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Motivation



Power System Example

Sources of randomness?!:
e Thermal noise

e Measurement errors

e Unknown demand

e Intermittent wind/solar

e Extreme weather

Need to have reliable grid operation

IBienstock, Daniel. Electrical transmission system cascades and vulnerability: an
operations research viewpoint. Society for Industrial and Applied Mathematics, 2015.



Power System Failure

Comparatively small-scale: a building




Power System Failure

Large-scale: City of Houston, TX (Feb. 7 and 16, 2021)

NASA Earth Observatory/Joshua Stevens




Failure Modes

Overcurrent, overvoltage, voltage collapse, short circuit, etc.

.....

Zan NS —
.

Machines can safely pull large currents for short times

AC/DC converters have hard current limits



Risk Analysis Tasks

Different settings require different notions of risk.

This seminar will discuss three risk quantifiers:
1. Probability of Unsafety

2. Instantaneous Risk

3. Time-Windowed Risk



Stochastics Background



Stochastic Process

A collection of time-indexed probability distributions {;}

8dx =-0.10 x dt + 0.7071 x dw Probability Density

SDE: dx = f(t,x)dt + g(t,x)dw (Itd)



Stochastic Process Examples

SDE (continuous)
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Questions to ask

Given a state function p(x) (e.g. height, current, voltage)

Bound the following quantities along stochastic trajectories:

e Probability of entering unsafe set

Mean of p
90% quantile of p

Mean value above 90% quantile of p

Other risk measures of p



Desired algorithm properties

Risk analysis problems are generally nonconvex

What we want in an algorithm:

Convex single optimal solution

Tight same objective value

Tractable can be solved/approximated by computers
Bounded have error bounds/sidedness

Bisection-free* only solve a single problem

Our approach: infinite-dimensional LP in measures/functions

scenario approach: asymptotic/bounds in prob., no sidedness

10



Generator (Incremental Expected Change)

Generator L of process (Vv € dom(L) = C):

Lov=lim (E[v(t+7,x) | perr] — v(t,x)) /7

7' =T

For all solutions {y;}/_, (with x(t) ~ p.) following £, Vv € C:

B (T 0] = Bulv00)] + [ B Lot 0l

t=0

End = Start + Accumulated Change (in expectation)

11



Examples of Generators

Discrete-time Markov Process (C = C([0, T] x X))
Xepr = F(t, Xe,wt), we ~ & (sampled)
Lrv= (/Q v(t+T, F(t,x,w))d{(w) — v) /T

Stochastic Differential Equation (C = C*2([0, T] x X))

dx = f(t,x)dt + g(t,x)dW,

Lov=0w+Ff-Vw+g (V2v)g/2

Others: Lévy processes, hybrid, switching, time-delay

12



Stochastic Safety



Safety Problem

Hazardous unsafe set X, present:
e The ground (when flying)
e Overcurrent
e Other cars on road

e Temperature Violation

Estimate probability of entering X,

Iceland Monitor

13



Probability of Unsafety

Find probability of unsafety starting at Xj:

P*(tp, x0) = sup Prob,,..[x € X,]
t*€[to, T]

s.t.  x(t) follows £ YVt € min(t*, 7x)
X(O) € XO

Worst-case over Xy: P*(to, Xo) = sup,,ex, P*(to, Xo)

Tx is exit time distribution (leaving X)

14



Stochastic Barrier Functions

Proof of ~-probability safety for x(0) € X; 2

B*(x) = ggg B(x) <~ Vx € Xo
st. B(x)>1 Vx € X,

B(x) >0 Vx € X

LB(x) <0 Vx e X

Requires bisection on =, inconclusive if  fails (truncations)

2Prajna, Stephen, Ali Jadbabaie, and George J. Pappas. " A framework for worst-case
and stochastic safety verification using barrier certificates.” IEEE Transactions on
Automatic Control 52.8 (2007): 1415-1428.

15



How do we solve infinite LPs?

Discretization necessary to solve on computer

More complexity: more accurate solutions

Method | Increasing Complexity
Gridding | # Grid Points
Basis Functions | # Functions
Random Sampling | # Samples
* Sum-of-Squares (SOS) | Polynomial Degree
Your Favorite Method | Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

Infeasibility: unsolvable problem or not enough compute?

