose a valid approximation (ζp, βp), we need to use a notion of centers of cones.

We will choose the incenter:
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Definition A.5.1 (Def. 2.1 of [183]). Let (X, ∥·∥) be a reflexive Banach space with distance

dist(x1, x2) = ∥x1 − x2∥, and let SX be the unit sphere in X . Given a cone K ⊂ X , let K ∩ SX be

the set of unit-norm elements of the cone K. The incenter of K is the unique solution to

ς(K) = sup
x∈K∩SX

dist(x; ∂K). (A.37)

Remark A.5.1. The following equation lists common cones and their incenters [184]:

R≥0 : 1 Qn : (0n; 1) Sn+ : In/
√
n. (A.38a)

For a given cone Ks, we define cs as the incenter of Ks. In the semidefinite case, the

incenter will be appropriately vectorized following the vectorial convention of cone containment Ks.

Our approximation (ζp, βp) will be defined using tolerances δs > 0 for s = 1..Ns:

ζp = θs +Hsψ
p + δscs ∀s = 1..Ns (A.39a)

βp = θβ +Hβψ
p. (A.39b)

The tolerance terms δscs will encourage conic containment in K∗. Tolerance terms are

therefore unnecessary to encourage containment of the free values β ∈ Rr. Note that (ζp, βp) from

(A.39) will be polynomial when the continuous b• is polynomial (A3).

The approximators (ζp, βp) are related to (ζc, βc) by

ζps = ζcs + csδs +Hs(ψ
p − ψc) (A.40a)

βp = βc +Hβ(ψ
p − ψc). (A.40b)

The term in (A.40a) dominates the worst-case bound

ζcs + csδs +Hs(ψ
p − ψc) ≥K∗

s
ζcs + c∗s(δs − ∥Hs∥∞ϵ) (A.41)

using the Stone-Weierstrass ϵ-approximation (A.36).

A sufficient condition for ζps ∈ K∗
s through (A.41) is that

δs ≥ ∥Hs∥∞ϵ. (A.42)

No additional work is needed to ensure βp ∈ Rr in (A.40b).

We now move to the strict inequality constraint in (A.9b)

eT ζ + aT0 β < b0. (A.43)
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Substitution of (ζp, βp) from (A.39) into (A.43) leads to

Ns∑
s=1

eTs (ζ
c
s + csδs +Hs(ψ

p − ψc)) + aT0 (β
c +Hβ(ψ

p − ψc)) < b0. (A.44)

Recalling that each cone Ks is a subset of the finite-dimensional Rns , the left-hand term

of (A.44) is upper-bounded using (A.36) by

Ns∑
s=1

(eTs ζ
c
s + eTs csδs + ∥diag(es)Hs∥∞ϵns) + (aT0 β

c + ∥diag(a0)Hβ∥∞ϵr (A.45a)

=

[
Ns∑
s=1

eTs ζ
c
s + aT0 β

c

]
+

[
Ns∑
s=1

(δse
T
s cs + ∥diag(es)Hs∥∞nsϵ) + ∥diag(a0)Hβ∥∞ϵr

]
. (A.45b)

Define Q∗ as the finite and positive value

Q∗ = min
y∈Y

b0 −
[∑Ns

s=1 e
T
s ζ

c
s + aT0 β

c
]
> 0. (A.46)

The minimum in (A.46) is attained because all functions (b0, e, a0, ζ, β) are continuous in the

compact region Y (just as in Lemma A.2.4).

Successful polynomial-based approximation with (ζp(y), βp(y)) ∈ S0(y) will occur if

({δs}, ϵ) are chosen with

ϵ > 0 (A.47a)

∀s = 1..Ns : δs ≥ ∥Hs∥∞ϵ (A.47b)
Ns∑
s=1

(δse
T
s cs + ∥diag(es)Hs∥∞nsϵ) + ∥diag(a0)Hβ∥∞rϵ < Q∗. (A.47c)

Shrinking the tolerances ({δs}, ϵ) towards zero will result in approximations of increasing

quality. This approximation quality is directly relevant towards establishing convergent bounds in

Lie problems, such as in the suboptimal peak estimation task discussed in Appendix A.4.

A.6 Robust Duality and Recovery

This appendix dualizes programs formed by robust Lie constraints (6.25) and forms an

interpretation based on occupation measures. It also reviews a technique from [77, 78] to extract

approximate polynomial control laws from moment-SOS solutions.
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A.6.1 Duality

To simplify explanations, we will consider a polytope-constrained peak estimation problem

from (6.36) with G = 0 and an set of W = {w ∈ RL | e − Aw ≥ 0}. The Lie-robustified peak

estimation LP under polytopic uncertainty considered in this appendix is

d∗ = inf
v(t,x),γ,ζ

γ (A.48a)

γ ≥ v(0, x) ∀x ∈ X0 (A.48b)

Lf0v(t, x) + eT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (A.48c)

− (AT )ℓζ(t, x) + fℓ · ∇xv(t, x) = 0 ∀ℓ = 1..L (A.48d)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (A.48e)

v(t, x) ∈ C1([0, T ]×X) (A.48f)

ζj(t, x) ∈ C+([0, T ]×X) ∀j = 1..m. (A.48g)

We will derive a weak dual program to (A.48). Define the following measures as multipliers

to constraints in (A.48):

Initial µ0 ∈M+(X0) (A.49a)

Occupation µ ∈M+([0, T ]×X) (A.49b)

Peak µp ∈M+([0, T ]×X) (A.49c)

Controlled ν ∈M([0, T ]×X) ∀ℓ = 1..L (A.49d)

Constraint-Slack µ̂j ∈M+([0, T ]×X) ∀j = 1..m. (A.49e)

The Lagrangian L associated with (A.48) is

L =γ + ⟨v(0, x)− γ, µ0⟩+ ⟨Lf0v(t, x) + eT ζ(t, x), µ⟩+ ⟨−v(t, x) + p(x), µp⟩ (A.50)

+
∑m

j=1⟨−ζj , µ̂j⟩+
∑L

ℓ=1⟨fℓ · ∇xv(t, x)− (AT )ℓζ(t, x), νℓ⟩

=γ(1− ⟨1, µ0⟩) + ⟨v(t, x), δ0 ⊗ µ0L†f0µ+
∑L

ℓ=1(fℓ · ∇x)†νℓ − µp⟩ (A.51)

+
∑m

j=1⟨ζj(t, x), ejµ− (
∑L

ℓ=1Ajℓνj)− µ̂j⟩+ ⟨p(x), µp⟩. (A.52)
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The dual measure LP of (A.48) is

p∗ = sup
(A.49)

inf
γ,v,ζ

L (A.53a)

= sup ⟨p(x), µp⟩ (A.53b)

µp = δ0 ⊗ µ0 + L†f0µ+
∑L

ℓ=1(fℓ · ∇x)†νℓ (A.53c)

ejµ = (
∑L

ℓ=1Ajℓνj) + µ̂j ∀j = 1..m (A.53d)

⟨1, µ0⟩ = 1 (A.53e)

Measures from (A.49). (A.53f)

Remark A.6.1. Program (A.53) should be compared against the standard peak estimation program

(3.2). Constraint (A.53c) is a robustified Liouville equation. Constraint (A.53d) is a sequence

of domination conditions, as detailed in Section 2.2.3. Constraint (A.53e) enforces that µ0 is a

probability measure.

Lemma A.6.1. The measure program A.53 upper-bounds on (6.14) with p∗ ≥ P ∗.

Proof. Let t∗ ∈ (0, T ] be a stopping time of a trajectory of (6.1) with applied control input w(t)

starting from an initial condition x0 ∈ X0. Measures from (A.53) may be constructed from the

trajectory x(t | x0, w(·)).
The probability measures are µ0 = δx=x0 and µp = δt=t∗,x=x(t∗|x0,w(·)). Relaxed occupa-

tion measures may be chosen as the occupation measures of the following evaluation maps in the

times t ∈ [0, t∗]:

µ : t 7→ (t, x(t | x0, w(·)) (A.54a)

νℓ : t 7→ (t, wℓ(t)x(t | x0, w(·)) ∀ℓ = 1..L (A.54b)

µ̂j : t 7→ (t, (ej −Ajw(t))x(t | x0, w(·)) ∀j = 1..m. (A.54c)

Every trajectory x(t | x0, w(·)) has a feasible measure representation, proving the upper-bounding

theorem.

