
Risk Analysis of Stochastic Processes

using Linear Programming

Jared Miller

April 11, 2024

L2S: H-CODE Series



Collaborators

Didier Henrion Ashkan Jasour Niklas Schmid

Roy S. Smith Mario Sznaier Matteo Tacchi

1



Motivation



Power System Example

Sources of randomness1:

• Thermal noise

• Measurement errors

• Unknown demand

• Intermittent wind/solar

• Extreme weather

Need to have reliable grid operation

1Bienstock, Daniel. Electrical transmission system cascades and vulnerability: an

operations research viewpoint. Society for Industrial and Applied Mathematics, 2015.
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Power System Failure

Comparatively small-scale: a building
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Power System Failure

Large-scale: City of Houston, TX (Feb. 7 and 16, 2021)

NASA Earth Observatory/Joshua Stevens
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Failure Modes

Overcurrent, overvoltage, voltage collapse, short circuit, etc.

Machines can safely pull large currents for short times

AC/DC converters have hard current limits
5



Risk Analysis Tasks

Different settings require different notions of risk.

This seminar will discuss three risk quantifiers:

1. Probability of Unsafety

2. Instantaneous Risk

3. Time-Windowed Risk
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Stochastics Background



Stochastic Process

A collection of time-indexed probability distributions {µt}

SDE: dx = f (t, x)dt + g(t, x)dw (Itô)
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Stochastic Process Examples

0 0.2 0.4 0.6 0.8 1

t

0.2

0.4

0.6

0.8

1

1.2

1.4

x
(t

)

SDE (continuous)

0 0.2 0.4 0.6 0.8 1

t

0.2

0.4

0.6

0.8

1

1.2

1.4

x
(t

)

Levy Process (jumps)

Geometric Brownian motion (left), Merton jump diffusion (right)
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Questions to ask

Given a state function p(x) (e.g. height, current, voltage)

Bound the following quantities along stochastic trajectories:

• Probability of entering unsafe set

• Mean of p

• 90% quantile of p

• Mean value above 90% quantile of p

• Other risk measures of p
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Desired algorithm properties

Risk analysis problems are generally nonconvex

What we want in an algorithm:

Convex single optimal solution

Tight same objective value

Tractable can be solved/approximated by computers

Bounded have error bounds/sidedness

Bisection-free* only solve a single problem

Our approach: infinite-dimensional LP in measures/functions

scenario approach: asymptotic/bounds in prob., no sidedness
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Generator (Incremental Expected Change)

Generator L of process (∀v ∈ dom(L) = C):

Lτv = lim
τ ′→τ

(E[v(t + τ ′, x) | µt+τ ′]− v(t, x)) /τ ′

For all solutions {µt}Tt=0 (with x(t) ∼ µt) following L, ∀v ∈ C:

Ex∼µT [v(T , x)] = Ex∼µ0[v(0, x)] +

∫ T

t=0

Ex∼µt [L0v(t, x)]dt

End = Start + Accumulated Change (in expectation)
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Examples of Generators

Discrete-time Markov Process (C = C ([0,T ]× X ))

Xt+τ = F (t,Xt , ωt), ωt ∼ ξ (sampled)

Lτv =

(∫
Ω

v (t + τ, F (t, x , ω)) dξ(ω)− v

)
/τ

Stochastic Differential Equation (C = C 1,2([0,T ]× X ))

dx = f (t, x)dt + g(t, x)dW ,

L0v = ∂tv + f · ∇xv + gT (∇2
xxv)g/2

Others: Lévy processes, hybrid, switching, time-delay
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Stochastic Safety



Safety Problem

Hazardous unsafe set Xu present:

• The ground (when flying)

• Overcurrent

• Other cars on road

• Temperature Violation

Estimate probability of entering Xu

Iceland Monitor
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Probability of Unsafety

Find probability of unsafety starting at X0:

P∗(t0, x0) = sup
t∗∈[t0,T ]

Probµt∗ [x ∈ Xu]

s.t. x(t) follows L ∀t ∈ min(t∗, τX )

x(0) ∈ X0

Worst-case over X0: P
∗(t0,X0) = supx0∈X0

P∗(t0, x0)

