Safety Quantification for Nonlinear and Time-Delay Systems using Occupation Measures (Bonus Content)

Author: Jared Miller

Committee: Octavia Camps Didier Henrion (LAAS-CNRS) Bahram Shafai Eduardo Sontag Mario Sznaier

Northeastern University

April 3, 2023

Bonus: Data-Driven Program

Auxiliary Evaluation along Optimal Trajectory

Optimal v(t, x) should be constant until peak is achieved

Polytopic region for L_{∞} -bounded noise

2 linear constraints for each coordinate i, sample j

$$-\epsilon \leq f_0(t_j, x_j)_i + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j)_i - (\dot{x}_j)_i \leq \epsilon$$

Intersection of ellipsoids for L_2 -bounded noise

$$\|f_0(t_j, x_j) + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j) - (\dot{x}_j)\|_2 \le \epsilon$$

Robust Counterpart Theory

Semidefinite-representable uncertainty set

$$W = \bigcap_{s} \{ \exists \lambda_{s} \in \mathbb{R}^{q_{s}} : A_{s}w + G_{s}\lambda_{s} + e_{s} \in K_{s} \}$$

Lie constraint (based on Ben-Tal, Nemirovskii, 2009)

 $\mathcal{L}_f v(t, x, w) \leq 0$ $\forall (t, x, w) \in [0, T] \times X \times W.$

Nonconservative robust counterpart with multipliers ζ

$$\begin{split} \mathcal{L}_{f_0} v(t,x) + \sum_{s=1}^{N_s} e_s^T \zeta_s(t,x) &\leq 0 \qquad \forall [0,T] \times X \\ G_s^T \zeta_s(t,x) &= 0 \qquad \forall s = 1..N_s \\ \sum_{s=1}^{N_s} (A_s^T \zeta_s(t,x))_\ell + f_\ell(t,x) \cdot \nabla_x v(t,x) &= 0 \quad \forall \ell = 1..L \\ \zeta_s(t,x) \in K_s^* \qquad \forall s = 1..N_s \end{split}$$

Peak Decomposed Program

Example: Polytopic uncertainty $W = \{w \mid Aw \le b\}$ Only the Lie Derivative constraint changes

$$d^* = \min_{\gamma \in \mathbb{R}} \gamma$$

$$\gamma \ge v(0, x) \qquad \forall x \in X_0$$

$$\mathcal{L}_{f_0} v(t, x) + b^T \zeta(t, x) \le 0 \qquad \forall (t, x) \in [0, T] \times X$$

$$(A^T)_{\ell} \zeta(t, x) = (f_{\ell} \cdot \nabla_x) v(t, x) \qquad \forall \ell = 1..L$$

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$

$$v(t, x) \in C^1([0, T] \times X)$$

$$\zeta_k(t, x) \in C_+([0, T] \times X) \qquad \forall k = 1..m$$

Peak Estimation Example (Flow)

Peak Estimation Example (Flow)

Crash-Bound Program

Consistency sets

$$Z = [0, J_{\max}] \qquad \Omega = \{(w, z) \in W \times Z : J(w) \le z\}.$$

Optimal Control Problem with auxiliary $v(t, x, z) \in C^1$

$$d^* = \sup_{\gamma \in \mathbb{R}, v} \gamma$$

$$v(0, x, z) \ge \gamma \qquad \forall (x, z) \in X_0 \times Z$$

$$v(t, x, z) \le z \qquad \forall (t, x, z) \in [0, T] \times X_u \times Z$$

$$\mathcal{L}_f v(t, x, z, w) \ge 0 \quad \forall (t, x, z, w) \in [0, T] \times X \times \Omega$$

Exploit affine structure of $J(w) = \|\Gamma w - h\|_{\infty}$

Nonconservatively robustified Lie constraint

$$\begin{aligned} d^* &= \sup_{\gamma \in \mathbb{R}, v} \gamma \\ v(0, x, z) \geq \gamma & \forall (x, z) \in X_0 \times Z \\ v(t, x, z) \leq z & \forall (t, x, z) \in [0, T] \times X_u \times Z \\ \mathcal{L}_{f_0} v - (z\mathbf{1} + h)^T \zeta \geq 0 & \forall (t, x, z) \in [0, T] \times X \times [0, J_{\max}] \\ (\Gamma^T)_{\ell} \zeta + f_{\ell} \cdot \nabla_x v = 0 & \forall \ell = 1..L \\ \zeta_j \in C_+([0, T] \times X \times Z) & \forall j = 1..2nT. \end{aligned}$$