Theorem A.6.2. Strong duality holds between (A.53) with (A.48) d∗ = p∗ = P ∗ under assumptions

A1-A6.

Proof. The bound d∗ ≥ p∗ holds by weak duality [75, 185]. Lemma A.6.1 proves that p∗ ≥ P ∗,

together forming the chain d∗ ≥ p∗ ≥ P ∗. Theorem 6.4.2 proves that the optimal value d∗ from the
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robust (A.48) equals the optimal value of the non-robust (6.16), which is in turn equal to P ∗ from

(6.14) by Theorem 2.1 of [7]. Since d∗ and P ∗ are equal, it holds that the sandwiched p∗ satisfies

d∗ = p∗ = P ∗.

Lemma A.6.3. Under A1-A6 and the further assumption that the polytope W is compact all of the

nonnegative measures in (A.53) are bounded.

Proof. Boundedness of a nonnegative measure will be demonstrated by showing that the measure

has finite mass and it is supported on a compact set. Assumptions A1-A2 posit compactness of

[0, T ] ×X . The probability measures are ⟨1, µ0⟩ = 1 (by (A.53e)), ⟨1, µp⟩ = 1 (by (A.53c) with

v(t, x) = 1). The relaxed occupation measure µ is bounded with ⟨1, µ⟩ ≤ T (by (A.53c) under A1).

Applying a test function ζj = 1 to the domination constraint (A.53d) leads to

e⟨1, µ⟩ = A⟨1, ν⟩+ ⟨1, µ̂⟩ ⇒ e⟨1, µ⟩ ≥ A⟨1, ν⟩. (A.55)

where the measure pairings are vectorized for convenience. The pairings ⟨1, ν⟩ are members of the

⟨1, µ⟩-scaled compact polytope W , proving that the constraint-slack measures µ̂j is bounded for

each j ∈ 1..m.

Remark A.6.2. The signed measures νℓ in (A.53) have unbounded TV norm. Each signed measure

νℓ ∈M([0, T ]×X) can be decomposed into nonnegative measures by a Hahn-Jordan decomposi-

tion:

νℓ = ν+ℓ − ν
−
ℓ , ν+ℓ , ν

−
ℓ ∈M+([0, T ]×X) ∀ℓ = 1..L (A.56)

ν+ℓ ⊥ ν
−
ℓ ∀ℓ = 1..L. (A.57)

A direct substitution of (A.56) into (A.53) will leave the TV norm ∥νℓ∥TV = ⟨1, ν+ℓ + ν−ℓ ⟩
as a possibly unbounded degree of freedom, because only the mass of the difference ⟨1, ν+ℓ − ν

−
ℓ ⟩ is

constrained in (A.53d). Under the assumption that the SDR set W is compact, the measures ν+ℓ and

ν−ℓ may be bounded by adding new mass constraints to (A.53):

M+
ℓ = max

w∈W, wℓ≥0
wℓ, ⟨1, ν+ℓ ⟩ ≤ ⟨1, µ⟩M

+
ℓ ∀ℓ = 1..L (A.58a)

M−
ℓ = min

w∈W, wℓ≤0
wℓ, ⟨1, ν−ℓ ⟩ ≤ ⟨1, µ⟩M

−
ℓ ∀ℓ = 1..L. (A.58b)

The addition of (A.58) will not change the optimum value p∗ of (A.53). However, the dual of

(A.53) with constraints in (A.58) will be different from (A.48), and will no longer feature equality

constraints in (A.48d).
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Remark A.6.3. The duality results of this appendix subsection may be extended to other compact

SDR sets W . Special caution must be taken notationally when referring to the adjoints of affine maps

(from (6.5)) and the dual spaces of cone-valued continuous functions C([0, T ]×X → K∗
s )

′.

Remark A.6.4. The work in [77] performs optimal control in the unit box W = [−1, 1]L, resulting

in measure programs that have the form of (A.56) (excluding the orthogonality constraint (A.57))

with an additional bounded-mass constraint:

ν+ℓ + ν−ℓ + µ̂ℓ = µℓ ν+ℓ − ν
−
ℓ = νℓ ∀ℓ = 1..L. (A.59)

The work in [78] rescales the dynamics to ensure that W = [0, 1]L. The measure ν−ℓ can be set to

zero in the nonnegative box case, and the problem involves only nonnegative measures with νℓ = ν+ℓ

for each ℓ.

A.6.2 Recovery

Let (v, ζ) be a degree-2k solution to the SOS program (6.27) associated with (A.48). Let

Q0 be the solved Gram matrix associated with the Lie constraint (A.48c) (SOS constraint (6.27a)),

and let σℓ be the vector of dual variables corresponding to the equality constraint (A.48d) (finite-

degree (6.27b)). By strong duality in the hierarchy ([27] and extensions from [97, Theorem 4 and

Lemma 4]), the SDP dual variable to Q0 is the moment matrix Md[m] in which m is a moment

sequence of µ. Similarly, the dual variables of σℓ are moment sequences mℓ of a signed measure µℓ

for each ℓ = 1..L (because every symmetric matrix may be expressed as the difference between two

PSD matrices).

An approximate control law ŵℓ(t, x) for all ℓ = 1..L may be recovered from the degree-

≤ 2k moments of m and the degree-≤ k moments of mℓ (written as m≤d
ℓ ) by [77, Equation 41]

yℓ = Mdm
−1(m≤d

ℓ ) ŵℓ(t, x) =
∑

(α,β)∈NL+1, |α|+β≤d

yℓαβx
αtβ. (A.60a)

Controllers from (A.60) will converge in an L1 sense to the optimal control law by [77,

Theorem 8] as the degree increases. It remains an open problem to quantify performance indices

when deploying finite-degree recovered controls on system (6.1).
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A.7 Strong Duality of Linked Semidefinite-Measure Programs

The work in [23] gives sufficient condition to ensure strong duality in the framework

of linear programming on measures. This appendix generalizes the results of [23] by forming a

framework of convex programming on measures with infinite-dimensional linear constraints and

finite dimensional LMI constraints on moments. In particular, we add the case of optimization over

Borel measures with SOC constraints on their moments to the original framework [23].

Let M,m0 ∈ N be positive integers. For i = 1..M , let mi ∈ N and Xi ⊂ Rmi be a

compact set. Let:

• X0 ⊂ Sm0 be a vector space of symmetric matrices. Specific instances of X0 could be

{diag(χ) | χ ∈ Rm0} (the space of diagonal matrices, corresponding to linear programming),

or X0 = Sm0 (the space of all symmetric matrices, corresponding to semidefinite program-

ming). In particular, there exists such a space to represent second order cone programming

[89]),

• X∞ =M(X1)× . . .×M(XM ) be a vector space of signed Borel measures, equipped with

its weak-∗ topology, so that its topological dual is X ∗
∞ = C(X1)× . . .× C(XM ),

• X = X0 ×X∞ be our decision space, with topological dual X ∗ = X0 ×X ∗
∞,

• A Banach space Y with dual Y∗ that will represent our constraint space for equality con-

straints. In the context of the moment-SOS hierarchy, Y is chosen as a product space of

smooth/polynomial functions defined on compact sets,

• X+ = {(X,µ1, . . . , µM ) ∈ X | X ⪰ 0, ∀i = 1..M, µi ∈M+(Xi)} and

X ∗
+ = {(Y, v1, . . . , vM ) ∈ X ∗ | Y ⪰ 0, ∀i = 1..M, vi ≥ 0} be two convex cones.

For ϕ = (X,µ1, . . . , µM ) ∈ X and ψ = (Y, v1, . . . , vM ) ∈ X ∗, we define the duality

⟨ψ, ϕ⟩X = Tr(X Y ) +
M∑
i=1

∫
Xi

vi(xi)dµi(xi). (A.61)

Similarly, we denote by ⟨·, ·⟩Y the duality between elements of Y and Y∗. Let A : X −→ Y∗

be a continuous linear map, y ∈ Y∗ be a vector of continuous linear forms (when Y is made of

polynomials, y is a moment sequence), C ∈ X0, p ∈ R[x1] × . . . × R[xM ] ⊂ X ∗
∞ be a vector of
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polynomials γ = (C, g) ∈ X ∗. We consider the following moment-SDP problem:

p∗M =sup ⟨γ, ϕ⟩X

ϕ ∈ X+ (A.62a)

Aϕ = y

with dual problem

d∗M = inf ⟨w, y⟩Y

w ∈ Y (A.62b)

A†w − γ ∈ X ∗
+.