τX is exit time distribution (leaving X )
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Stochastic Barrier Functions

Proof of γ-probability safety for x(0) ∈ X0
2

B∗(x) = find
B∈C

B(x) ≤ γ ∀x ∈ X0

s.t. B(x) ≥ 1 ∀x ∈ Xu

B(x) ≥ 0 ∀x ∈ X

LB(x) ≤ 0 ∀x ∈ X

Requires bisection on γ, inconclusive if γ fails (truncations)
2Prajna, Stephen, Ali Jadbabaie, and George J. Pappas. ”A framework for worst-case

and stochastic safety verification using barrier certificates.” IEEE Transactions on

Automatic Control 52.8 (2007): 1415-1428.
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How do we solve infinite LPs?

Discretization necessary to solve on computer

More complexity: more accurate solutions

Method Increasing Complexity

Gridding # Grid Points

Basis Functions # Functions

Random Sampling # Samples

⋆ Sum-of-Squares (SOS) Polynomial Degree

Your Favorite Method Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

Infeasibility: unsolvable problem or not enough compute?

16



Probability of Unsafety

Minimize probability γ, use time-dependent function v(t, x)

P(t0,X0) = inf
γ∈R

γ

s.t. γ ≥ v(0, x) ∀x ∈ X0

Lv(t, x) ≤ 0 ∀(t, x) ∈ [t0,T ]× X

v(t, x) ≥ 0 ∀(t, x) ∈ [t0,T ]× X

v(t, x) ≥ 1 ∀(t, x) ∈ [t0,T ]× Xu

v ∈ C

P(t,X0) = P∗(t,X0) under compactness, regularity
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Averaged Probability of Safety

Average unsafe probability over initial distribution µ0

J∗(t0, µ0) = inf

∫
X

v(t0, x0)dµ0(x0)

s.t. Lv(t, x) ≤ 0 ∀(t, x) ∈ [t0,T ]× X

v(t, x) ≥ 0 ∀(t, x) ∈ [t0,T ]× X

v(t, x) ≥ 1 ∀(t, x) ∈ [t0,T ]× Xu

v ∈ C

Feasible solutions satisfy v(t0, x0) ≥ P∗(t0, x0)

L1 convergence v → P∗ under same conditions
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Discrete-Time System Example

x+ =

[
−0.3x1 + 0.8x2 + x1x2λ/4

−0.9x1 − 0.1x2 − 0.2x21

]
, λ ∈ N (0, 1)

Unsafe probabilities R0 = 0 :≤ 7.052e−4, R0 = 0.4 :≤ 0.4017
19



Risk Contours

(a) Disc X0 : Prob ≤ 0.4017 (b) Averaged unsafety contour

Risk contours (upper-bounds) with poly. deg v(t, x) = 12
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Risk Contour Evolution

Swept unsafe regions as T increases

Risk propagation of dx = [−x2; x1]dt + [0; 0.1]dW
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Not Just Convex Obstacles!
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Instantaneous Risk Estimation



Risk of a Distribution

Desired State function p(x) (e.g., current, height, speed)

Pushforward p#: samples satisfy p(x(t)) ∼ p#µt

Some properties of p#µt :

• Mean

• 90% Value-at-Risk (quantile)

• 90% Conditional Value-at-Risk

• Essential Supremum

Choose risk R from the above list, consider R(p#µt)
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Chance-Peak Problem

What is the maximum risk R along the stochastic trajectory?

P∗ = sup
t∗∈[0,T ]

R(p#µt∗)

s.t. x(t) follows L ∀t ∈ [0,min(t∗, τX )]

x(0) ∼ µ0 (or x(0) ∈ X0)

Quantifies safety: greater risk could mean more unsafe
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Maximal Value at Risk (VaR)

Maximize Value at Risk (Quantile Statistic) in time

Red + Black areas = 10% probability
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Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, ∆t = 10−3

VaR of p = −x2 along dx =

[
x2

−x1 − x2 − 1
2x

3
1

]
dt +

[
0

0.1

]
dw
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A brief interlude about measures



Why Talk about Measures?

