Risk Analysis of Stochastic Processes using Linear Programming

Jared Miller
April 11, 2024
L2S: H-CODE Series

ETHzürich

Collaborators

Didier Henrion

Roy S. Smith

Ashkan Jasour

Mario Sznaier

Niklas Schmid

Matteo Tacchi

Motivation

Power System Example

Sources of randomness ${ }^{1}$:

- Thermal noise
- Measurement errors
- Unknown demand
- Intermittent wind/solar
- Extreme weather

Need to have reliable grid operation

[^0]
Power System Failure

Comparatively small-scale: a building

Power System Failure

Large-scale: City of Houston, TX (Feb. 7 and 16, 2021)

NASA Earth Observatory/Joshua Stevens

Failure Modes

Overcurrent, overvoltage, voltage collapse, short circuit, etc.

Machines can safely pull large currents for short times
AC/DC converters have hard current limits

Risk Analysis Tasks

Different settings require different notions of risk.

This seminar will discuss three risk quantifiers:

1. Probability of Unsafety
2. Instantaneous Risk
3. Time-Windowed Risk

Stochastics Background

Stochastic Process

A collection of time-indexed probability distributions $\left\{\mu_{t}\right\}$

Probability Density

$$
\text { SDE: } d x=f(t, x) d t+g(t, x) d w \text { (Itô) }
$$

Stochastic Process Examples

Geometric Brownian motion (left), Merton jump diffusion (right)

Questions to ask

Given a state function $p(x)$ (e.g. height, current, voltage)
Bound the following quantities along stochastic trajectories:

- Probability of entering unsafe set
- Mean of p
- 90% quantile of p
- Mean value above 90% quantile of p
- Other risk measures of p

Desired algorithm properties

Risk analysis problems are generally nonconvex
What we want in an algorithm:

$$
\begin{array}{ll}
\text { Convex } & \text { single optimal solution } \\
\text { Tight } & \text { same objective value } \\
\text { Tractable } & \text { can be solved/approximated by computers } \\
\text { Bounded } & \text { have error bounds/sidedness } \\
\text { Bisection-free* } & \text { only solve a single problem }
\end{array}
$$

Our approach: infinite-dimensional LP in measures/functions scenario approach: asymptotic/bounds in prob., no sidedness

Generator (Incremental Expected Change)

Generator \mathcal{L} of process $(\forall v \in \operatorname{dom}(\mathcal{L})=\mathcal{C})$:

$$
\mathcal{L}_{\tau} v=\lim _{\tau^{\prime} \rightarrow \tau}\left(\mathbb{E}\left[v\left(t+\tau^{\prime}, x\right) \mid \mu_{t+\tau^{\prime}}\right]-v(t, x)\right) / \tau^{\prime}
$$

For all solutions $\left\{\mu_{t}\right\}_{t=0}^{T}\left(\right.$ with $\left.x(t) \sim \mu_{t}\right)$ following $\mathcal{L}, \forall v \in \mathcal{C}$:

$$
\mathbb{E}_{x \sim \mu_{T}}[v(T, x)]=\mathbb{E}_{x \sim \mu_{0}}[v(0, x)]+\int_{t=0}^{T} \mathbb{E}_{x \sim \mu_{t}}\left[\mathcal{L}_{0} v(t, x)\right] d t
$$

End $=$ Start + Accumulated Change (in expectation)

Examples of Generators

Discrete-time Markov Process $(\mathcal{C}=C([0, T] \times X))$

$$
\begin{aligned}
X_{t+\tau} & =F\left(t, X_{t}, \omega_{t}\right), \quad \omega_{t} \sim \xi(\text { sampled }) \\
\mathcal{L}_{\tau} v & =\left(\int_{\Omega} v(t+\tau, F(t, x, \omega)) d \xi(\omega)-v\right) / \tau
\end{aligned}
$$

Stochastic Differential Equation $\left(\mathcal{C}=C^{1,2}([0, T] \times X)\right)$

$$
\begin{aligned}
d x & =f(t, x) d t+g(t, x) d W, \\
\mathcal{L}_{0} v & =\partial_{t} v+f \cdot \nabla_{x} v+g^{T}\left(\nabla_{x x}^{2} v\right) g / 2
\end{aligned}
$$

