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Abstract. This work quantifies the safety of trajectories of a dynamical
system by the perturbation intensity required to render a system unsafe
(crash into the unsafe set). Computation of this measure of safety is
posed as a peak-minimizing optimal control problem. Convergent lower
bounds on the minimal peak value of controller effort are computed using
polynomial optimization and the moment-Sum-of-Squares hierarchy. The
crash-safety framework is extended towards data-driven safety analysis
by measuring safety as the maximum amount of data corruption required
to crash into the unsafe set.
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1 Introduction

A trajectory starting at an initial point zy € X following dynamics & = fo(¢, x)
is safe with respect to the unsafe set X,, in the time horizon ¢t € [0,7] C [0, c0) if
there does not exist a time ¢’ such that x(¢' | zo) is a member of X,,. The set X,
is safe with respect to X, if all initial points zg € X generate safe trajectories.
This abstract quantifies the safety of trajectories by maximum control effort
(Optimal Control Problem (OCP) cost) needed to crash the agent into the unsafe
set. An example of this type of safety result is if tilting a car’s steering wheel
by a maximum extent of 3° over the course of its motion would cause the car to
crash. In a data-driven framework, a continuous-time trajectory is labeled safe if
it would require the true system to have a large constraint violation against any of
its state-derivative data observations in order to crash. The process of analyzing
safety by peak-minimizing-OCP cost will be referred to as ‘crash safety’.

1.1 Prior Work

Peak-minimizing control problems are a particular form of robust optimal control
in which the minimizing agents are (¢, z¢,w(-)) and the maximizing agent is
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t' € [0,t]. Necessary conditions for these robust programs may be found in
(21). Instances of peak-minimizing control include minimizing the maximum
number of infected persons in an epidemic under budget constraints (17) and
choosing flight parameters to minimize the maximum skin temperature during
atmospheric reentry (12; 7).

This paper continues a sequence of research about quantifying the safety
of trajectories. Unsafety can be proven using path-planning by finding a feasi-
ble pair (¢',x0) € [0,T] x X such that z(¢' | zg) € Xy. Barrier (19; 18) and
Density functions (20) are binary certificates confirming that there does not ex-
ist an unsafe trajectory based on the satisfaction of nonnegativity constraints.
Safety margins use maximin peak estimation to estimate the X, -representing-
inequality-constraint violation (13). The distance of closest approach between a
trajectory starting in Xy and points in X, is a more interpretable measure of
safety than abstract safety margins (14). Even so, distance estimation does not
tell the full story; a trajectory may lie close to X, in the sense of distance, but
it could require a large value of Q* to render the same trajectory unsafe.

Direct solution of OCPs using the Hamilton-Jacobi-Bellman (HJB) equation
or the Pontryagin Maximum Principle may be challenging, especially when so-
lutions do not exist in closed form (10). These generically non-convex OCPs
may be lifted into convex infinite-dimensional Linear Programs (LPs) in occu-
pation measures (9), whose dual LP involve subvalue functions satisfying HJB
inequalities. These infinite-dimensional LPs produce lower-bounds on the true
OCP, with equality holding under compactness and regularity conditions. The
moment-Sum of Squares (SOS) hierarchy of Semidefinite Programs (SDPs) may
be used to produce a rising sequence of lower bounds to the true OCP if all
problem aspects (cost, dynamics, sets) are polynomial-representable Basic Semi-
algebraic (BSA) (5). This infinite-dimensional LP and finite-dimensional SDP
pattern has also been applied to reachable set estimation (4), peak estimation
(3), and maximum controlled invariant set estimation (6).

The extended work in (16) includes proofs of convergence, proofs of strong
duality, discussion about subvalue functions to map data corruption, and addi-
tional examples.

1.2 Notation

The set of real numbers is R and the n-dimensional real vector spaces is R™. The
all-ones vector is 1. The set of natural numbers is N and the set of n-dimensional
multi-indices is N™. The set of natural numbers between a and b is a..b C N. The
cone of n x n symmetric Positive Semidefinite (PSD) matrices is S'}.

The set of polynomials of an indeterminate = with real-valued coefficients
is R[z]. The degree of a polynomial p € Rz] is degp. The vector space of
polynomials up to degree d € N is R[z]<4. The coefficients of a polynomial
p € R[z] are coeff, (p(x)).