16



Probability of Unsafety

Minimize probability v, use time-dependent function v(t, x)

P(to, Xo) = WIQH]; v

st. v >v(0,x) Vx € Xo
Lv(t,x) <0 V(t,x) € [to, T] x X
v(t,x) >0 V(t,x) € [to, T] x X
v(t,x) >1 V(t,x) € [to, T] x Xy
vel

P(t, Xo) = P*(t, Xp) under compactness, regularity

17



Averaged Probability of Safety

Average unsafe probability over initial distribution 1

J*(to,,uo) :mf/ V(to,X())d/l,o(Xo)

X

st. Lv(t,x) <0 V(t,x) € [to, T] x X
v(t,x) >0 V(t,x) € [to, T] x X
v(t,x)>1 V(t,x) € [to, T] x X,
vel

Feasible solutions satisfy v(to, x0) > P*(to, X0)

L; convergence v — P* under same conditions

18



Discrete-Time System Example

0. . A4
X+:[ 0.3x1 +08% + xve)/4| \ e NO.D)

—0.9x; — 0.1x; — 0.2x3

Sampled Trajectories
05 ‘
< 0r

-0.5

5 4 05 0 05 1 15

X

Unsafe probabilities Ry = 0 :< 7.052e—4, Ry = 0.4 :< 0.4017
19



Risk Contours

15 Unsafety Upper-Bound (T=10) \ s Unsafety Upper-Bound (T=10)
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0.5 0.4 0.4
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-1
0.2 0.2
15 0.1 0.1
-1.5 -1 -05 0 0.5 1 1.5
)(1 X1
(a) Disc Xp : Prob < 0.4017 (b) Averaged unsafety contour

Risk contours (upper-bounds) with poly. deg v(t, x) = 12

20



Risk Contour Evolution

Swept unsafe regions as T increases

Unsafety Upper-Bound (T=1) Unsafety Upper-Bound (T=3) Unsafety Upper-Bound (T=5)

Risk propagation of dx = [—x2; x1]dt + [0;0.1]dW

21



Not Just Convex Obstacles!

Sampled Trajectories Unsafety Upper-Bound (T=5)
r
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Instantaneous Risk Estimation




Risk of a Distribution

Desired State function p(x) (e.g., current, height, speed)
Pushforward p,: samples satisfy p(x(t)) ~ pupit
Some properties of pfu;:

e Mean

e 90% Value-at-Risk (quantile)

e 90% Conditional Value-at-Risk

e Essential Supremum

Choose risk R from the above list, consider R(p/it)

23



Chance-Peak Problem

What is the maximum risk R along the stochastic trajectory?
P* = sup  R(pgpe)
t*€[0,T]
s.t. x(t) follows £ Vt € [0, min(t*, 7x)]
x(0) ~ po (or x(0) € Xp)

Quantifies safety: greater risk could mean more unsafe

24



Maximal Value at Risk (VaR)

Maximize Value at Risk (Quantile Statistic) in time

e

m

Red + Black areas = 10% probability
25



Value-at-Risk Example (Monte Carlo)

50,000 samples with T =5, At =103

5. Sample Paths s Value-at-Risk Bounds
— =05
——=0.15
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X2
VaR of p = —xp along dx = 1 3| dt+ dw
—X] — X2 — 5X] 0.1
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A brief interlude about measures




Why Talk about Measures?

Another source of intuition when forming programs

Measures LPs are (weakly) dual to function LPs

e strong duality under mild conditions

e solutions come ‘for free’ with discretization

27



What are Measures?

Nonnegative Borel Measure y : Set(X) — R, (o-algebra)
p € M (X): space of nonneg. measures on X
f € C(X): continuous function on X

Pairing by Lebesgue integration:
(F.) = [ F()dut)
X

wu(X) = (1, u) = 1: Probability distribution
Product measure 11 ® p1o € M (X1) x ML(X3)

28



Dirac Delta Example

I XcA
Dirac delta dy—,/(A) = e
0 X Q/ A : 1

Probability measure: d,—(X) =1

w(A) = 1: Solid Box - :
p(A) = 0: Dashed Box Lo :

x' is the green dot
Notation: Time 0 is d;—¢g = g

29



Occupation Measures (stochastic)

% StOChaStiC kernel from {,ut} . dz = —0.10z(¢)dt + 0.7071z(t)dw
Set — Avg. time spent in the set

Average: 1o and stoch. dynamics

Averaged value of v € C:
fo Eyox,[v(t, x)]dt Box: set in (t, x)