Others: Lévy processes, hybrid, switching, time-delay

Stochastic Safety

Safety Problem

Hazardous unsafe set X_{u} present:

- The ground (when flying)
- Overcurrent
- Other cars on road
- Temperature Violation

Estimate probability of entering X_{u}

Iceland Monitor

Probability of Unsafety

Find probability of unsafety starting at X_{0} :

$$
\begin{aligned}
P^{*}\left(t_{0}, x_{0}\right)= & \sup _{t^{*} \in\left[t_{0}, T\right]} \operatorname{Prob}_{\mu_{t^{*}}}\left[x \in X_{u}\right] \\
\text { s.t. } & x(t) \text { follows } \mathcal{L} \quad \forall t \in \min \left(t^{*}, \tau_{X}\right) \\
& x(0) \in X_{0}
\end{aligned}
$$

Worst-case over $X_{0}: P^{*}\left(t_{0}, X_{0}\right)=\sup _{x_{0} \in X_{0}} P^{*}\left(t_{0}, x_{0}\right)$
τ_{X} is exit time distribution (leaving X)

Stochastic Barrier Functions

Proof of γ-probability safety for $x(0) \in X_{0}{ }^{2}$

$$
\begin{array}{rlrl}
B^{*}(x)=\operatorname{findd}_{B \in \mathcal{C}} & B(x) \leq \gamma & & \forall x \in X_{0} \\
\text { s.t. } & B(x) \geq 1 & & \forall x \in X_{u} \\
B(x) & \geq 0 & & \forall x \in X \\
\mathcal{L} B(x) \leq 0 & & \forall x \in X
\end{array}
$$

Requires bisection on γ, inconclusive if γ fails (truncations)
${ }^{2}$ Prajna, Stephen, Ali Jadbabaie, and George J. Pappas. "A framework for worst-case and stochastic safety verification using barrier certificates." IEEE Transactions on Automatic Control 52.8 (2007): 1415-1428.

How do we solve infinite LPs?

Discretization necessary to solve on computer
More complexity: more accurate solutions

Method	Increasing Complexity
Gridding	\# Grid Points
Basis Functions	\# Functions
Random Sampling	\# Samples
* Sum-of-Squares (SOS)	Polynomial Degree
Your Favorite Method	Some Accuracy Parameter

Runtime usually exponential in dimension, complexity
Infeasibility: unsolvable problem or not enough compute?

Probability of Unsafety

Minimize probability γ, use time-dependent function $v(t, x)$

$$
\begin{array}{rlrl}
P\left(t_{0}, X_{0}\right)= & \inf _{\gamma \in \mathbb{R}} \gamma & \\
\text { s.t. } & \gamma \geq v(0, x) & & \forall x \in X_{0} \\
& \mathcal{L} v(t, x) \leq 0 & & \forall(t, x) \in\left[t_{0}, T\right] \times X \\
& v(t, x) \geq 0 & & \forall(t, x) \in\left[t_{0}, T\right] \times X \\
& v(t, x) \geq 1 & & \forall(t, x) \in\left[t_{0}, T\right] \times X_{u} \\
& v \in \mathcal{C} & &
\end{array}
$$

$P\left(t, X_{0}\right)=P^{*}\left(t, X_{0}\right)$ under compactness, regularity

Averaged Probability of Safety

Average unsafe probability over initial distribution μ_{0}

$$
\begin{aligned}
J^{*}\left(t_{0}, \mu_{0}\right)= & \inf \int_{X} v\left(t_{0}, x_{0}\right) d \mu_{0}\left(x_{0}\right) & & \\
\text { s.t. } & \mathcal{L} v(t, x) \leq 0 & & \forall(t, x) \in\left[t_{0}, T\right] \times X \\
& v(t, x) \geq 0 & & \forall(t, x) \in\left[t_{0}, T\right] \times X \\
& v(t, x) \geq 1 & & \forall(t, x) \in\left[t_{0}, T\right] \times X_{u} \\
& v \in \mathcal{C} & &
\end{aligned}
$$

Feasible solutions satisfy $v\left(t_{0}, x_{0}\right) \geq P^{*}\left(t_{0}, x_{0}\right)$
L_{1} convergence $v \rightarrow P^{*}$ under same conditions