The ring of continuous functions over a space S C R™ is C(5). The set of
first-differentiable functions over S is C*(S) C C(S). The subcone of nonnegative
functions over S is C(S) C C(S).
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2 Data-Driven Crash-Safety Analysis

This section motivates crash-safety in the context of data-driven analysis.

2.1 Data-Driven Overview

In this section, we will assume that Ny time-state-derivative data records D =
{(tr, T, yr) }o=, are provided for the true system & = F(t,x). The data records
in D are corrupted by L.,-bounded noise of intensity e with

Vk = 1..N, s — F(tr, 21)|lo < €. (1)

We are given a dictionary of functions (fo,{fe},) that are Lipschitz in
[0,T] x X (e.g. monomials). We are also given the knowledge that there exists
at least one ground-truth choice of parameters w* € R with

F(t,x) = fo(t,z) + Y5, wj fe(t, ). (2)

In the Lo,-bounded polytopic framework, the crash-safety problem finds an
infimal upper bound on the data corruption needed to crash into the unsafe set:

z* =, inf =z (3a)
V' € [0,T): &(t') = folt',2) + Sopq wefe(',x(t')), (') =0  (3b)
xo € Xo, z(t]| xo,w) € Xy (3c)
Vk=1.Ng: 2> |[foltr,xr) + S0y wefe(tr, Tr) — Ykl oo (3d)
z€Z, weRE te(o,T]. (3e)

If the returned value of (3) is Z* = 0, then there exists some choice of model
parameters w that exactly fit the data D by (2). Additionally, this choice w
renders at least one trajectory x(-) starting from Xy is unsafe (crashes into Xp).
Values of Z* greater than 0 are a certificate of safety in the model structure.
A larger value of Z* indicates that the data must be increasingly corrupted in
order to render any trajectory unsafe. Safety is certified if Z* > e, though we
note that the true value of ¢ may be a-priori unknown.

2.2 Data Representation
For each k = 1..N;, define the data-record matrices Iy, hy by
Iy = [filtr,x), - 5 fo(te, or)] hi = fo(tk, Tx) — Yk- (4)

Letting I" and h be the vertical concatenations of {I;} and {hx} respectively,
we can define the L., performance function and support set as

J(’LU) = pr - h”OOa Z = [Oa Jmax]a (5)
and the support set for (w, z) from (3d) as

(6)

Q—{(mz)eR XZ'—Fw§21+h .
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2.3 Standard Crash-Safety Linear Program

This section will convert the generically nonconvex optimal control problem in
(3) into an infinite-dimensional LP in continuous functions using the methods
of (9). Let L be the Lie derivative associated with f for v(t,z,z) € C! as

Lpv(t,z, z,w) = (0 + folt,x) - Vy)v(t,x, z) + 22::1 wefo(t,z) - Vyu(t,z, 2)
(7)

An auxiliary function v € C*' may be defined to form an LP formulation of
the crash-safety OCP in (3):

q" = sup 7y (8a)
Y€ER, v
v(0,2,2) > 7 V(z,2) € Xo x Z (8b)
v(t,x,z) < z V(t,z,2) € [0,T] x Xy X Z (8¢)
Lev(t,z, z,w) >0 Y(t,z,z,w) € [0,T] x X x 2 (8d)
v(t,x,2) € CH[0,T] x X x Z). (8e)

Theorem 1 Under assumptions A1-A5, programs (3) and (8) will have equal
objectives q¢* = Q*.

Proof. Program (3) with optimum Z* is a standard-form OCP with free terminal
time and zero running cost. Under assumptions A1-A5, Theorem 2.1 of (9) proves
that Z* = ¢*. Section 6.3 of (9) specifically discusses state-dependent controls
(e.g. (w,2) € ).

The infinite-dimensional program in (8) must be discretized into a finite-
dimensional convex optimization problem in order to admit computation. One
such method to perform this discretization is through the moment-SOS hier-
archy, in which v(t,x,z) is restricted to be a polynomial, and the inequality
constraints (8b)-(8d) are replaced by Putinar Positivestellensétze (8). Assuming
that fy and each f, are polynomials in (¢, x), define d= d+maxyeq. 1 |deg fo/2]
as the dynamics degree of (2) given a degree d € N. Imposition of constraint
(8d) given a polynomial v of degree 2d using the moment-SOS hierarchy re-

n+L4:2+d)
d

quires a maximal-size PSD matrix constraint of dimension ( , which is

intractably large as L increases (more dictionary entries).