30



Martingale Relation

End = Start + Accumulated Change (in E)
Vvel: Elv(t+s,x) | pers] = E[v(t, x) | ]

t+s
+/ E[Lv(t',x) | pe]dt’
tl

=t

Relation between measures (p¢, ptrrs, 1t) for all v € C

<V(t + va)ap“t-l-s(x)) = <V(t,X),Mt(X)> + <,CV,[L>

Compress notation using adjoint £ (implicitly express Vv)
fieys = pie + L

31



Back to the regularly scheduled
instantaneous risk estimation




Mean Maximization

When R is the mean, can solve an infinite LP3:
p* = sup (p(x), fir)
st fy =00 ® po + Lp
s pr € M ([0, T] x X)
Instance of a stochastic Optimal Control Program*
(pr, 1*) is feasible with P* = (p(x), u*) < p*

P* = p* if compactness, regularity properties hold

3Cho, Moon Jung, and Richard H. Stockbridge. " Linear programming formulation for
optimal stopping problems.” SICON 40.6 (2002): 1965-1982.

4Vinter, Richard B., and Richard M. Lewis. " The equivalence of strong and weak
formulations for certain problems in optimal control.” SICON 16.4 (1978): 546-570.

32



Value-at-Risk Bounds

VaR is nonconvex, nonsubadditive (unfriendly)

Concentration inequalities can upper-bound VaR
VaR.(v) < stdev(v)r + mean(v)

Name r value Valid condition
Cantelli 1/(e) —1 v probability distribution

VP /4/(9¢) —1 v unimodal, ¢ <1/6

(will talk about CVaR later)

33



Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound P > P*

Objective upper-bounds VaR w.r.t. time-t* distribution i,

Pr= sup_r/(p? piee) — (p, piee)? + (P, pie=)
t*€[0,T]

x follows L

x(0) ~ po

SOCP in measures for pf > P¥ > P}, (3d SOC constraint)

Same constraints as mean-maximization, different objective

34



Conditional Value-at-Risk

CVaR: Average quantity above the Value-at-Risk
CVaR.(v(w)) = (1/e€) waVaRE(V) wdr(w)

VaR
CVaR=0.5

VaR
CVaR=0.2

Uniform distributions with same VaR, different CVaR (70%) 35



CVaR Linear Program

Measure LP to compute CVaR (with 22 < 1)

CVaR.(v) = sup
VHEM(R)

s.t. e+ 22 =v
(L,y) =1

VaR = 1.2816, = 1.7550, eip < v

36



CVaR Chance-Peak

Highest CVaR along stochastic trajectories

P: = sup CVaR.(pgups)
t*€[0,T]

s.t. x follows L

x(0) ~ po

Almost the same as VaR chance-peak, with P: > P*

37



CVaR Measure program

Add CVaR objective, constraints to chance-peak

p: = sup mean(v)

st jr =00 o+ L
L) =1
et + b = pypur
1, e € M ([0, T] x X)
¥, € My (R)

Upper-bound pZ > P > P*, LP in measures

38



Comparison of bounds

Py = p; and P: = p} if

1. Closure and boundedness conditions on dom(L)
2. [0, T] x X compact (absorbing boundaries)

3. p(x) is continuous (lower semicontinuous?)

P¢ > P’ always, but (P}, PJp) incomparable (so far)

antelli

Empirically, degree-k moment LMIs satisfy p¢, ek = Pz«

39



Chance-Peak Examples




Two-State

Stochastic Flow (Prajna, Rantzer) with T =5, p(x) = —x2

X2

dx = 1.3 dw
—X1 — Xp — §X1

dt +

0.1

Stochastic Flow System

-2
06 04 02 0 0.2 0.4 0.6 0.8 1 1.2 14

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP) 40



Stochasic Twist system with T =5, p(x) = x3

—2.5x1 + x3 — 0.5x3 + 257 + 253 0
dx = | —x; + 1.5x + 0.5x3 — 2x23 - 2x§’ dt+ | 0 | dw
1.5x1 +2.5x — 2x3 — 2Xf — 2x§’ 0.1
B ; Stochastic Twist System
o —
08- J_i
ui @@m{/ ’/

05
0 0505

d = 6 (translucent=50%, gray=85% CVAR, solid=85% VP) 41



Two-State Switching

Switching subsystems at T =5, p(x) = —x;

dx — —2.5x1 — 2x 7 —X1 — 2Xp d + 0 dw
—0.5x; — xo 2.5x1 — xo 0.25x

Stochastic Switched System

25r¢

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP)