Another source of intuition when forming programs

Measures LPs are (weakly) dual to function LPs

• strong duality under mild conditions

• solutions come ‘for free’ with discretization
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What are Measures?

Nonnegative Borel Measure µ : Set(X ) → R+ (σ-algebra)

µ ∈ M+(X ): space of nonneg. measures on X

f ∈ C (X ): continuous function on X

Pairing by Lebesgue integration:

⟨f , µ⟩ =
∫
X

f (x)dµ(x)

µ(X ) = ⟨1, µ⟩ = 1: Probability distribution

Product measure µ1 ⊗ µ2 ∈ M+(X1)×M+(X2)
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Dirac Delta Example

Dirac delta δx=x ′(A) =

1 x ′ ∈ A

0 x ′ ̸∈ A

Probability measure: δx=x ′(X ) = 1

µ(A) = 1: Solid Box

µ(A) = 0: Dashed Box

Notation: Time 0 is δt=0 = δ0
x ′ is the green dot
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Occupation Measures (stochastic)

µ: stochastic kernel from {µt}

Set 7→ Avg. time spent in the set

Average: µ0 and stoch. dynamics

Averaged value of v ∈ C:
⟨v , µ⟩ =

∫ T

0
Ex∼Xt [v(t, x)]dt Box: set in (t, x)
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Martingale Relation

End = Start + Accumulated Change (in E)

∀v ∈ C : E[v(t + s, x) | µt+s ] = E[v(t, x) | µt ]

+

∫ t+s

t′=t

E[Lv(t ′, x) | µt′]dt
′

Relation between measures (µt , µt+s , µ) for all v ∈ C

⟨v(t + s, x), µt+s(x)⟩ = ⟨v(t, x), µt(x)⟩+ ⟨Lv , µ⟩

Compress notation using adjoint L† (implicitly express ∀v)

µt+s = µt + L†µ
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Back to the regularly scheduled

instantaneous risk estimation



Mean Maximization

When R is the mean, can solve an infinite LP3:

p∗ = sup ⟨p(x), µτ ⟩
s.t. µτ = δ0 ⊗ µ0 + L†

f µ

µ, µτ ∈ M+([0,T ]× X )

Instance of a stochastic Optimal Control Program4

(µ∗
τ , µ

∗) is feasible with P∗ = ⟨p(x), µ∗
τ ⟩ ≤ p∗

P∗ = p∗ if compactness, regularity properties hold
3Cho, Moon Jung, and Richard H. Stockbridge. ”Linear programming formulation for

optimal stopping problems.” SICON 40.6 (2002): 1965-1982.
4Vinter, Richard B., and Richard M. Lewis. ”The equivalence of strong and weak

formulations for certain problems in optimal control.” SICON 16.4 (1978): 546-570.

32



Value-at-Risk Bounds

VaR is nonconvex, nonsubadditive (unfriendly)

Concentration inequalities can upper-bound VaR

VaRϵ(ν) ≤ stdev(ν)r +mean(ν)

Name r value Valid condition

Cantelli
√

1/(ϵ)− 1 ν probability distribution

VP
√
4/(9ϵ)− 1 ν unimodal, ϵ < 1/6

(will talk about CVaR later)
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Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound P∗
r ≥ P∗

Objective upper-bounds VaR w.r.t. time-t∗ distribution µt∗

P∗
r = sup

t∗∈[0,T ]

r
√

⟨p2, µt∗⟩ − ⟨p, µt∗⟩2 + ⟨p, µt∗⟩

x follows L
x(0) ∼ µ0

SOCP in measures for p∗r ≥ P∗
r ≥ P∗

VAR (3d SOC constraint)

Same constraints as mean-maximization, different objective
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Conditional Value-at-Risk

CVaR: Average quantity above the Value-at-Risk

CVaRϵ(ν(ω)) = (1/ϵ)
∫
ω≥VaRϵ(ν)

ωdν(ω)

Uniform distributions with same VaR, different CVaR (70%)
35



CVaR Linear Program

Measure LP to compute CVaR (with dψ
dν

≤ 1
ϵ
)