Discrete-Time System Example

$$
x_{+}=\left[\begin{array}{c}
-0.3 x_{1}+0.8 x_{2}+x_{1} x_{2} \lambda / 4 \\
-0.9 x_{1}-0.1 x_{2}-0.2 x_{1}^{2}
\end{array}\right], \quad \lambda \in \mathcal{N}(0,1)
$$

Unsafe probabilities $R_{0}=0: \leq 7.052 \mathrm{e}-4, R_{0}=0.4: \leq 0.4017$

Risk Contours

Risk Contour Evolution

Swept unsafe regions as T increases

Risk propagation of $d x=\left[-x_{2} ; x_{1}\right] d t+[0 ; 0.1] d W$

Not Just Convex Obstacles!

Instantaneous Risk Estimation

Risk of a Distribution

Desired State function $p(x)$ (e.g., current, height, speed)
Pushforward $p_{\#}$: samples satisfy $p(x(t)) \sim p_{\#} \mu_{t}$
Some properties of $p_{\#} \mu_{t}$:

- Mean
- 90% Value-at-Risk (quantile)
- 90% Conditional Value-at-Risk
- Essential Supremum

Choose risk R from the above list, consider $R\left(p_{\#} \mu_{t}\right)$

Chance-Peak Problem

What is the maximum risk R along the stochastic trajectory?

$$
\begin{aligned}
P^{*}= & \sup _{t^{*} \in[0, T]} R\left(p_{\#} \mu_{t^{*}}\right) \\
\text { s.t. } \quad & x(t) \text { follows } \mathcal{L} \quad \forall t \in\left[0, \min \left(t^{*}, \tau_{X}\right)\right] \\
& x(0) \sim \mu_{0}\left(\text { or } x(0) \in X_{0}\right)
\end{aligned}
$$

Quantifies safety: greater risk could mean more unsafe

Maximal Value at Risk (VaR)

Maximize Value at Risk (Quantile Statistic) in time

$\max \mathrm{VaR}$

Value-at-Risk Example (Monte Carlo)

50,000 samples with $T=5, \Delta t=10^{-3}$

VaR of $p=-x_{2}$ along $d x=\left[\begin{array}{c}x_{2} \\ -x_{1}-x_{2}-\frac{1}{2} x_{1}^{3}\end{array}\right] d t+\left[\begin{array}{c}0 \\ 0.1\end{array}\right] d w$

A brief interlude about measures

Why Talk about Measures?

Another source of intuition when forming programs

Measures LPs are (weakly) dual to function LPs

- strong duality under mild conditions
- solutions come 'for free' with discretization

What are Measures?

Nonnegative Borel Measure $\mu: \operatorname{Set}(X) \rightarrow \mathbb{R}_{+}(\sigma$-algebra $)$
$\mu \in \mathcal{M}_{+}(X)$: space of nonneg. measures on X
$f \in C(X)$: continuous function on X
Pairing by Lebesgue integration:

$$
\langle f, \mu\rangle=\int_{X} f(x) d \mu(x)
$$

$\mu(X)=\langle 1, \mu\rangle=1$: Probability distribution
Product measure $\mu_{1} \otimes \mu_{2} \in \mathcal{M}_{+}\left(X_{1}\right) \times \mathcal{M}_{+}\left(X_{2}\right)$

Dirac Delta Example

Dirac delta $\delta_{x=x^{\prime}}(A)= \begin{cases}1 & x^{\prime} \in A \\ 0 & x^{\prime} \notin A\end{cases}$
Probability measure: $\delta_{x=x^{\prime}}(X)=1$
$\mu(A)=1$: Solid Box
$\mu(A)=0$: Dashed Box

x^{\prime} is the green dot

Notation: Time 0 is $\delta_{t=0}=\delta_{0}$

Occupation Measures (stochastic)

μ : stochastic kernel from $\left\{\mu_{t}\right\}$
Set \mapsto Avg. time spent in the set
Average: μ_{0} and stoch. dynamics
Averaged value of $v \in \mathcal{C}$:

$$
\langle v, \mu\rangle=\int_{0}^{T} \mathbb{E}_{x \sim \chi_{t}}[v(t, x)] d t
$$

Box: set in (t, x)