Time-Windowed Risk Estimation




Time-Windowed Average Motivation

Oscillations near instanataneous peak (t = 2)

20

43



Time-Windowed Average Example

Instantaneous maximal risks may not give full picture

2
— (t) value
O instantaneous peak
5~ W e p(t) time-windowed mean
= peak-averaged region
® time-windowed peak
1t
= L
= 0.5
0
0.5
1 I I I I I I I |
0 1 2 3 4 5 6 7 8

time ¢

Large time-windowed avg. current on wire =~ overheating 44



Time-Windowed Risk Example

Signal p(t) in time window [1.25, 2.75]

Choose a time window h

Form a prOb' dist. C( t) * 14 16 18 2 22 22 28
M\t ¢
from {p(x(t')}:_, , CDF of p(t) in time window [1.25, 2.75]
1r ¥
ECH
0.8 ;noi/:nQuamile I
. 90% CVaR
Analyze risk of R({(t)) S o
3 |
O 04
|
021 I
o |

L L L L L
-0.5 0 0.5 1 15
P
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Time-Windowed Risk Problem

Given R and h, choose optimal t*, x3:

1 (v
P*=sup R </ p(x(t/))dt/>
t*, xg h t*—h
s.t.  x(t) follows £ Vt € [0, min(t", 7x)]
x(0) = xg
t*e[h T], x5 €X

Integral in objective collapses (marginalizes) time

Limits: Chance-peak as h — 0, Risk-averse stopping as
h—T.

46



Augmented Time Coordinate

We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

Active time te[0,T] t=1

I
o

Stopping time se[h T] S

Temporal support sets 2:

Q_: te[0,s—h| Qy: te[s—hs]

Risk evaluated in €2, similar process in discrete-time

47



Two Time Coordinates?

Curves (t, p(t),s): time intervals [0,s — h], [s — h,s], [s, T]

48



Measures for Risk Estimation

Mean-type risk estimation measures (with constant state s)

po(s, x) € My ([h, T] x Xo) Initial

pr(s,x) € My ([h, T] x X) Terminal
pa(s, t,x) € Mo(Q24 x X) Risk Occ.
p—(s, t,x) € M (Q2_ x X) Past Occ.

Time-windowed risk evaluation: # [ p(x(t'))dt’ — +pupi

49



Time-Duplication Map

The last technical detail needed: a time-duplicating map ¢
@ (s, x) — (s,s,x)
For all test functions w(s, t,x) € C([h, T] x [0, T] x X)
(wis, t,x), pppi-(s, t,x)) = (W(s, 5, %), 1= (8, X))

Relaxed occupation measure of L : (o, Papir, pig + p1—)

50



Time-Windowed Risk Estimation

Non-conservative infinite LP with generator £ : (£, s = 0)

p* = sup (p,py)/h

st Quplr = 00 ® po+ LT (1 + p1y)
(1, p0) =1
(Lpy)=nh

Mean-type time-windowed support constraints

Constraint (1, . ) = h imposes that h time units elapse

CVaR modification: supmean(v) : e + ) = (pup)/h

51



Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated
(p(x) = x2)

15 047
1 0.2
0.5 2ok
3
[
%o
0 S 02
o
& 4
-0.5 o0 -0.4
<]
-1 = 06|
15 -0.8
2 K
-1 -0.5 0 0.5 1 1.5 2 25 15 2 25 3 35 4 45 5
zy time (t)
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Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak

instantaneous p (with € = 0.15)

Moving CVaR of p

1.5 2 25 3 35 4 45 5
time (t)
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Risk-Aware Control (overview)




Risk-Aware Control

Minimize in risk in objective/risk constraints (difficult)

Approximate Exact (up to structure)

Distributional Robustness

e Sample-Average
Approximations

e Dynamic Programming
e Upper-bound CVAR Principles (unconstrained)
e Min-Max Approaches e Nested Risk
e Boole's Inequality e (Joint Chance Constraint)

Continuous-time: Pontryagin Max., not constructive

Talk to Gabriel Velho, Riccardo Bonalli, Benoit Bonnet-Weill

54



Take-aways




Conclusion

Risk estimation is important

Three problems: Unsafe Prob., Chance-Peak, Time-Window
Solved using infinite-dimensional LPs/SOCPs in measures
Certified outer-approximations of risk

Nice risk-aware control/tractable analysis is still open

55
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Assumptions for Stochastic LPs

Assumptions used in all presented programs®:

1. Trajectories stop upon the first exit from X (7x A T).
2. The test function set C = dom(L) satisfies
C C C([to, T] x X) with 1 € C and L1 = 0.
3. The set C separates points and is multiplicatively closed.
4. There exists a countable set {v,} € C such that Vv € C :

(v, Lv) is contained in the bounded pointwise closure of
the linear span of {(vk, Lvk)}.