Every $c \in \mathbb{R}$ satisfies $c^2 \ge 0$ Sufficient: $q(x) \in \mathbb{R}[x]$ nonnegative if $q(x) = \sum_i q_i^2(x)$ Exists $v(x) \in \mathbb{R}[x]^s$, *Gram* matrix $Z \in \mathbb{S}^s_+$ with $q = v^T Z v$ Sum-of-Squares (SOS) cone $\Sigma[x]$

$$x^{2}y^{4} - 6x^{2}y^{2} + 10x^{2} + 2xy^{2} + 4xy - 6x + 4y^{2} + 1$$

=(x + 2y)² + (3x - 1 - xy²)²

Motzkin Counterexample (nonnegative but not SOS)

$$x^2y^4 + x^4y^2 - x^2y^2 + 1$$

Putinar Positivestellensatz (Psatz) nonnegativity certificate over set $\mathbb{K} = \{x \mid g_i(x) \ge 0, h_j(x) = 0\}$:

$$q(x) = \sigma_0(x) + \sum_i \sigma_i(x)g_i(x) + \sum_j \phi_j(x)h_j(x)$$
(1a)
$$\exists \sigma_0(x) \in \Sigma[x], \quad \sigma_i(x) \in \Sigma[x], \quad \phi_j \in \mathbb{R}[x].$$
(1b)

Psatz at degree 2*d* is an SDP, monomial basis: $s = \binom{n+d}{d}$ Archimedean: $\exists R \ge 0$ where $R - ||x||_2^2$ has Psatz over \mathbb{K}

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^*, x_0^*, t_p^*)$:

- x_p^* location on trajectory of closest approach
- y^* location on unsafe set of closest approach
- x_0^* initial condition to produce x_p^*
- t_p^* time to reach x_p^* from x_0^*

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\mu_0^*: \qquad \delta_{x=x_0^*} \\ \mu_p^*: \qquad \delta_{t=t_p^*} \otimes \delta_{x=x_p^*} \\ \eta^*: \qquad \delta_{x=x_p^*} \otimes \delta_{y=y^*}$$

Occupation Measure $\forall v(t,x) \in C([0,T] \times X)$

$$\mu^*$$
: $\langle v(t,x), \mu \rangle = \int_0^{t_\rho^*} v(t,x^*(t \mid x_0^*)) dt$

Hybrid Systems

State guards and transitions

 L_2 bound 0.0891: uncontrolled to boundary, controlled to sphere

Bonus: Chance-Peak

Reformulate as infinite-dimensional second-order cone program SOC set $Q^3 = \{(s, \kappa) \in \mathbb{R}^3 \times \mathbb{R}_{\geq 0} \mid \|s\|_2 \leq \kappa\}$

$$p_r^* = \sup_{z \in \mathbb{R}} rz + \langle p, \mu_\tau \rangle$$
 (2a)

$$\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}^{\dagger} \mu \tag{2b}$$

$$\mathbf{s} = [1 - \langle \boldsymbol{p}^2, \boldsymbol{\mu}_{\tau} \rangle, \ 2z, \ 2\langle \boldsymbol{p}, \boldsymbol{\mu}_{\tau} \rangle]$$
(2c)

$$(s, 1 + \langle p^2, \mu_\tau \rangle) \in Q^3$$
 (2d)

$$\mu, \ \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X).$$
(2e)

Moment-SOS: $p_d^* \ge p_{d+1}^* \ge \ldots \ge p_r^* = P_r^* \ge P^*$

Bonus: Time Delay

Use moment-SOS hierarchy (Archimedean assumption) Degree *d*, dynamics degree $\tilde{d} = d + \max(\lfloor \deg f/2 \rfloor, \deg g - 1)$ Bounds: $p_d^* \ge p_{d+1}^* \ge \ldots \ge p_r^* = P_r^* \ge P^*$

Measure
$$\mu_p(t, x) \quad \mu(t, x)$$

PSD Size $\begin{pmatrix} 1+n+d \\ d \end{pmatrix} \begin{pmatrix} 1+n+\tilde{d} \\ \tilde{d} \end{pmatrix}$

Timing scales approximately as $(1+n)^{6\widetilde{d}}$ or $\widetilde{d}^{4(n+1)}$

Propagation of Continuity

x'(t) = -2x(t) - 2x(t-1)

Continuity increases every τ_r time steps

Computational Complexity

Use moment-SOS hierarchy (Archimedean assumption) Degree d, dynamics degree $\widetilde{d} = d + \lfloor \deg f/2 \rfloor$