Martingale Relation

End $=$ Start + Accumulated Change (in \mathbb{E})

$$
\begin{aligned}
\forall v \in \mathcal{C}: \mathbb{E}\left[v(t+s, x) \mid \mu_{t+s}\right]= & \mathbb{E}\left[v(t, x) \mid \mu_{t}\right] \\
& +\int_{t^{\prime}=t}^{t+s} \mathbb{E}\left[\mathcal{L} v\left(t^{\prime}, x\right) \mid \mu_{t^{\prime}}\right] d t^{\prime}
\end{aligned}
$$

Relation between measures $\left(\mu_{t}, \mu_{t+s}, \mu\right)$ for all $v \in \mathcal{C}$

$$
\left\langle v(t+s, x), \mu_{t+s}(x)\right\rangle=\left\langle v(t, x), \mu_{t}(x)\right\rangle+\langle\mathcal{L} v, \mu\rangle
$$

Compress notation using adjoint \mathcal{L}^{\dagger} (implicitly express $\forall v$)

$$
\mu_{t+s}=\mu_{t}+\mathcal{L}^{\dagger} \mu
$$

Back to the regularly scheduled instantaneous risk estimation

Mean Maximization

When R is the mean, can solve an infinite $L P^{3}$:

$$
\begin{array}{ll}
p^{*}= & \sup \quad\left\langle p(x), \mu_{\tau}\right\rangle \\
\text { s.t. } & \mu_{\tau}=\delta_{0} \otimes \mu_{0}+\mathcal{L}_{f}^{\dagger} \mu \\
& \mu, \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X)
\end{array}
$$

Instance of a stochastic Optimal Control Program ${ }^{4}$
$\left(\mu_{\tau}^{*}, \mu^{*}\right)$ is feasible with $P^{*}=\left\langle p(x), \mu_{\tau}^{*}\right\rangle \leq p^{*}$
$P^{*}=p^{*}$ if compactness, regularity properties hold
${ }^{3}$ Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SICON 40.6 (2002): 1965-1982.
${ }^{4}$ Vinter, Richard B., and Richard M. Lewis. "The equivalence of strong and weak formulations for certain problems in optimal control." SICON 16.4 (1978): 546-570.

Value-at-Risk Bounds

VaR is nonconvex, nonsubadditive (unfriendly)
Concentration inequalities can upper-bound VaR

$$
\operatorname{Va}_{\epsilon}(\nu) \leq \operatorname{stdev}(\nu) r+\operatorname{mean}(\nu)
$$

Name	r value	Valid condition
Cantelli	$\sqrt{1 /(\epsilon)-1}$	ν probability distribution
VP	$\sqrt{4 /(9 \epsilon)-1}$	ν unimodal, $\epsilon<1 / 6$

(will talk about CVaR later)

Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound $P_{r}^{*} \geq P^{*}$
Objective upper-bounds VaR w.r.t. time- t^{*} distribution $\mu_{\mathrm{t}^{*}}$

$$
\begin{aligned}
P_{r}^{*}= & \sup _{t^{*} \in[0, T]} r \sqrt{\left\langle p^{2}, \mu_{t^{*}}\right\rangle-\left\langle p, \mu_{t^{*}}\right\rangle^{2}}+\left\langle p, \mu_{t^{*}}\right\rangle \\
& x \text { follows } \mathcal{L} \\
& x(0) \sim \mu_{0}
\end{aligned}
$$

SOCP in measures for $p_{r}^{*} \geq P_{r}^{*} \geq P_{V A R}^{*}$ (3d SOC constraint)
Same constraints as mean-maximization, different objective

Conditional Value-at-Risk

CVaR: Average quantity above the Value-at-Risk

$$
\operatorname{CVaR}_{\epsilon}(\nu(\omega))=(1 / \epsilon) \int_{\omega \geq \operatorname{VaR}_{\epsilon}(\nu)} \omega d \nu(\omega)
$$

Uniform distributions with same VaR, different CVaR (70\%)