CVaRϵ(ν) = sup
ψ,ψ̂∈M+(R)

mean(ψ)

s.t. ϵψ + ψ̂ = ν

⟨1, ψ⟩ = 1

VaR = 1.2816, CVaR= 1.7550, ϵψ ≤ ν
36



CVaR Chance-Peak

Highest CVaR along stochastic trajectories

P∗
c = sup

t∗∈[0,T ]

CVaRϵ(p#µt∗)

s.t. x follows L
x(0) ∼ µ0

Almost the same as VaR chance-peak, with P∗
c ≥ P∗
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CVaR Measure program

Add CVaR objective, constraints to chance-peak

p∗c = sup mean(ψ)

s.t. µτ = δ0 ⊗ µ0 + L†µ

⟨1, ψ⟩ = 1

ϵψ + ψ̂ = p#µτ

µ, µτ ∈ M+([0,T ]× X )

ψ, ψ̂ ∈ M+(R)

Upper-bound p∗c ≥ P∗
c ≥ P∗, LP in measures
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Comparison of bounds

P∗
r = p∗r and P∗

c = p∗c if

1. Closure and boundedness conditions on dom(L)
2. [0,T ]× X compact (absorbing boundaries)

3. p(x) is continuous (lower semicontinuous?)

P∗
Cantelli ≥ P∗

c always, but (P∗
c , P

∗
VP) incomparable (so far)

Empirically, degree-k moment LMIs satisfy p∗Cantelli,k ≥ p∗c,k
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Chance-Peak Examples



Two-State

Stochastic Flow (Prajna, Rantzer) with T = 5, p(x) = −x2

dx =

[
x2

−x1 − x2 − 1
2
x31

]
dt +

[
0

0.1

]
dw

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP) 40



Three-State

Stochasic Twist system with T = 5, p(x) = x3

dx =

−2.5x1 + x2 − 0.5x3 + 2x31 + 2x33
−x1 + 1.5x2 + 0.5x3 − 2x32 − 2x33
1.5x1 + 2.5x2 − 2x3 − 2x31 − 2x32

 dt +

 0

0

0.1

 dw

d = 6 (translucent=50%, gray=85% CVAR, solid=85% VP) 41



Two-State Switching

Switching subsystems at T = 5, p(x) = −x2

dx =

{[
−2.5x1 − 2x2
−0.5x1 − x2

]
,

[
−x1 − 2x2
2.5x1 − x2

]}
dt +

[
0

0.25x2

]
dw

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP) 42



Time-Windowed Risk Estimation



Time-Windowed Average Motivation: Signal

Oscillations near instanataneous peak (t = 2)
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Time-Windowed Average Example

Instantaneous maximal risks may not give full picture

0 1 2 3 4 5 6 7 8
time t

-1
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p
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p(t) value
instantaneous peak
p(t) time-windowed mean
peak-averaged region
time-windowed peak

Large time-windowed avg. current on wire ≈ overheating 44



Time-Windowed Risk Example

Choose a time window h

Form a prob. dist. ζ(t)

from {p(x(t ′))}tt′=t−h

Analyze risk of R(ζ(t))

1.4 1.6 1.8 2 2.2 2.4 2.6
t
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Signal p(t) in time window [1.25, 2.75]
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p
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C
D

F
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)

CDF of p(t) in time window [1.25, 2.75]

CDF(p)
mean
90% Quantile
90% CVaR
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Time-Windowed Risk Problem

Given R and h, choose optimal t∗, x∗0 :

P∗ = sup
t∗, x∗0

R

(
1

h

∫ t∗

t∗−h

p(x(t ′))dt ′
)

s.t. x(t) follows L ∀t ∈ [0,min(t∗, τX )]

x(0) = x∗0

t∗ ∈ [h,T ], x∗0 ∈ X0

Integral in objective collapses (marginalizes) time

Limits: Chance-peak as h → 0, Risk-averse stopping as

h → T .
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Augmented Time Coordinate

We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

Active time t ∈ [0,T ] ṫ = 1

Stopping time s ∈ [h,T ] ṡ = 0

Temporal support sets Ω±:

Ω− : t ∈ [0, s − h] Ω+ : t ∈ [s − h, s]

Risk evaluated in Ω+, similar process in discrete-time
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Two Time Coordinates?