It is well known that weak duality p∗M ≤ d∗M always holds [185]. In this section, we will prove that

under some mild assumptions, strong duality p∗M = d∗M also holds.

We first prove a simple lemma on strong duality conditions.

Lemma A.7.1. In this lemma, we consider again the duality pair (A.62), but with generic spaces X ,

Y and a convex cone X+. We also define, for any vector space Z containing some vector η and any

linear map U : X −→ Z , the level set Uη = {ϕ ∈ X | Uϕ = η}. In such setting, we assume that

A1’ ∃ϕ ∈ X+ such that Aϕ = y.

A2’ A0 ∩ γ0 ∩ X+ = {0}.

A3’ ∃ψ ∈ X ∗ such that

(a) ⟨ψ,X+⟩X ⊂ R+

(b) ψ0 ∩ X+ = {0}

(c) ψ1 ∩ X+ is compact.

Then, p∗M = d∗M .

Moreover, if p∗M <∞, then there is an optimal ϕ∗ feasible for (A.62a) such that ⟨γ, ϕ∗⟩X = p∗M .

Proof. We use [185, Chap. IV: Thm (7.2), Lem (7.3)]. Consider the cone

X γA = {(Aϕ, ⟨γ, ϕ⟩X ) | ϕ ∈ X+}.
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Theorem (7.2) of [185] ensures that under A1’ and closedness of X γA, strong duality holds, and that

p∗M < ∞ then implies existence of an optimal ϕ∗. Lemma (7.3) of [185] states that if X+ has a

compact convex base and A2’ holds, then AγX is closed. Thus, we need to find a compact convex

base of X+. X+.

Let ϕ ∈ X+ \ {0}. A3’.(a)-(b) ensure that ⟨ψ, ϕ⟩X > 0 so that ϕ̃ = ϕ
⟨ψ,ϕ⟩X is well defined

and belongs to the cone X+ \{0}. Moreover, ⟨ψ, ϕ̃⟩X = 1 is clear by definition, so that ϕ̃ ∈ ψ1∩X+.

This proves that any ϕ ∈ X+ \ {0} can be described as ϕ = ⟨ψ, ϕ⟩X ϕ̃ with ϕ̃ ∈ ψ1 ∩ X+ and

⟨ψ, ϕ⟩X > 0, which is the definition of ψ1 ∩ X+ being a base of X . By compactness assumption

A3’.(c), we deduce that the assumptions of Lemma (7.3) of Theorem (7.2) of [185] hold: Xγ
A is

closed and thus p∗M = d∗M .

Theorem A.7.2. Suppose that there exists B > 0 such that for all ϕ = (X,µ1, . . . , µM ) feasible for

(A.62a), one has Tr(X2) ≤ B2 and ∀i = 1..M : ⟨1, µi⟩ ≤ B. Also assume that at least one such

feasible ϕ exists. Then, p∗M = d∗M . Moreover, there exists an optimal ϕ∗ such that Aϕ∗ = y and

⟨γ, ϕ∗⟩X = p∗M .

Proof. We prove that the assumptions of Lemma A.7.1 hold. First of all, X+ is indeed a convex cone,

as it is the product of convex cones Sm0
+ andM+(Xi) under A1’.

Next, we focus on hypothesis A2’. Let ϕ = (X,µ1, . . . , µM ) ∈ A0 ∩ γ0 ∩ X+. We want

to prove that ϕ = 0. Let ϕ(0) = (X(0), µ
(0)
1 , . . . , µ

(0)
M ) ∈ X+ such that Aϕ(0) = y. Define, for t ≥ 0,

ϕ(t) = ϕ(0) + tϕ. Let t ≥ 0. Since X+ is a convex cone, ϕ(t) ∈ X+. In addition,

Aϕ(t) = Aϕ(0) + t Aϕ = Aϕ(0) = y,

so that ϕ(t) is feasible for (A.62a). Thus, by assumption,

B2 ≥ Tr((X(0) + tX)2)

= Tr(X(0)2 + 2tX(0)X + t2X2)

= Tr(X(0)2) + 2tTr(X(0)X) + t2Tr(X2)

= t2Tr(X2) + o
t→∞

(t2).

Staying bounded when t goes to infinity requires Tr(X2) = 0, implying that X = 0. The same

reasoning replacing Tr(X2) with ⟨1, µi⟩ yields that ∀i = 1..M : µi = 0. Thus, ϕ = 0 and A2’ holds.

We turn to A3’ and consider ψ = (Im0 ,1M ). Note that if (X,µ1, . . . , µM ) ∈ X+, then

Tr(X) ≥ 0 and ∀i = 1..M : ⟨1, µi⟩ ≥ 0 (i.e. ⟨ψ,X+⟩X ⊂ R+). Moreover, the equality cases in
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those inequalities only hold for X = 0 and µi = 0 respectively, so that ψ0 ∩ X+ = {0}. It remains

to be proven that ψ1 ∩ X+ is compact.

First, ψ1 ∩ X+ is bounded for the norm ∥(X,µ1, . . . , µM )∥ =
√

Tr(X2) +
∑M

i=1∥µi∥TV
where the TV norm (2.1) is

∥µ∥TV = sup{⟨v, µ⟩ | − 1 ≤ v ≤ 1}.

In particular, the TV norm of a nonnegative measure µ ∈ M+(X) is equal to its mass ∥µ∥TV =

⟨1, µ⟩.
Indeed, let (X,µ1, . . . , µM ) ∈ ψ1∩X+; then Tr(X) ≤ 1, and for i = 1..M , 1 ≥ ⟨1, µi⟩ =

∥µi∥TV . As X is positive semidefinite, Tr(X) ≤ 1 means that none of the eigenvalues of X are

bigger than 1, so that Tr(X2) ≤ m0, as it is the sum of the squares of the eigenvalues of X . Thus,

for all ϕ ∈ ψ1 ∩ X+, ∥ϕ∥ ≤ m0 +M .

Then, it is also closed for the weak-* topology of X by continuity of ⟨ψ, ·⟩X and closedness

of X+ as the product of closed sets Sm0
+ andM+(Xi). Thus, ψ1∩X+ is weak-* closed and bounded.

According to the Banach-Alaoglu theorem, ψ1 ∩ X+ is compact and therefore assumption A3’ of

Lemma A.7.1 holds. This concludes the proof of strong duality.

Finally, let ϕ = (X,µ1, . . . , µM ) ∈ X+ feasible for (A.62a). Then, by assumption,

Tr(X2) ≤ B2 and ⟨1, µi⟩ ≤ B for all i = 1..M . Thus, one has

⟨γ, ϕ⟩X = Tr(C X) +

M∑
i=1

⟨gi, µi⟩

≤
√

Tr(C2)Tr(X2) +
M∑
i=1

⟨gi, µi⟩ using the Cauchy-Schwarz inequality

≤
√

Tr(C2)Tr(X2) +
M∑
i=1

sup
Xi

|gi|⟨1, µi⟩

≤

(√
Tr(C2) +

M∑
i=1

∥gi∥∞

)
B

so that taking the supremum over all feasible ϕ yields

p∗M ≤

(√
Tr(C2) +

M∑
i=1

∥gi∥∞

)
B <∞,

which is the last hypothesis of Lemma A.7.1 and ensures existence of an optimal solution.
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A.8 Strong Duality of Chance-Peak Linear Programs

In order to apply the strong duality results of Appendix A.7 towards the chance-peak

problem (Theorem 10.3.7), we need to provide an SDP-representation of the SOC cone.

Lemma A.8.1. An element (κ, λ) ∈ Qn satisfies the LMI [89]

Φ =

λ κT

κ λIn

 ⪰ 0. (A.63)

Proof. When λ = 0, the containment (κ, 0) ∈ Qn requires that κ = 0n. The matrix in Φ (A.63) is

therefore the 0n×n matrix which is PSD. Now consider the case where λ > 0. A Schur complement

of Φ yields the constraint λ − κTκ/λ ≥ 0. Multiplying through by the positive λ results in

λ2 − ∥κ∥22 ≥ 0, λ > 0, which is the definition of the SOC cone (κ, λ) ∈ Qn. Lemma A.8.1 is

therefore proven.