CVaR Linear Program

Measure LP to compute CVaR (with $\frac{d \psi}{d \nu} \leq \frac{1}{\epsilon}$)

$$
\begin{aligned}
\operatorname{CVaR}_{\epsilon}(\nu)= & \sup _{\psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})} \operatorname{mean}(\psi) \\
\text { s.t. } & \epsilon \psi+\hat{\psi}=\nu \\
& \langle 1, \psi\rangle=1
\end{aligned}
$$

$$
\mathrm{VaR}=1.2816, \mathrm{CVaR}=1.7550, \epsilon \psi \leq \nu
$$

CVaR Chance-Peak

Highest CVaR along stochastic trajectories

$$
\begin{aligned}
P_{c}^{*}= & \sup _{t^{*} \in[0, T]} \operatorname{CVaR}_{\epsilon}\left(p_{\#} \mu_{t^{*}}\right) \\
\text { s.t. } & x \text { follows } \mathcal{L} \\
& x(0) \sim \mu_{0}
\end{aligned}
$$

Almost the same as VaR chance-peak, with $P_{c}^{*} \geq P^{*}$

CVaR Measure program

Add CVaR objective, constraints to chance-peak

$$
\begin{array}{ll}
p_{c}^{*}= & \sup \quad \operatorname{mean}(\psi) \\
\text { s.t. } & \mu_{\tau}=\delta_{0} \otimes \mu_{0}+\mathcal{L}^{\dagger} \mu \\
& \langle 1, \psi\rangle=1 \\
& \epsilon \psi+\hat{\psi}=p_{\#} \mu_{\tau} \\
& \mu, \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X) \\
& \psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})
\end{array}
$$

Upper-bound $p_{c}^{*} \geq P_{c}^{*} \geq P^{*}$, LP in measures

Comparison of bounds

$P_{r}^{*}=p_{r}^{*}$ and $P_{c}^{*}=p_{c}^{*}$ if

1. Closure and boundedness conditions on $\operatorname{dom}(\mathcal{L})$
2. $[0, T] \times X$ compact (absorbing boundaries)
3. $p(x)$ is continuous (lower semicontinuous?)
$P_{\text {Cantelli }}^{*} \geq P_{c}^{*}$ always, but ($P_{c}^{*}, P_{\text {Vp }}^{*}$) incomparable (so far)
Empirically, degree- k moment LMIs satisfy $p_{\text {Cantelli,k }}^{*} \geq p_{c, k}^{*}$

Chance-Peak Examples

Two-State

Stochastic Flow (Prajna, Rantzer) with $T=5, p(x)=-x_{2}$

$$
d x=\left[\begin{array}{c}
x_{2} \\
-x_{1}-x_{2}-\frac{1}{2} x_{1}^{3}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] d w
$$

Stochastic Flow System

$$
d=6 \text { (dash-dot=50\%, dotted=85\% CVAR, solid=85\% VP) }
$$

Three-State

Stochasic Twist system with $T=5, p(x)=x_{3}$

$$
d x=\left[\begin{array}{l}
-2.5 x_{1}+x_{2}-0.5 x_{3}+2 x_{1}^{3}+2 x_{3}^{3} \\
-x_{1}+1.5 x_{2}+0.5 x_{3}-2 x_{2}^{3}-2 x_{3}^{3} \\
1.5 x_{1}+2.5 x_{2}-2 x_{3}-2 x_{1}^{3}-2 x_{2}^{3}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
0 \\
0.1
\end{array}\right] d w
$$

Stochastic Twist System

$$
d=6(\text { translucent }=50 \%, \text { gray }=85 \% \text { CVAR, solid }=85 \% \text { VP })
$$

Two-State Switching

Switching subsystems at $T=5, p(x)=-x_{2}$

$$
d x=\left\{\left[\begin{array}{c}
-2.5 x_{1}-2 x_{2} \\
-0.5 x_{1}-x_{2}
\end{array}\right],\left[\begin{array}{c}
-x_{1}-2 x_{2} \\
2.5 x_{1}-x_{2}
\end{array}\right]\right\} d t+\left[\begin{array}{c}
0 \\
0.25 x_{2}
\end{array}\right] d w
$$

$$
d=6 \text { (dash-dot=50\%, dotted=85\% CVAR, solid=85\% VP) }
$$

Time-Windowed Risk Estimation

Time-Windowed Average Motivation: Signal

Oscillations near instanataneous peak $(t=2)$

Time-Windowed Average Example

Instantaneous maximal risks may not give full picture

Large time-windowed avg. current on wire \approx overheating

Time-Windowed Risk Example

Choose a time window h

Form a prob. dist. $\zeta(t)$ from $\left\{p\left(x\left(t^{\prime}\right)\right)\right\}_{t^{\prime}=t-h}^{t}$