2.4 Robust Crash-Safety Linear Program

We will use the input-affine structure of dynamics and polytopic form of (3d)
to form an LP that eliminates the uncertainty w. This elimination leads to in-

creasingly tractable SOS-based SDPs with a maximal PSD matrix size ("+j~+d)
because the maximal-size PSD matrices will no longer depend on L.

We will eliminate the w variable from (8d) by introducing new nonnegative
multiplier functions {¢ "‘,g }?2{ This elimination proceeds using the infinite-
dimensional robust counterpart method of (15), which requires that (8d) hold

strictly (with a ‘> 0’) constraint.

3
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Theorem 2 A strict version of Lie constraint in (8d) may be robustified (will
have the same feasibility/infeasibility conditions) into

V(t,z,2) €0, T] x X X Z :

Lpv—(21—h)T¢T—(21+h)7T¢ >0 (9a)
Ve=1.L: I =C¢ )+ fo-Vev=0 (9b)
Vj=1.2nT: (f,¢(7 € CL([0,T) x X x Z). (9c)

Proof. See the Proof of Theorem 4.1 of the extended version (16).

Remark 1 Theorems 4.2 and 4.4 of (15) may be applied when §2 is a more
general semidefinite representable set parameterized by z, such as an intersection
of ellipsoids for Lo-bounded noise, or a projection of spectahedra for semidefinite
bounded noise.

3 Examples

This section demonstrates the utility of the crash-safety framework. Robust

decompositions of the Lie constraint are applied in all examples. MATLAB

R2021a code to generate examples is available at https://github.com/Jarmill/

crash-safety. All SDP are generated using YALMIP (11) and solved using Mosek

(2). Finite-degree crash-bounds SOS truncations of (8) with robust Lie constraint

(9) are compared against OCP bounds found using the solver CasADi (1).
Data D is collected for the Flow system from (20):

= { 2 ] . (10)

—x1 — 23 + 373

A total of Ny = 40 samples with perfect knowledge in dynamics ©; = x2 and
a ground-truth noise bound of € = 0.5 in the coordinate &5 are collected. The
noisy derivative data in D and ground-truth derivatives are drawn in the orange
and blue arrows respectively in Figure la. It is assumed that &, is described
by a cubic polynomial in (27, z3). The parameterized polytope {w | Aw < b+
z} (£2 with fixed z value) has L = 10 dimensions and m = 2nT = 80. The
minimum possible corruption while obeying (2) under the cubic noise model is
inf(w7z)eg z = 0.4617.

The crash-safety problem (8) was solved with the unsafe set X, = {z |
(z1 +0.25)2 + (22 + 0.7)2 < 0.52, (0.95 + 21 + 72)/v/2 < 0} between t = [0, 5]
time units in the space X = {z € R?: ||z||3 < 8}. Table 1 reports bounds for the
crash-corruption Q(Xy) by solving Lie-robustified SOS tightenings of (8) from
degrees 1..4 with Jyp.x =1

Safety of trajectories starting in Xg is certified because the crash-bound
Gy = 0.5499 is greater than the ground-truth noise-bound € = 0.5. Figure 1b uses
the CasADi optimal control suite (1) to numerically solve the crash program (3).
The numerical crash-bound of ¢©2APT = 0.5499 is approximately equal (up to
four decimal places) to the crash-bound ¢} = 0.5499.
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Flow Data with ¢=0.0,0.5, i Crash States (z=0.5499)

Noisy Data
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—
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(a) Observed data (10) (b) CasADi- computed crash-bound

Fig.1: Crash-Safety Analysis for the data-driven Flow system (10).

Table 1: Data-Driven Crash-bounds at Xy = [1;0] under SOS tightenings
order 1 2 3 4
specific (8) 0.0582 0.4423 0.4864 0.5499

These crash-bounds should be compared against the Ly distance estimates
of ¢i.5 = [1.698 x 1075, 0.1936, 0.2003, 0.2009, 0.2013] from Section 6.3 of
(15). The distance estimates do not indicate that adding an additional budget of
0.0499 constraint violation will cause at least one trajectory to enter the unsafe
set.

4 Conclusion

This paper utilized peak minimizing control in order to perform safety analysis.
The returned values from SOS programs are lower-bounds on the minimum
data corruption needed to crash into the unsafe set. Crash-safety adds a new
perspective on the safety of trajectories, covering some of the blind spots of
distance estimation and safety margins.