5Cho, Moon Jung, and Richard H. Stockbridge. " Linear programming formulation for
optimal stopping problems.” SICON 40.6 (2002): 1965-1982.



Occupation Measure (Deterministic)

Time trajectories spend in set

Test function ]
v(t,x) € C([0, T] x X)

v(t, x(t | xo))dt

Single trajectory \Ii}
fo ) A

Averaged trajectory: (v, pu) = X' =—x(x+2)(x—1)

Ix (fo (t,x dt) dpio(x)



Unsafe Probability using Measures

Maximize prob. (1, ,) of ending in X, (with p, + e = 1)

p(to, Xo) =sup (1, 1)
St fp o+ fie = 0g ® pio + LT
(L o) =1
fo € M (Xo)
f, pe € My ([to, T] x X)
pp € My([to, T] x X,)

Relaxed occupation measure (po, fty + fic, (1),

Strongly dual to previous continuous-function program



SOS Expectation-Peak

di =min /X v(0, x) dpo(x) (
st. — Lv(t,x) € X[[0, T] x X] (8b
v(t,x) — p(x) € X[[0, T] x X] (
v e R[t, x| (



SOS Concentration-Peak

Second-order cone L" : {(u,q) € R" x R>o | g > ||ul|2}

d’ =min wu +2u3 —i—/x v(0, x0)d o(x0) (9a)
st.  — Lv(t,x) € Z[[0, 7E] x X] (9b)
v(t,x) + u p*(x) — 22 p(x) — p(x) (9¢)

€ X[[0, T] x X]
([ur + us, —(r/2), up], us) € L3 (9d)

uc R veR[tx]



SOS CVaR-Peak

& =min  u+ /X v(0, %) dyio(x) (10a)
st. — Lv(t,x) € Z[[0, T] x X] (10b)
v(t,x) — w(p(x)) € [0, T] x X] (10c)
u+ ew(q) = g € Z[Pmin, Pmax] (10d)
w(q) € X[pmin, Pmax] (10e)
ue R, veR[tx] (10f)



Time-Delay Approach (Bad, Don’t Do This)

Embed as non-Markovian stochastic process:
Pr=sup  R(5(t"))
s.t.  x(t) follows £ VYt € [0, min(t", 7x)]
dp = [p(x(t)) — p(x(t — h))](1/h)dt
B(h) = (1/h) [y p(x(t"))dt’

x(0) = x
t*e[h T], x5 €Xo

Could introduce relaxation gap, requires 2n + 2 states



SOS Time-Window Mean

di = miny + hg (11a)
st. v —v(s,0,x) € X[[h, T] x X (11b)
v(t, t,x) € X[[h, T] x X]<ak (11c)
€ —p(x)/h—Lv(s, t,x) € Z[Qy x X] (11d)
— Lsv(s, t,x) € X[Q_ x X] (11e)
v € Rls, t, ] (11f)
7§ ER (11g)



SOS Time-Window CVAR

d; = Mn’}i?gywv +hE+ (12a)
st. v —v(s,0,x) € X[[h, T] x Xo] (12b)
v(t,t,x) € X[[h, T] x X] (12¢)
¢ —w(p(x))/h—Lv(s, t,x) € L[, x X] (12d)
— Lev(s, t,x) € X[Q_ x X] (12e)
w(q); ew(q) + 5 € Z[[Pmin, Pmax]] (12f)
v € R[s, t,x] (12g)
w € Rq] (12h)
7§ 6 eR (12i)



Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated

(p(x) = x2)

15 04
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Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with € = 0.15)

15 12
1 IR = = = = = = = - - -
05 08
o
o
0 ﬁ 06
I
& @)
05 L
=
2
E =02t
15 o+
2 0.2 : : : ]
4 05 0 05 1 15 2 25 15 2 25 3 35 4 45 5

time (t)
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