Lemma A.8.1 ensures that problem (10.19) is an instance of the more generic (A.62a) with

M = 2, X1 = X2 = [0, T ]×X , Y = C2([0, T ]×X)× R3 and

X0 =


λ κT

κ λI3

 ∣∣∣∣∣∣ λ ∈ R, κ ∈ R3

 .

Therefore, we only need to verify that the hypotheses of Theorem A.7.2 hold in our specific case.

Letting q = ([q1, q2, q3], q4) ∈ Q3 be an SOC-constrained variable, we define the matrix

Φ from (A.63) as

Φ =


q4 q1 q2 q3

q1 q4 0 0

q2 0 q4 0

q3 0 0 q4

 . (A.64)

Theorem A.7.2 requires the following sufficient conditions to prove strong duality between

(10.19) and (10.20) and their optimality obtainment.

R1 There exists a feasible solution for (µτ , µ, q) from (10.19).

R2 The measures µτ , µ are bounded.

R3 The square of the matrix Φ from (A.64) has bounded trace.
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We start with R1. Letting x(t | x0) be an SDE trajectory from (10.4) and t∗ ∈ (0, T ]

be a stopping time, we define µ as the occupation measure of x(t | x0) and µτ as its time-t∗ state

distribution µt∗ . Feasible choices for entries of the SOC-constrained q are (from Lemma 10.3.4)

q1 = 1− ⟨p2, µt∗⟩, q2 =
√
⟨p2, µt∗⟩ − ⟨p, µt∗⟩2, q3 = 2⟨p, µt∗⟩, q4 = 1 + ⟨p2, µt∗⟩. (A.65)

Requirement R2’s satisfaction follows the statement in Lemma 10.4.2 that µτ , µ are

bounded under A1-A3.

We end with R3. The trace Tr(Φ2) =
∑

ij Φ
2
ij is equal to

Tr(Φ2) = 2q21 + 2q22 + 2q23 + 4q24 (A.66a)

= 2(1− ⟨p2, µt∗⟩)2 + 2(
√
⟨p2, µt∗⟩ − ⟨p, µt∗⟩2)2 + 2(2⟨p, µt∗⟩)2 + 4(1 + ⟨p2, µt∗⟩)2

(A.66b)

= 6 + 6⟨p, µt∗⟩2 + 6⟨p2, µt∗⟩+ 6⟨p2, µt∗⟩2. (A.66c)

Let Π1 = maxx∈X p(x) and Π2 = maxx∈X p(x)
2 be bounds on p and p2 in X . Both

Π1 and Π2 will be finite by the compactness of X (A1) and the continuity of p within X (A3).

Given that µt∗ is a probability distribution supported in X , the moments of µt∗ will be bounded by

⟨p, µt∗⟩ ≤ Π1 and ⟨p2, µt∗⟩ ≤ Π2. The squared-trace in (A.66) can be upper-bounded by a finite

value B such that

Tr(Φ2) ≤ 6(1 + Π2
1 +Π2 +Π2

2) = B <∞. (A.67)

The finite bound B ∈ [0,∞) from (A.67) validates R3, and completes all conditions

necessary for Theorem A.7.2 to provide for strong duality and optima attainment.

A.9 Delay Structures

This chapter has focused on supremizing p(x) in (11.1) over continuous-time systems with

a discrete delay x(t− τ). This subsection will discuss peak estimation of p(x) with respect to other

types of dynamics and delay structures.

A.9.1 Proportional Time-Delays

A system with a proportional delay is defined with respect to a scaling term κ ∈ [0, 1) as

ẋ(t) = f(t, x(t), x(κt)). (A.68)
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Proportional time delays are observed in the current collection of a pantograph on a

streetcar [186]. References on functional differential equation with proportional time delay include

[187, 188, 189, 190]. MATLAB uses the command ddesd to solve DDEs with time-dependent

delays by an RK4 algorithm [191]. Other numerical algorithms specifically for proportional delays

include [192, 193, 194].

The peak estimation problem over (A.68) is

P ∗ = sup
t∗∈[0,T ], x0∈X0

p(x(t∗ | x0)) (A.69a)

ẋ = f(t, x(t), x(κt)) ∀t ∈ [0, T ]. (A.69b)

An MV-solution for proportional time delays is

Initial µ0 ∈M+(X0) (A.70a)

Peak µp ∈M+([0, T ]×X) (A.70b)

Time-Slack ν ∈M+([0, T ]×X) (A.70c)

Occupation Start µ̄0 ∈M+([0, κT ]×X2) (A.70d)

Occupation End µ̄1 ∈M+([κT, T ]×X2). (A.70e)

Note how the MV-solution (A.70) lacks a history measure µh as compared with (11.3),

and also how the limits on (A.70d)-(A.70e) are [0, κT ] and [κT, T ] respectively.

The Lie derivative operator L with Lv = (∂t + f(t, x0, x1) · ∇x0)v(t, x0) is the same as

in the discrete-delay case (11.5) but under dynamics (A.68).

The consistency constraint follows from a modification of Lemma 11.3.1:

Lemma A.9.1. Let x(·) be a solution to (A.69b) with an initial condition of x0 ∈ X0 and a stopping

time of t∗ ∈ [0, T ]. The following pairs of integral are equal for all ϕ ∈ C([0, T ]×X):∫ t∗

0
ϕ(t, x(κt))dt =

1

κ

∫ min(t∗/κ,T )

0
ϕ(t′/κ, x(t))dt′. (A.71)

Proof. This relation is due to a change of variable with t′ ← κt.

The resultant consistency constraint w.r.t. the measures in (A.70) is

⟨ϕ(t, x1), µ̄0 + µ̄1⟩+ ⟨ϕ(t, x), ν⟩ = ⟨ϕ(t/κ, x0)/κ, µ̄0⟩. (A.72)
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Expressing the linear expansion operator Eκ as Eκϕ(t, x) = ϕ(t/κ, x0)κ, the measure LP

for problem (A.69) is

p∗ = sup ⟨p, µp⟩ (A.73a)

⟨1, µ0⟩ = 1 (A.73b)

µp = δ0 ⊗ µ0 + πtx0# L
†
f (µ̄0 + µ̄1) (A.73c)

πtx1# (µ̄0 + µ̄1) + ν = Eκ#(π
tx0
# µ̄0) (A.73d)

Measure Definitions from (A.70). (A.73e)

Problem (A.73) upper-bounds (A.69) by following the reasoning from Theorem 11.3.2 for

the proportional-delay case.

Remark A.9.1. Proportional and discrete delays can be applied together to form dynamics

ẋ(t) = f(t, x(t), x(κt− τ). (A.74)

Causalness of (A.74) requires that κ ∈ [0, 1) and τ ≥ 0. A consistency constraint may be posed

using an integral relation∫ T

0
ϕ(t, x(κt− τ))dt =

∫ κT−τ

−τ
ϕ((t+ τ)/κ, x(t))/κdt, (A.75)

used as a step towards forming Lemmas 11.3.1 and A.9.1.

A.9.2 Discrete-Time Systems

This subsection will concentrate on a discrete-time system with a long time delay. The

discrete-time system x[t] is defined w.r.t. a delay τ ∈ N, and a time horizon T ∈ N under the

assumption that τ < T .

The peak estimation program for a system with discrete-time dynamics and one time delay

τ is

P ∗ = sup
t∗∈0..T, xh[·]

p(x[t | xh]) (A.76a)

ẋ = f(t, x[t], x[t− τ ]) ∀t ∈ 1..T (A.76b)

x[t] = xh[t] ∀t ∈ [−τ, 0] (A.76c)

xh[·] ∈ H. (A.76d)
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Delayed dynamics (A.76b) may be implemented as a non-delayed discrete system by state

inflation in terms of x[t − (0..τ)] [158]. Such state augmentation could lead to a large number of

variables in systems analysis and result in intractably large computational problems.

This subsection will define an MV-solution using the variables from (11.3), in which the

measures with the maximum number of variables are (µ̄0(t, x0, x1), µ̄1(t, x0, x1)).

A.9.2.1 History-Validity

The history-validity constraint for discrete-time systems will separate the history xh[t] into

a time-zero component (µ0) and a history component t ∈ −τ..− 1 (µh). The time-zero component

is µ0 ∈ X0, as in the 11.3.2.1.

The history measure µh should represent a history xh[t] defined between t ∈ −τ.. − 1.