Future work involves attempting to reduce computational burden finite-
dimensional truncations of the Crash programs by identifying new kinds of
structure (in addition to robust decompositions) to hopefully allow for real-
time computation. Other extensions could include applying these methods to
other classes of systems (e.g., discrete-time, hybrid), and creating a stochastic
interpretation of crash-safety.



1]

Bibliography

Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a
software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation 11, 1-36 (2019)

ApS, M.: The MOSEK optimization toolbox for MATLAB manual. Version
9.2. (2020). URL https://docs.mosek.com/9.2/toolbox /index.html
Fantuzzi, G., Goluskin, D.: Bounding Extreme Events in Nonlinear Dy-
namics Using Convex Optimization. STAM Journal on Applied Dynamical
Systems 19(3), 1823-1864 (2020)

Henrion, D., Korda, M.: Convex Computation of the Region of Attraction
of Polynomial Control Systems. IEEE TAC 59(2), 297-312 (2013)
Henrion, D., Lasserre, J.B., Savorgnan, C.: Nonlinear optimal control syn-
thesis via occupation measures. In: 2008 47th IEEE Conference on Decision
and Control, pp. 4749-4754. IEEE (2008)

Korda, M., Henrion, D., Jones, C.N.: Convex computation of the maximum
controlled invariant set for polynomial control systems. SIAM Journal on
Control and Optimization 52(5), 2944-2969 (2014)

Kreim, H., Kugelmann, B., Pesch, H.J., Breitner, M.H.: Minimizing the
Maximum Heating of a Reentering Space Shuttle: An Optimal Control
Problem with Multiple Control Constraints. Optimal Control Applications
and Methods 17(1), 45-69 (1996)

Lasserre, J.B.: Moments, Positive Polynomials And Their Applications. Im-
perial College Press Optimization Series. World Scientific Publishing Com-
pany (2009)

Lewis, R., Vinter, R.: Relaxation of Optimal Control Problems to Equiva-
lent Convex Programs. Journal of Mathematical Analysis and Applications
74(2), 475-493 (1980)

Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Con-
cise Introduction. Princeton university press (2011)

Lofberg, J.: YALMIP : a toolbox for modeling and optimization in MAT-
LAB. In: ICRA (IEEE Cat. No.04CH37508), pp. 284-289 (2004)

Lu, P., Vinh, N.X.: Minimax optimal control for atmospheric fly-through
trajectories. Journal of Optimization Theory and Applications 57(1), 41-58
(1988)

Miller, J., Henrion, D., Sznaier, M.: Peak Estimation Recovery and Safety
Analysis. IEEE Control Systems Letters 5(6), 1982-1987 (2020). DOI
10.1109/LCSYS.2020.3047591

Miller, J., Sznaier, M.: Bounding the Distance to Unsafe Sets with Convex
Optimization (2021). ArXiv: 2110.14047

Miller, J., Sznaier, M.: Analysis and Control of Input-Affine Dynam-
ical Systems using Infinite-Dimensional Robust Counterparts (2023).
Arxiv:2112.14838


https://docs.mosek.com/9.2/toolbox/index.html

[16]

[17]

Jared Miller and Mario Sznaier

Miller, J., Sznaier, M.: Quantifying the safety of trajectories using peak-
minimizing control. arXiv preprint arXiv:2303.11896 (2023)

Molina, E., Rapaport, A.: An optimal feedback control that minimizes the
epidemic peak in the SIR model under a budget constraint. Automatica
146, 110,596 (2022)

Prajna, S.: Barrier certificates for nonlinear model validation. Automatica
42(1), 117-126 (2006)

Prajna, S., Jadbabaie, A.: Safety Verification of Hybrid Systems Using Bar-
rier Certificates. In: International Workshop on Hybrid Systems: Compu-
tation and Control, pp. 477-492. Springer (2004)

Rantzer, A., Prajna, S.: On Analysis and Synthesis of Safe Control Laws.
In: 42nd Allerton Conference on Communication, Control, and Computing,
pp. 1468-1476. University of Illinois (2004)

Vinter, R.B.: Minimax optimal control. STAM journal on control and opti-
mization 44(3), 939-968 (2005)



	Quantifying Trajectory Safety by the Minimum Data Corruption Needed to Crash