Curves (t, p(t), s): time intervals [0, s − h], [s − h, s], [s,T ]

48



Measures for Risk Estimation

Mean-type risk estimation measures (with constant state s)

µ0(s, x) ∈ M+([h,T ]× X0) Initial

µτ (s, x) ∈ M+([h,T ]× X ) Terminal

µ+(s, t, x) ∈ M+(Ω+ × X ) Risk Occ.

µ−(s, t, x) ∈ M+(Ω− × X ) Past Occ.

Time-windowed risk evaluation: 1
h

∫ s

s−h
p(x(t ′))dt ′ → 1

h
p#µ+
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Time-Duplication Map

The last technical detail needed: a time-duplicating map φ

φ :(s, x) 7→ (s, s, x)

For all test functions ω(s, t, x) ∈ C ([h,T ]× [0,T ]× X )

⟨ω(s, t, x), φ#µτ (s, t, x)⟩ = ⟨ω(s, s, x), µτ (s, x)⟩

Relaxed occupation measure of L̂ : (µ0, φ#µτ , µ+ + µ−)
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Time-Windowed Risk Estimation

Non-conservative infinite LP with generator L̂ : (L, ṡ = 0)

p∗ = sup ⟨p, µ+⟩/h
s.t. φ#µτ = δ0 ⊗ µ0 + L̂†(µ− + µ+)

⟨1, µ0⟩ = 1

⟨1, µ+⟩ = h

Mean-type time-windowed support constraints

Constraint ⟨1, µ+⟩ = h imposes that h time units elapse

CVaR modification: supmean(ψ) : ϵψ + ψ̂ = (p#µ+)/h

51



Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)
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Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with ϵ = 0.15)
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Risk-Aware Control (overview)



Risk-Aware Control

Minimize in risk in objective/risk constraints (difficult)

Approximate

• Sample-Average

Approximations

• Upper-bound CVAR

• Min-Max Approaches

• Boole’s Inequality

Exact (up to structure)

• Distributional Robustness

• Dynamic Programming

Principles (unconstrained)

• Nested Risk

• (Joint Chance Constraint)

Continuous-time: Pontryagin Max., not constructive

Talk to Gabriel Velho, Riccardo Bonalli, Benôıt Bonnet-Weill
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Take-aways



Conclusion

Risk estimation is important

Three problems: Unsafe Prob., Chance-Peak, Time-Window

Solved using infinite-dimensional LPs/SOCPs in measures

Certified outer-approximations of risk

Nice risk-aware control/tractable analysis is still open

55



Main References

Part 1: Jared Miller, Matteo Tacchi, Didier Henrion, and Mario

Sznaier. Unsafe Probabilities and Risk Contours for Stochastic

Processes using Convex Optimization, 2024. arXiv:2401.00815

Part 2: Jared Miller, Matteo Tacchi, Mario Sznaier, and Ashkan

Jasour. Peak Value-at-Risk Estimation of Stochastic Processes

using Occupation Measures, 2024. arXiv:2303.16064

Part 3: Jared Miller, Niklas Schmid, Matteo Tacchi, Didier

Henrion, and Roy S. Smith. Peak Time-Windowed Risk Estimation

of Stochastic Processes, 2024. arXiv:2404.06961

56

https://arxiv.org/abs/2401.00815
https://arxiv.org/abs/2303.16064
https://arxiv.org/abs/2404.06961


Thanks!
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Assumptions for Stochastic LPs

Assumptions used in all presented programs5:

1. Trajectories stop upon the first exit from X (τX ∧ T ).

2. The test function set C = dom(L) satisfies
C ⊆ C ([t0,T ]× X ) with 1 ∈ C and L1 = 0.

3. The set C separates points and is multiplicatively closed.

4. There exists a countable set {vk} ∈ C such that ∀v ∈ C :

(v ,Lv) is contained in the bounded pointwise closure of

the linear span of {(vk ,Lvk)}.

5Cho, Moon Jung, and Richard H. Stockbridge. ”Linear programming formulation for

optimal stopping problems.” SICON 40.6 (2002): 1965-1982.