Analyze risk of $R(\zeta(t))$

Time-Windowed Risk Problem

Given R and h, choose optimal t^{*}, x_{0}^{*} :

$$
\begin{aligned}
P^{*}= & \sup _{t^{*}, x_{0}^{*}} R\left(\frac{1}{h} \int_{t^{*}-h}^{t^{*}} p\left(x\left(t^{\prime}\right)\right) d t^{\prime}\right) \\
\text { s.t. } \quad & x(t) \text { follows } \mathcal{L} \quad \forall t \in\left[0, \min \left(t^{*}, \tau_{X}\right)\right] \\
& x(0)=x_{0}^{*} \\
& t^{*} \in[h, T], x_{0}^{*} \in X_{0}
\end{aligned}
$$

Integral in objective collapses (marginalizes) time
Limits: Chance-peak as $h \rightarrow 0$, Risk-averse stopping as $h \rightarrow T$.

Augmented Time Coordinate

We can stick to ODE methods by adding a new time s

Two continuous times (t, s) :

Active time	$t \in[0, T]$	$\dot{t}=1$
Stopping time	$s \in[h, T]$	$\dot{s}=0$

Temporal support sets $\Omega_{ \pm}$:

$$
\Omega_{-}: t \in[0, s-h] \quad \Omega_{+}: t \in[s-h, s]
$$

Risk evaluated in Ω_{+}, similar process in discrete-time

Two Time Coordinates?

Curves $(t, p(t), s)$: time intervals $[0, s-h],[s-h, s],[s, T]$

Measures for Risk Estimation

Mean-type risk estimation measures (with constant state s)

$$
\begin{aligned}
\mu_{0}(s, x) & \in \mathcal{M}_{+}\left([h, T] \times X_{0}\right) & & \text { Initial } \\
\mu_{\tau}(s, x) & \in \mathcal{M}_{+}([h, T] \times X) & & \text { Terminal } \\
\mu_{+}(s, t, x) & \in \mathcal{M}_{+}\left(\Omega_{+} \times X\right) & & \text { Risk Occ. } \\
\mu_{-}(s, t, x) & \in \mathcal{M}_{+}\left(\Omega_{-} \times X\right) & & \text { Past Occ. }
\end{aligned}
$$

Time-windowed risk evaluation: $\frac{1}{h} \int_{s-h}^{s} p\left(x\left(t^{\prime}\right)\right) d t^{\prime} \rightarrow \frac{1}{h} p_{\#} \mu_{+}$

Time-Duplication Map

The last technical detail needed: a time-duplicating map φ

$$
\varphi:(s, x) \mapsto(s, s, x)
$$

For all test functions $\omega(s, t, x) \in C([h, T] \times[0, T] \times X)$

$$
\left\langle\omega(s, t, x), \varphi_{\#} \mu_{\tau}(s, t, x)\right\rangle=\left\langle\omega(s, s, x), \mu_{\tau}(s, x)\right\rangle
$$

Relaxed occupation measure of $\hat{\mathcal{L}}:\left(\mu_{0}, \varphi_{\#} \mu_{\tau}, \mu_{+}+\mu_{-}\right)$

Time-Windowed Risk Estimation

Non-conservative infinite LP with generator $\hat{\mathcal{L}}:(\mathcal{L}, \dot{s}=0)$

$$
\begin{aligned}
& p^{*}=\sup \quad\left\langle p, \mu_{+}\right\rangle / h \\
& \text { s.t. } \varphi_{\#} \mu_{\tau}=\delta_{0} \otimes \mu_{0}+\hat{\mathcal{L}}^{\dagger}\left(\mu_{-}+\mu_{+}\right) \\
& \quad\left\langle 1, \mu_{0}\right\rangle=1 \\
& \left\langle 1, \mu_{+}\right\rangle=h
\end{aligned}
$$

Mean-type time-windowed support constraints

Constraint $\left\langle 1, \mu_{+}\right\rangle=h$ imposes that h time units elapse
CVaR modification: sup mean $(\psi): \epsilon \psi+\hat{\psi}=\left(p_{\#} \mu_{+}\right) / h$

Time-Windowed Stoch. Mean Example ($h=1.5$)