Bounds: $p_d^* \ge p_{d+1}^* \ge ... = p^* \ge P^*$

Size of Moment Matrices Peak Estimation

Timing scales approximately as $(2n+1)^{6 ilde{d}}$ or $ilde{d}^{4(2n+1)}$

SIR Peak Estimation Example

Upper bound $I_{max} \ge 56.9\%$ with order 3 LMI

Recovery: $t_* = 15.6$ days, $(S^*, I^*) = (56.9\%, 5.61\%)$

Time-Varying System

Time-Varying Histories

History restrictions and trajectories of system

Joint+Component Consistency

 (t, x_0) marginal of $\bar{\mu}$

For all test functions $\phi_0 \in C([0, T] \times X)$

$$\begin{split} \langle \phi_0(t, x_0), \bar{\mu} \rangle &= \int_0^T \phi_0(t, x(t \mid x_h)) dt \\ &= \left(\int_0^{T-\tau} + \int_{T-\tau}^T \right) \phi_0(t, x(t \mid x_h)) dt \\ &= \langle \phi_0(t, x), \nu_0 + \nu_1 \rangle \end{split}$$

Joint+Component Consistency (cont.)

 (t, x_1) marginal of $ar{\mu}$

For all test functions $\phi_1 \in C([0, T] \times X)$

$$egin{aligned} &\langle \phi_1(t,x_1),ar{\mu}
angle &= \int_0^T \phi_1(t,x(t- au\mid x_h))dt \ &= \int_{- au}^{T- au} \phi_1(t+ au,x(t\mid x_h))dt \ &= \int_{- au}^0 \phi_1(t+ au,x_h(t))dt + \langle \phi_1(t+ au,x),oldsymbol{
u}_0
angle \end{aligned}$$

Joint+Component Experiment

Table 1: Objective values for Flow experiment

degree <i>d</i>	1	2	3	4	5
Joint+Component	1.25	1.223	1.1937	1.1751	1.1636
Standard	1.25	1.2183	1.1913	1.1727	1.1630

Table 2: Time (seconds) to obtain SDP bounds in Table 1

degree <i>d</i>	1	2	3	4	5
Joint+Component	0.782	0.991	5.271	31.885	336.509
Standard	0.937	1.190	9.508	105.777	552.496

Bonus: Measure Background

Nonnegative Borel Measure μ

Assigns each set $A \subseteq X$ a 'size' $\mu(A) \ge 0$ (Measure)

Mass $\mu(X) = \langle 1, \mu \rangle = 1$: Probability distribution

 $\mu \in \mathcal{M}_+(X)$: space of measures on X $f \in C(X)$: continuous function on XPairing by Lebesgue integration $\langle f, \mu \rangle = \int_X f(x) d\mu(x)$

Dirac delta
$$\delta_{x'}(A) = egin{cases} 1 & x' \in A \ 0 & x'
ot\in A \end{cases}$$

Probability: $\delta_{x'}(X) = 1, \ \langle f(x), \delta_{x'} \rangle = f(x')$ $\mu(A) = 1$: Solid Box $\mu(A) = 0$: Dashed Box

Rank-1 atomic measure

$$\mu = c \delta_{x'} \qquad \qquad c > 0$$

Rank-2 atomic measure

$$\mu = c_1 \delta_{x_1'} + c_2 \delta_{x_2'} \qquad c > 0, \ x_1' \neq x_2'$$

Rank-r atomic measure

$$\mu = \sum_{i=1}^{r} c_i \delta_{x'_i} \qquad c > 0, \ \{x'_i\}_{i=1}^{r} \text{distinct}$$

Example of Measure Optimization

Optimum $\mathbb{E}_{\mu}[f] = \langle f, \mu \rangle$ at $\mu = \delta_{x^*}$

Measure Optimization

Nonconvex problems could be convex in measures

$$\min_{x\in K} p(x) o \min_{\mu\in \mathcal{M}_+(K)} \langle p,\mu
angle, \quad \langle 1,\mu
angle = 1$$

 $f(\frac{1}{2}(1+(-1))) = 1$, but $\frac{1}{2}(f(1)+f(-1)) = 0$

Bonus: Approximating Measure LPs

Measure LPs are infinite-dimensional

Linear Matrix Inequality: convex problem

$$\max_{y} b^{T} y \qquad C + \sum_{i=1}^{m} A_{i} y_{i} \geq 0$$

Solve LMIs through (interior point, ADMM, etc.) Approximate infinite LPs by finite-dimensional LMIs Monomial $x^{\alpha} = \prod_{i} x_{i}^{\alpha_{i}}$ for power $\alpha \in \mathbb{N}^{n}$ Degree $|\alpha| = \sum_{i} \alpha_{i}$ α -moment of measure $y_{\alpha} = \langle y_{\alpha}, \mu \rangle$

Measure uniquely described by infinite set $\{y_{\alpha}\}_{\alpha \in \mathbb{N}^n}$

When does a sequence $\{y_{\alpha}\}_{\alpha \in \mathcal{A}}$ correspond to a measure μ ?