Occupation Measure (Deterministic)

Time trajectories spend in set

Test function

v(t, x) ∈ C ([0,T ]× X )

Single trajectory:

⟨v , µ⟩ =
∫ T

0
v(t, x(t | x0))dt

Averaged trajectory: ⟨v , µ⟩ =∫
X

(∫ T

0
v(t, x)dt

)
dµ0(x)

x ′ = −x(x + 2)(x − 1)



Unsafe Probability using Measures

Maximize prob. ⟨1, µp⟩ of ending in Xu (with µp + µc = µτ )

p∗(t0,X0) = sup ⟨1, µp⟩
s.t. µp + µc = δt0 ⊗ µ0 + L†µ

⟨1, µ0⟩ = 1

µ0 ∈ M+(X0)

µ, µc ∈ M+([t0,T ]× X )

µp ∈ M+([t0,T ]× Xu)

Relaxed occupation measure (µ0, µu + µc , µ),

Strongly dual to previous continuous-function program



SOS Expectation-Peak

d∗
E =min

∫
X

v(0, x) dµ0(x) (8a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (8b)

v(t, x)− p(x) ∈ Σ[[0,T ]× X ] (8c)

v ∈ R[t, x ] (8d)



SOS Concentration-Peak

Second-order cone Ln : {(u, q) ∈ Rn × R≥0 | q ≥ ∥u∥2}

d∗
r =min u1 + 2u3 +

∫
X0

v(0, x0)dµ0(x0) (9a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (9b)

v(t, x) + u1 p
2(x)− 2 u2 p(x)− p(x) (9c)

∈ Σ[[0,T ]× X ]

([u1 + u3,−(r/2), u2], u3) ∈ L3 (9d)

u ∈ R3, v ∈ R[t, x ]



SOS CVaR-Peak

d∗
c =min u +

∫
X

v(0, x) dµ0(x) (10a)

s.t. − Lv(t, x) ∈ Σ[[0,T ]× X ] (10b)

v(t, x)− w(p(x)) ∈ Σ[[0,T ]× X ] (10c)

u + ϵw(q)− q ∈ Σ[pmin, pmax ] (10d)

w(q) ∈ Σ[pmin, pmax ] (10e)

u ∈ R, v ∈ R[t, x ] (10f)



Time-Delay Approach (Bad, Don’t Do This)

Embed as non-Markovian stochastic process:

P∗ = sup
t∗, x∗0

R (β(t∗))

s.t. x(t) follows L ∀t ∈ [0,min(t∗, τX )]

dβ = [p(x(t))− p(x(t − h))](1/h)dt

β(h) = (1/h)
∫ h

0
p(x(t ′))dt ′

x(0) = x∗0

t∗ ∈ [h,T ], x∗0 ∈ X0

Could introduce relaxation gap, requires 2n + 2 states



SOS Time-Window Mean

d∗
k = min

v ,γ,ξ
γ + hξ (11a)

s.t. γ − v(s, 0, x) ∈ Σ[[h,T ]× X0] (11b)

v(t, t, x) ∈ Σ[[h,T ]× X ]≤2k (11c)

ξ − p(x)/h − L̂v(s, t, x) ∈ Σ[Ω+ × X ] (11d)

− Lf v(s, t, x) ∈ Σ[Ω− × X ] (11e)

v ∈ R[s, t, x ] (11f)

γ, ξ ∈ R (11g)



SOS Time-Window CVAR

d∗
k = min

v ,γ,ξ,β,w
γ + hξ + β (12a)

s.t. γ − v(s, 0, x) ∈ Σ[[h,T ]× X0] (12b)

v(t, t, x) ∈ Σ[[h,T ]× X ] (12c)

ξ − w(p(x))/h − L̂v(s, t, x) ∈ Σ[Ω+ × X ] (12d)

− Lf v(s, t, x) ∈ Σ[Ω− × X ] (12e)

w(q), ϵw(q) + β ∈ Σ[[pmin, pmax]] (12f)

v ∈ R[s, t, x ] (12g)

w ∈ R[q] (12h)

γ, ξ, β ∈ R (12i)



Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)



Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with ϵ = 0.15)
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