This may be imposed by setting the t-marginal of µh to a train of Dirac-deltas supported at sample

times −τ..− 1 as

πt#µh =
∑1

t=−τ δt. (A.77)

A.9.2.2 Liouville

The discrete-time Liouville equation 4.3a applied to the dynamics (A.76b) for all test

functions v ∈ C([0, T + 1]×X) is

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨v(t+ 1, f(t, x0, x1)− v(t, x0, x1), µ̄0 + µ̄1⟩. (A.78)

The Liouville constraint in (A.78) will be abbreviated (using the identity operator Id(x) = x) as

µp = δ0 ⊗ µ0 + πtx0# ((t+ 1, f)# − Id#)(µ̄0 + µ̄1). (A.79)

A.9.2.3 Consistency

The consistency constraint for dynamics (A.76b) may be derived from the following

Lemma,

Lemma A.9.2. Let x[·] be a trajectory of (A.76b) given an initial history xh and a stopping time of

t∗ ∈ 0..T . It follows that the below pair of summations are equal for all ϕ ∈ C([0, T ]×X): t∗∑
t=0

+

min(T,t∗+τ)∑
t=t∗

ϕ(t, x[t− τ ])dt =
min(T−τ,t∗)∑

t′=−τ
ϕ(t′ + τ, x[t]). (A.80)
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Proof. The index of summation is exchanged as t′ → t− τ .

The resultant consistency constraint from Lemma A.9.2 has an identical form as (11.10):

πtx1# (µ̄0 + µ̄1) + ν = Sτ#(µh + πtx0 µ̄0). (A.81)

A.9.2.4 Measure Program

The peak estimation measure LP that upper-bounds (A.76) is

p∗ = sup ⟨p, µp⟩ (A.82a)

⟨1, µ0⟩ = 1 (A.82b)

πt#µh =
∑−1

t′=−τ δt=t′ (A.82c)

µp = δ0 ⊗ µ0 + πtx0# ((t+ 1, f, x1)# − Id#)(µ̄0 + µ̄1) (A.82d)

πtx1# (µ̄0 + µ̄1) + ν = Sτ#(µh + πtx0# µ̄0) (A.82e)

Measure Definitions from (11.3). (A.82f)

This upper-bound also follows from constructing measures from trajectories as in Theorem

11.3.2.

A.10 Proof of Strong Duality for DDE Peak Estimation

This appendix will prove strong duality between programs (11.11) and (11.12) for peak

estimation. The general pattern of Appendix A.1 will be followed.

The signed measure spaces of (11.3) are

X =M(H0)×M(X0)×M([0, T ]×X)2

×M([0, T − τ ]×X2)×M([T − τ, T ]×X2) (A.83)

X ′ =C(H0)× C(X0)× C([0, T ]×X)2

× C([0, T − τ ]×X2)× C([T − τ, T ]×X2).
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Their nonnegative subcones (with (11.3) membership) are topological duals under A1 and

have definitions

X+ =M+(H0)×M+(X0)×M+([0, T ]×X)2

×M+([0, T − τ ]×X2)×M+([T − τ, T ]×X2) (A.84)

X ′
+ =C+(H0)× C+(X0)× C+([0, T ]×X)2

× C+([0, T − τ ]×X2)× C+([T − τ, T ]×X2).

The collection of measures in (11.3) will be denoted as µ = (µh, µ0, µp, ν, µ̄0, µ̄1) and is

a member of X+. The constraint spaces of (11.11b)-(11.11e) are

Y = R× C([−τ, 0])× C1([0, T ]×X)× C([0, T ]×X) (A.85)

Y ′ = 0×M([−τ, 0])× C1([0, T ]×X)′ ×M([0, T ]×X). (A.86)

The space X has the weak-* topology and Y has a sup-norm bounded weak topology. Because there

are no affine-inequality constraints present in (11.11b)-(11.11e), we write Y+ = Y and Y ′
+ = Y ′ to

match the notation used in [40].

The variables of (11.12) with ℓ = (γ, ξ, v, ϕ) satisfy ℓ ∈ Y ′
+.

A pair of adjoint linear operators A : X+ → Y+ and A′ : Y ′
+ → X ′

+ induced from

(11.11b)-(11.11e) are

A(µ) =


⟨1, µ0⟩
πt#µh

µp − δ0 ⊗ µ0 − L†fµ
Sτ#(µh + πtx0# µ̄0)− πtx1# (µ̄0 + µ̄1)− ν

 (A.87)

A′(ℓ) =



ξ(t) + ϕ(t+ τ, x)

γ − v(0, x)
v(t, x)

−ϕ(t, x)
−Lfv(t, x0)− ϕ(t, x1) + ϕ(t+ τ, x0)

−Lfv(t, x0)− ϕ(t, x1)


.

The cost and answer vectors are

c = [0, 0, p, 0, 0, 0] (A.88)

b = [1, λ[−τ,0], 0, 0]. (A.89)
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Problem 11.11 may be expressed as the standard-form LP

p∗ = sup
µ∈X+

⟨c,µ⟩ = ⟨p, µp⟩, b−A(µ) ∈ Y+. (A.90)

The standard-form dualization of (A.90) is

d∗ = inf
ℓ∈Y ′

+

⟨ℓ,b⟩ = γ +
∫ 0
t=−τ ξ(t)dt, A′(ℓ)− c ∈ X+. (A.91)

The standard-form (A.91) may be expanded into (11.12).

Given that all sets are compact (A1), measures in µ are bounded (Lemma 11.4.2), functions

in (c,A) are continuous (A2, A4, v ∈ C1([0, T ] × X) =⇒ Lfv ∈ C([0, T ] × X) ), and there

exists a feasible measure solution (Theorem 11.3.2), it therefore holds that strong duality between

(11.11) and (11.12) is achieved (by Theorem 2.6 of [40]).

A.11 Subvalue Functionals and DDE Control

This appendix analyzes a DDE OCP when posed over a given history xh(·). The function

J(t, x0, x1, u) is a running cost evaluated on the trajectory starting from xh, and JT (x) is a terminal

cost at time T . The final point x(T ) must reside in the terminal set XT ⊆ X . The controller u(·)
must reside inside the compact set U ⊂ Rm at each time. The DDE OCP under these constraints is

P ∗ = inf
u(t)

∫ T

t=0
J(t, x(t), x(t− τ), u(t))dt+ JT (x(T )) (A.92a)

ẋ = f(t, x(t), x(t− τ), u(t)) ∀t ∈ [0, T ] (A.92b)

u(t) ∈ U ∀t ∈ [0, T ] (A.92c)

x(t) = xh(t) ∀t ∈ [−τ, 0] (A.92d)

x(T ) ∈ XT . (A.92e)

Problem A.92 was addressed in works such as [159, 161, 163, 162, 195], and was com-

pletely solved in the case of linear DDE dynamics and a quadratic objective in [196, 197].

A pair of infinite-dimensional LPs are synthesized to bound the OCP in (A.92).

This appendix assumes that the terminal time T is fixed to simplify analysis. The MV-

solution from Section 11.3 involves a free terminal time, multiple histories, and zero running cost

(J = 0).
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A.11.1 Control Measure Program

The deterministic control law u(t, x0, x1) at each time t is relaxed into a probability

distribution ξu(u | t, x0, x1) [45].

The measures involved in an MV-solution of (A.92) are

Initial µ0 ∈M+(X0) (A.93a)

Peak µp ∈M+([0, T ]×X) (A.93b)

Occupation Start µ̄0 ∈M+([0, κT ]×X2 × U) (A.93c)

Occupation End µ̄1 ∈M+([κT, T ]×X2 × U). (A.93d)

The time-slack measure is set to ν = 0 because of the fixed-terminal-time setting (t∗ = T ).

The symbol µxh(·) is the occupation measure of t 7→ (t, xh(t)) between t ∈ [−τ, 0]. The history

measure µh from (11.3) is set equal to µxh(·) in the case of a single history. Similarly, the initial

measure µ0 is set to the Dirac delta δx=xh(0+).