Linear Functional polynomial \rightarrow moments

$$f(x)
ightarrow \int_X f(x) d\mu = \int_X \sum_{lpha} f_{lpha} x^{lpha} d\mu = \sum_{lpha} f_{lpha} y_{lpha}$$

Bivariate Example

$$2 + x_1 x_2 - 3x_1^2 + x_1 x_2^3 \rightarrow 2 + y_{11} - 3y_{20} + y_{13}$$

Moment Matrices

Squares $f(x)^2$ are nonnegative (real) $f(x)^2 \ge 0$ implies that $\langle f(x)^2, \mu \rangle \ge 0 \quad \forall f \in \mathbb{R}[x]$:

$$\langle f(x)^2, \mu
angle = \int_X \sum_{lpha, eta} (f_lpha x^lpha) (f_eta x^eta) d\mu = \int_X \sum_{lpha, eta} (f_lpha f_eta x^{lpha+eta}) d\mu \ge 0$$

Moment matrix $\mathbb{M}[y] \succeq 0$ has $\mathbb{M}[y]_{\alpha,\beta} = y_{\alpha+\beta}$

$$\langle f(\mathbf{x})^2, \mu \rangle = \mathbf{f}^T \mathbb{M}[\mathbf{y}] \mathbf{f} \ge 0$$

Moments up to degree $2 \times 2 = 4$

$$\mathbb{M}_{2}[y] = \begin{cases} y_{00} & y_{10} & y_{01} & y_{20} & y_{11} & y_{02} \\ y_{10} & y_{20} & y_{11} & y_{30} & y_{21} & y_{12} \\ y_{01} & y_{11} & y_{02} & y_{21} & y_{12} & y_{03} \\ y_{20} & y_{30} & y_{21} & y_{40} & y_{31} & y_{11} \\ y_{11} & y_{21} & y_{12} & y_{31} & y_{22} & y_{13} \\ y_{02} & y_{12} & y_{03} & y_{22} & y_{13} & y_{04} \end{cases}$$

 μ supported on set $K = \{x \mid g_i(x) \ge 0, i = 1...N\}$ $g_i(x)f(x)^2 \ge 0$ implies that $\langle g_i(x)f(x)^2, \mu \rangle \ge 0$

$$\langle g_i(x)f(x)^2,\mu\rangle = \int_X \sum_{lpha,eta,\gamma} (f_lpha f_eta g_\gamma x^{lpha+eta+\gamma}) d\mu \ge 0$$

Localizing matrix $\mathbb{M}[g_i m] \succeq 0$ has $\mathbb{M}[g_i m]_{\alpha,\beta} = \sum_{\gamma} g_{\gamma} m_{\alpha+\beta+\gamma}$ $\langle g_i(x) f(x)^2, \mu \rangle = \mathbf{f}^T \mathbb{M}[g_i y] \mathbf{f} \ge 0$ Polynomial optimization problem example :

$$p^* = \max_{x \in \mathcal{K}} p(x) = \max_{\mu \in \mathcal{M}_+(\mathcal{K})} \langle p(x), \mu
angle, \quad \mu(\mathcal{K}) = 1$$

Keep moments up to degree *d*:

$$p_d^* = \max_{y} \sum_{|\alpha| \le 2d} p_{\alpha} m_{\alpha}$$
$$\mathbb{M}_d[y], \ \mathbb{M}_{d-\deg(g_i)}[g_i y] \succeq 0$$

Finite-dimensional SDP: $\mathbb{M}_d[y]$ has size $\binom{n+d}{d}$

Bounds $p_d^* \geq p_{d+1}^* \geq p_{d+2}^* \dots$ converge to p^* as $d o \infty$

- 1. Trajectory Program
- 2. Measure LP
- 3. Moment LMI

Increase degree d of LMI to get better bounds

Prove conditions under which $\lim_{d \to \infty} p_d^* \to p^* = P^*$