A measure relaxation to the optimal program in (A.92) is

p∗ = inf ⟨J, µ̄⟩+ ⟨JT , µT ⟩ (A.94a)

δT ⊗ µT = δt=0,x=xh(0+) + πtx0# L
†
f (µ̄0 + µ̄1) (A.94b)

πtx1# (µ̄0 + µ̄1) = Sτ#(µxh(·) + πtx0# µ̄0) (A.94c)

Measures from (A.93). (A.94d)

This measure relaxation is based on the optimal control framework of [7, 8]. Young

measure formulations for DDE OCP have been developed in [159, 161, 163, 162, 160], but Liouville

equations began use only in [170].
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A.11.2 Control Function Program

Dual variables v ∈ C1([0, T ]×X) and ϕ ∈ C([0, T ]×X) may be introduced to form the

dual program of (A.94):

d∗ = sup v(0, xh(0)) +
∫ 0
−τ ϕ(t+ τ, xh(t))dt (A.95a)

JT (x)− v(T, x) ≥ 0 ∀x ∈ XT (A.95b)

Lfv + J(t, x0, u)− ϕ(t, x1) + ϕ(t+ τ, x0) ≥ 0 ∀(t, x0, x1, u) ∈ [0, T − τ ]×X2 × U
(A.95c)

Lfv + J(t, x0, u)− ϕ(t, x1) ≥ 0 ∀(t, x0, x1, u) ∈ [T − τ, T ]×X2 × U
(A.95d)

v ∈ C1([0, T ]×X) (A.95e)

ϕ ∈ C([0, T ]×X). (A.95f)

This dual program is obtained (with strong duality) by following nearly identical steps to

Appendix A.10.

A.11.3 True Value Functional

Let U be the admissible class of control inputs (such as U = {u : [0, T ]→ U}). Given a

time t ∈ [0, T ], a current state z ∈ X , and a history w(·) ∈ PC([−τ, 0], X), the value functional

V ∗ associated with the OCP (A.92) is

V ∗(t, z, w(·)) =min
u∈U

∫ T

t′=t
J(t′, x(t′ | t, w, u), u(t′))dt′ + JT (x(T | t, w, u))

ẋ = f(t, x(t), x(t− τ), u(t)) ∀t ∈ [0, T ]

x(t′) = w(t′) ∀t ∈ [t− τ, t)

x(t) = z (A.96)

x(T ) ∈ XT

u(t) ∈ U ∀t ∈ [0, T ].

The value functional V ∗ is the cost of solving Problem (A.92) starting at time t and state z

with history w(·). The convention of arguments t, z, w(·) was taken from [195].
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The Hamilton-Jacobi-Bellman (HJB) equation of optimality is [107]

0 = JT (x(T ))− V ∗(T, x(T )) (A.97a)

0 = inf
u∈U

(
V̇ ∗(t, x(t), xτ (·), u) + J(t, x(t), u(t))

)
∀t ∈ [0, T ]. (A.97b)

The Cauchy problem of (7, 8) in [195] has the form of (A.97).

A.11.4 Subvalue Functional

The solution of program (A.95) can create a lower-bound on the value functional V ∗.

A.11.4.1 Properties of Subvalue Functionals

Definition A.11.1. A subvalue functional is a functional V(t, x, w) such that

V(t, x, w) ≤ V ∗(t, x, w) ∀t ∈ [0, T ], x ∈ X, w ∈ PC([−τ, 0], X). (A.98)

Theorem A.11.1. Any functional V(t, x, xτ ) with derivative V̇(t, x, xτ , u) that satisfies the following

two properties is a subvalue functional for V ∗:

JT (x)− V(T, x, w) ≥ 0 ∀x ∈ XT , w ∈ PC([−τ, 0], X) (A.99a)

J(t, x, u) + V̇(t, x, w, u) ≥ 0, ∀t ∈ T, x ∈ X, w ∈ PC([−τ, 0], X), u ∈ U. (A.99b)

Proof. This result follows by following the steps of Proposition 1’s proof from [106].

Let ũ ∈ U be an arbitrary control policy starting at the initial condition (t0, z, w), resulting

in a trajectory x̃(t). Denote x̃τ (·) as the history function x̃t(t′) = x̃(t+ t′) ∀t′ ∈ [−τ, 0].
Relation (A.99b) ensures that for all t ∈ [t0, T ],

V̇(t, x̃(t), x̃t(·), ũ(t)) + J(t, x̃(t), ũ(t)) ≥ 0. (A.100)

Integrating the above term with respect to t yields

0 ≤
∫ T

t=t0

V̇(t, x̃(t), x̃t(·), ũ(t)) + J(t, x̃(t), ũ(t))dt (A.101a)

0 ≤ V(T, x̃(T ), x̃T (·))
V (T )

−V(t0, x̃(t0), x̃t0(·))
V(t0)

+

∫ T

t=t0

J(t, x̃(t), ũ(t))dt (A.101b)

V(t0) ≤ V(T ) +
∫ T

t=t0

J(t, x̃(t), ũ(t))dt (A.101c)

V(t0) ≤ JT (x̃(T )) +
∫ T

t=t0

J(t, x̃(t), ũ(t))dt. (A.101d)
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The transformation of (A.101c) to (A.101d) follows from relations (A.103) and (A.95b)

(V(T ) ≤ J(x̃(T )). When ũ is a minimizing control u∗ (if it exists), then the right-hand side of

(A.101d) is the optimal value functional V ∗(t0, z, w(·)) and the left-hand side is V(t0, z, w(·)). The

proof that V is a lower bound on V ∗ is therefore complete, given that V(t0, z, w(·)) ≤ V ∗(t0, z, w(·))
will hold for all choices of (t0, z, w(·)).

A.11.4.2 Recovery of a Subvalue Functional

The dual solution (v, ϕ) from (A.95) may be assembled into a functional,

V (t, x, z(·)) = v(t, x) +

∫ min(t+τ,T )

t
ϕ(s, z(s− τ))ds. (A.102)

The bias term ϕ in (A.95f) is defined and is C0 continuous only between times t ∈ [0, T ].

If the hard integration limit at T was not present, then ϕ would be queried at undefined values

t ∈ (T, T + τ ]. The terminal value of the value functional is

V (T ) = V (t, x(T ), x([T −τ, T ])) = v(T, x(T ))+

∫ T

T
ϕi(s, x(s−τ))ds = v(T, x(T )). (A.103)

The objective in (A.95a) is the evaluation of the value functional at time t = 0 along the

optimal controlled trajectory x∗(t):

V (0) = V (0, xh(0), xh) = v(0, xh(0)) +

∫ τ

0
ϕi(s, xh(s− τ))ds. (A.104)

The time-derivative (co-invariant derivative) of the value functional V̇ is

V̇ (t, z, w(·), u) = Lfv(t, x(t)) + I[0,T−τ ](t)ϕ(t+ τ, z)− ϕ(t, w(−τ)). (A.105)

Theorem A.11.2. The functional (A.102) is a subvalue functional in the sense of (A.11.1).

Proof. The terminal constraint (A.95b) satisfies (A.99a) given the terminal value evaluation in

(A.103). The combination of (A.95c) and (A.95d) together satisfy (A.99b) under the derivative value

expression in (A.105).

A.11.4.3 Continuity of the Recovered Value Functional

Let u∗(t) ∈ U be the optimal (infimizing) trajectory of problem (A.92) given z, w(·),
inducing a controlled trajectory x∗(t) = x(t | z, w(·)). The value functional evaluated along the
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optimal trajectory V ∗(t) = V (t, x∗(t), x∗([t − τ, t]) is C0-continuous in t, but is not necessarily

C1-continuous in t. At the time t = T − τ , define the value functional evaluations

V ∗
− = lim

t→(T−τ)−
V ∗(t) V ∗

+ = lim
t→(T−τ)+

V ∗(t). (A.106)

The difference in these evaluations for every lag i∗ is

∆V ∗ = V ∗
− − V ∗

+ =

(∫ T−

T−τ−
−
∫ T+

T−τ+

)
ϕ(s, x(s− τi))ds = 0. (A.107)

The value functional V ∗(t) is therefore a member of C0([0, T ]) given that v ∈ C1([0, T ]×
X) and ϕ ∈ C0([0, T ]×X).

The value functional derivative evaluations are

V̇ ∗
− = lim

t→(T−τ)−
V̇ ∗(t) V̇ ∗

+ = lim
t→(T−τi)+

V̇ ∗(t). (A.108)

The difference in the derivative evaluations on both sides of t = T − τ is

∆V̇ ∗ = V̇ ∗
− − V̇ ∗

+ = ϕ(T, x(T − τ)). (A.109)

It is not guaranteed that ϕ(T, x(T − τ)) = 0, so the value functional V ∗ may have

discontinuous first derivatives. The value functional is therefore C0 in time along trajectories, and

fails to be C1 at the time t = T − τ .

We form an additional conjecture to 11.3.1 in the OCP case based on the tightness condi-

tions in [7].

Conjecture A.11.1. Assume for the purposes of this conjecture that:

A1’ The sets {[−τ, T ], X,XT , U} are all compact.

A2’ The costs J, JT are continuous.

A3’ The dynamics f(t, x0, x1, u) are Lipschitz in their arguments.

A4’ The history xh is inside PC([−τ, 0], X).

A5’ The image of f(t, x0, X, U) is convex for each fixed (t, x0).

A6’ The mapping v 7→ infu∈U J(t, x0, x1, u) : f(t, x0, x1, u) = v is convex in v ∈ Rn.

Then there is no relaxation gap between (A.92) and (A.95) (P ∗ = p∗).
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A.11.5 Approximate Recovery

A control policy u(t) may be extracted from the value functional V through the trajectory

condition (A.97b) by

u(t) = argmin
u
Lfv(t, x(t)) + I[0,T−τ ](t)ϕ(t+ τ, x(t)) ∗ −ϕ(t, x(t− τ)) + J(t, x(t), u(t))

(A.110a)

= argmin
u

f(t, x(t), x(t− τ), u) · ∇xv(t, x(t)) + J(t, x(t), u). (A.110b)

The work in [106] quantifies performance bounds of polynomial value function approxima-

tions for ODE systems in terms ofW 1 Sobolev norms away from the true value function. Quantifying

performance bounds of the extracted controller of (A.110a) is an open problem.

A.11.6 Example of Optimal Control

An example of optimal control is presented on the one-dimensional linear system:

x′(t) = −3x(t)− 5x(t− 0.25) + u ∀t ∈ [0, 1]

xh(t) = −1 ∀t ∈ [−0.25, 0]. (A.111)

This system has one lag with τ = 0.25 and a time horizon of T = 1. The state and control constraints

are X = [−1, 1] and U = [−1, 1]. With a control weight of R = 0.01, the penalties are

J(t, x, u) = 0.5x2 + 0.5Ru2 JT (x) = 0. (A.112)

The open loop total cost is 0.0674. Table A.1 lists optimal control value approximations

for this system.

Table A.1: SDP approximation bounds to program (A.94)

order 1 2 3 4 5 6
bound 7.90E-05 0.0322 0.0386 0.0391 0.0393 0.0393

The applied control u(t) may be recovered through equation (A.110a) as

u(t) = Saturate[−1,1]

(
− 1

R
∂xv(t, x(t))

)
. (A.113)

The trajectories and nonnegative functions are plotted for order 4 in Figures A.1-A.2. The

order 4 control bound is 0.0391, and the cost evaluated along the controlled trajectory is 0.0394.
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Figure A.1: Open and closed-loop trajectory with control
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Figure A.2: Auxiliary function v and value functional V from (A.102)

A.12 Improved Accuracy of DDE Control Problems

This appendix lays out methods to reduce the conservatism of DDE OCPs from appendix

A.11 by adding new infintie-dimensional nonnegativity constraints.

All approaches discussed in this appendix may be applied to peak estimation, but are

presented here in the simplified fixed-terminal-time single-history OCP setting.
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A.12.1 Spatial Partitioning

The constraints (A.95b)-(A.95d) must hold in support sets defined by [0, T ] × X × U .

Assume that there exists a decomposition of the state spacesX = ∪kXk such that ∀k : dim(Xk) = n

and ∀k, k′ : int(Xk ∩Xk′) = ∅ (cells Xk are full-dimensional and their intersections are not full

dimensional). Further assume a similar decomposition exists for the control set U = ∪ℓUk.

Let (vk(t, x), ϕk(t, x)) be functions associated with each space Xk. A space-control

partition of (A.95) is:

d∗ = sup
∑
k

(IXk
(xh(0))vk(0, xh(0))) +

∫ 0
−τ ϕ(t+ τ, xh(t))dt (A.114a)

∀x ∈ Xk :

JT (x)− vk(T, x) ≥ 0 (A.114b)

∀(t, x0, x1, u) ∈ [0, T − τ ]Xk ×Xk′ × Uℓ :

Lfvk + J(t, x0, u)− ϕk′(t, x1) + ϕk(t+ τ, x0) ≥ 0 (A.114c)

∀(t, x0, x1, u) ∈ [T − τ, T ]×Xk ×Xk′ × Uℓ :

Lfvk + J(t, x0, u)− ϕk′(t, x1) ≥ 0 (A.114d)

∀(t, x) ∈ [0, T ]× (Xk ∩Xk′) :

vk(t, x) = vk′(t, x) (A.114e)

∀k : vk ∈ C1([0, T ]×Xk) (A.114f)

∀k : ϕk ∈ C([0, T ]×Xk). (A.114g)

The vk terms agree on boundary regions between state cells by (A.114e). The ϕk terms

remain continuous (bounded measurable), but this partitioning has an impact when evaluating the

finite-degree SDPs.

A.12.2 Temporal Partitioning

We utilize the following lemma to provide conditions for temporal partitioning.

Lemma A.12.1. A sufficient condition for
∫ t1
t0
g1(t)dt ≥

∫ t1
t0
g2(t)dt is that

∀t ∈ [t0, t1] : g1(t) ≥ g2(t). (A.115)

Define the following time breaks (partition) arranged in sorted order as

Tbreak = {0, t1, . . . , tk−1, tk = T − τ, tk+1, . . . , tk+ℓ−1, tk+ℓ = T}. (A.116)

256



CHAPTER A. APPENDICES

Let [tb, tb+1] and [tb−1, tb] be regions in Tbreak. The subvalue functionals from (A.102)

defined in this region must satisfy

Vb(tb, x, z(·)) ≥ Vb−1(tb, x, z(·)) (A.117a)

vb(tb, x) +

∫ min(tb+τ,T )

tb

ϕb(s, z(s− τ))ds ≥ vb−1(tb, x) +

∫ min(tb+τ,T )

tb

ϕb−1(s, z(s− τ))ds.

(A.117b)

The sufficient condition in Lemma A.12.1 may be used to accomplish this relation in

(A.117), ensuring that the subvalue function will always decrease when traversing a time break:

vb(tb, x) ≥ vb−1(tb, x) ∀x ∈ X (A.118a)

ϕb(t, x) ≥ ϕb−1(t, x) ∀(t, x) ∈ [tb,min(tb + τ, T )]×X. (A.118b)

The resultant time-partitioned LP is

d∗ = sup v(0, xh(0)) +
∫ 0
−τ ϕk+ℓ(t+ τi, xh(t))dt (A.119a)

∀x ∈ X :

JT (x)− vk+ℓ(T, x) ≥ 0 (A.119b)

∀(t, x0, x1, u) ∈ [tk′ , tk′+1]×X2 × U, k′ = 0..k − 1 :

Lfvk′ + J(t, x0, u)− ϕk′(t, x1) + ϕk′(t+ τ, x0) ≥ 0 (A.119c)

∀(t, x0, x1, u) ∈ [tk′ , tk′+1]×X2 × U, k′ = k..k + ℓ :

Lfvk′ + J(t, x0, u)− ϕk′(t, x1) ≥ 0 (A.119d)

∀x ∈ X, k′ = 1..k + ℓ− 1 :

vk′(tk′ , x) ≤ vk′+1(tk′ , x) (A.119e)

∀(t, x) ∈ [tk′ ,min(tk′ + τ, T )]×X, k′ = 1..k + ℓ− 1

ϕk′(t, x) ≤ ϕk′+1(t, x) (A.119f)

∀k′ = 0..k + ℓ : (A.119g)

vk′ ∈ C1([tk′ , tk′+1]×X) (A.119h)

ϕk′ ∈ C([tk′ ,min(tk′+1 + τ, T )]×X). (A.119i)

A.12.3 Double Integral Functionals

The subvalue functional in (A.102) has a single integral term for each delay. Some

Lyapunov-Krasovskii or Barrier methods for DDE analysis employ double integrals, such as the
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following functional for a single delay τ [164]:

V (t, z, w) = v(t, z) +

∫ min(t+τ,T )

t
ϕi(s, w(s− τ − t))ds

+

∫ min(t+τ,T )

t

∫ 0

−τ
ψ(s, q, w(s− τ − t), w(q))dqds. (A.120)

The time derivative of (A.120) in the time span t ∈ [0, T − τ) is

V̇ (t, z, w) = Lfv(t, z) + ϕ(t+ τ, w(0))− ϕ(t, w(−τ)) (A.121)

+
∫ 0
−τ ψ(t+ τ, q, w(0), w(q))dq

−
∫ 0
−τ ψ(t, q, w(−τ), w(q))dq, (A.122)

and between t ∈ (T − τ, 0] is

V̇ (t, z, w) = Lfv(t, z)− ϕ(t, w(−τ))−
∫ 0
−τ ψ(t, q, w(−τ), w(q))dq. (A.123)

The derivative V̇ has a discontinuity present at t = T − τ , just as described in Section

(A.11.4.3).

A sufficient condition for the inequality (A.99b) to be fulfilled is that the following func-

tions associated with (A.122) and (A.123) (moving all terms under the dq integral) are nonnegative:

∀t ∈ [0, T − τ ], (x0, x1, x̃) ∈ X3, q ∈ [−τ, 0] :

τ−1 (Lfv(t, z) + J(t, x0, u) + ϕ(t+ τ, x0)− ϕ(t, x1))

+ ψ(t+ τ, q, x0, x̃)− ψ(t, q, x0, x̃) ≥ 0 (A.124)

∀t ∈ [T − τ, T ], (x0, x1, x̃) ∈ X3, q :

τ−1 (Lfv(t, z) + J(t, x0, u)− ϕ(t, x1))− ψ(t, q, x0, x̃) ≥ 0. (A.125)

Lemma A.12.1 is utilized to enforce nonnegativity of the integral terms in (A.122) and

(A.123). The τ−1 scale factor arises from placing a q-independent term (such as J(t, x0, u)) inside

the integral. The variable q ∈ [−τ, 0] is the integrated (swept) time, and x̃ ∈ X abstracts out

the swept state w(q). The dual formulation of constraints (A.124) and (A.125) involve occupation

measures µ̄0 ∈M+([0, T − τ ]×X3×U) and µ̄1 ∈M+([T − τ, T ]×X3×U). This construction

may be generalized to DDEs with r delays by adding a double-integral term for each delay.
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A.13 Joint + Component Measure

This appendix details an alternate notion of MV-solutions for DDEs. Solving peak estima-

tion problems through these methods will return more conservative but quicker-executing programs

(computationally) as compared to the results in Section 11.3.

A.13.1 Measure Program

The MV-solution involves a joint occupation measure µ̄ and component measures ω0, ω1:

History µh ∈M+(H0) (A.126a)

Initial µ0 ∈M+(X0) (A.126b)

Peak µp ∈M+([0, T ]×X) (A.126c)

Time-Slack ν ∈M+([0, T ]×X) (A.126d)

Joint Occupation µ̄ ∈M+([0, T ]×X2) (A.126e)

Component Start ω0 ∈M+([0, T − τ ]×X) (A.126f)

Component End ω1 ∈M+([T − τ, T ]×X). (A.126g)

The peak estimation LP for the Joint+Component framework is

p∗ = sup ⟨p, µp⟩ (A.127a)

⟨1, µ0⟩ = 1 (A.127b)

πt#µh = λ[−τ,0] (A.127c)

µp = δ0 ⊗ µ0 + πtx0# L
†
f µ̄ (A.127d)

πtx0# µ̄ = ω0 + ω1 (A.127e)

πtx1# µ̄+ ν = Sτ#(µh + ω0) (A.127f)

Measure Definitions from (A.126). (A.127g)

The history-validity and Liouville constraints in (A.127) are the same as in (11.11) under

the relation µ̄ = µ̄0 + µ̄1. The consistency constraint in the Joint+Component formulation is split up

into the pair (A.127e)-(A.127f).

Theorem A.13.1. Program (A.127) returns an upper bound on (11.1).
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Proof. Let xh ∈ H be a history that generates the trajectory x(t | xh), and let t∗ ∈ [0, T ] be a

stopping time.

Just as in Theorem 11.3.2, measures can be picked as µ0 = δx=xh(0+|xh), µp = δt=t∗ ⊗
δx=x(t∗|xh), µh as the occupation measure of xξ(t) in the times [−τ, 0], and µ̄ as the occupation

measure of z(t) = (x(t | xh), x(t− τ | xh)) in the times [0, t∗].

When t∗ ∈ [0, T − τ ], then ω0 is the occupation measure of x(t | xh) in times [0, t∗], ω1

is the zero measure, and ν is the occupation measure of x(t− τ | xh) in times [t∗, t∗ + τ ]. When

t∗ ∈ (T − τ, T ], then ω0 is the occupation measure of x(t | xh) in the times [0, T − τ ], ω1 is

the occupation measure of x(t | xh) in the times [T − τ, t∗, and ν is the occupation measure of

x(t − τ | xh) in the times [T − τ, T ]. All measures inside (A.126) have been defined for a valid

trajectory, proving that (A.127) upper-bounds (11.1).

Theorem A.13.2. The Joint+Component (A.127) is also an upper bound on (11.11).

Proof. Let (µh, µ0, µp, ν, µ̄0, µ̄1) be a feasible set of measures for the constraints of (11.11).

After performing the following definitions,

µ̄ = µ̄0 + µ̄1 ω0 = πtx0 µ̄0 ω1 = πtx0 µ̄1, (A.128)

the measures (µh, µ0, µp, ν, µ̄, ω0, ω1) are feasible solutions for the constraints of (A.127).

Note how the Joint+Component MV-solution involves only one measure involving (t, x0, x1)

together (µ̄ in (A.126d)), while the solution in (11.3) has two measures (µ̄0, µ̄1). Application of the

moment-SOS hierarchy towards solving problems in (A.126d) result in only one Gram matrix of

maximal size
(
1+2n+d

d

)
.

260



CHAPTER A. APPENDICES

A.13.2 Function Program

The gap between (A.127) and (11.11) can most easily be observed by examining the dual

program of (A.127):

d∗ = inf
γ∈R

γ +
∫ 0
t=−τ ξ(t)dt (A.129a)

γ ≥ v(0, x) ∀x ∈ X0 (A.129b)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X (A.129c)

ξ(t) + ϕ1(t+ τ, x) ∀(t, x) ∈ H0 (A.129d)

0 ≥ Lfv(t, x0) + ϕ0(t, x0) + ϕ1(t, x1) ∀(t, x0, x1) ∈ [0, T ]×X2 (A.129e)

ϕ1(t, x) ≤ 0 ∀(t, x) ∈ [0, T ] (A.129f)

ϕ0(t, x) + ϕ1(t+ τ, x) ≥ 0 ∀(t, x) ∈ [0, T − τ ]×X (A.129g)

ϕ0(t, x) ≥ 0 ∀(t, x) ∈ [T − τ, T ]×X (A.129h)

v(t, x) ∈ C1([0, T ]×X) (A.129i)

ϕ0(t, x), ϕ1(t, x) ∈ C([0, T ]×X) (A.129j)

ξ(t) ∈ C([−τ, 0]). (A.129k)

Adding together (A.129e) and (A.129g) yields constraint (11.12f) in [0, T − τ ] × X2.

Similarly, the addition of (A.129e) and (A.129h) forms constraint (11.12g). The dual formulation in

(A.129) enforces nonnegativity of addends inside whole-terms of (11.11). The constraints of (A.129)

are stricter than of (11.12), resulting in a lowered infimum/upper bound on peak value.

A.13.3 Delayed Flow System Example

Table (A.2) compares moment-SOS SDPs associated to programs (11.11) and (A.127) for

applying peak estimation to the delayed Flow example in Section 11.6.2.

Table A.2: Comparison of (11.11) and (A.127) SDP bounds for the delayed Flow system

degree d 1 2 3 4 5
Joint+Component (A.127) 1.25 1.223 1.1937 1.1751 1.1636
Standard (11.11) 1.25 1.2183 1.1913 1.1727 1.1630
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Table A.3: Time (seconds) to obtain SDP bounds in Table A.2

degree d 1 2 3 4 5
Joint+Component (A.127) 0.782 0.991 5.271 31.885 336.509
Standard (11.11) 0.937 1.190 9.508 105.777 552.496
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