Instantaneous and time-windowed mean are separated

$$
\left(p(x)=x_{2}\right)
$$

Time-Windowed Stoch. CVaR Example ($h=1.5$)

Peak CVaR is close to peak instantaneous p (with $\epsilon=0.15$)

Risk-Aware Control (overview)

Risk-Aware Control

Minimize in risk in objective/risk constraints (difficult)

Approximate

- Sample-Average Approximations
- Upper-bound CVAR
- Min-Max Approaches
- Boole's Inequality

Exact (up to structure)

- Distributional Robustness
- Dynamic Programming Principles (unconstrained)
- Nested Risk
- (Joint Chance Constraint)

Continuous-time: Pontryagin Max., not constructive
Talk to Gabriel Velho, Riccardo Bonalli, Benoît Bonnet-Weill

Take-aways

Conclusion

Risk estimation is important

Three problems: Unsafe Prob., Chance-Peak, Time-Window

Solved using infinite-dimensional LPs/SOCPs in measures

Certified outer-approximations of risk

Nice risk-aware control/tractable analysis is still open

Main References

Part 1: Jared Miller, Matteo Tacchi, Didier Henrion, and Mario Sznaier. Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization, 2024. arXiv:2401.00815

Part 2: Jared Miller, Matteo Tacchi, Mario Sznaier, and Ashkan Jasour. Peak Value-at-Risk Estimation of Stochastic Processes using Occupation Measures, 2024. arXiv:2303.16064

Part 3: Jared Miller, Niklas Schmid, Matteo Tacchi, Didier Henrion, and Roy S. Smith. Peak Time-Windowed Risk Estimation of Stochastic Processes, 2024. arXiv:2404.06961

Thanks!

Bonus Slides

Main works

Miller, J., Tacchi, M., Henrion, D., Sznaier, M. (2024). Unsafe probabilities and risk contours for stochastic processes using convex optimization. arXiv:2401.00815.

Miller, J., Tacchi, M., Sznaier, M., Jasour, A. (2023). Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp. 4836-4842). IEEE.

Miller, J., Tacchi, M., Sznaier, M., Jasour, A. (2023). Peak Value-at-Risk Estimation for Stochastic Stochastic Processes using Occupation Measures. arxiv:2303.16064.

Assumptions for Stochastic LPs

Assumptions used in all presented programs ${ }^{5}$:

1. Trajectories stop upon the first exit from $X\left(\tau_{X} \wedge T\right)$.
2. The test function set $\mathcal{C}=\operatorname{dom}(\mathcal{L})$ satisfies $\mathcal{C} \subseteq C\left(\left[t_{0}, T\right] \times X\right)$ with $1 \in \mathcal{C}$ and $\mathcal{L} 1=0$.
3. The set \mathcal{C} separates points and is multiplicatively closed.
4. There exists a countable set $\left\{v_{k}\right\} \in \mathcal{C}$ such that $\forall v \in \mathcal{C}$: $(v, \mathcal{L} v)$ is contained in the bounded pointwise closure of the linear span of $\left\{\left(v_{k}, \mathcal{L} v_{k}\right)\right\}$.
[^1]
Occupation Measure (Deterministic)

Time trajectories spend in set

Test function

$$
v(t, x) \in C([0, T] \times X)
$$

Single trajectory:

$$
\langle v, \mu\rangle=\int_{0}^{T} v\left(t, x\left(t \mid x_{0}\right)\right) d t
$$

$$
x^{\prime}=-x(x+2)(x-1)
$$ $\int_{X}\left(\int_{0}^{T} v(t, x) d t\right) d \mu_{0}(x)$

Unsafe Probability using Measures

Maximize prob. $\left\langle 1, \mu_{p}\right\rangle$ of ending in X_{u} (with $\mu_{p}+\mu_{c}=\mu_{\tau}$)

$$
\begin{aligned}
p^{*}\left(t_{0}, X_{0}\right)= & \sup \quad\left\langle 1, \mu_{p}\right\rangle \\
\text { s.t. } \quad & \mu_{p}+\mu_{c}=\delta_{t_{0}} \otimes \mu_{0}+\mathcal{L}^{\dagger} \mu \\
& \left\langle 1, \mu_{0}\right\rangle=1 \\
& \mu_{0} \in \mathcal{M}_{+}\left(X_{0}\right) \\
& \mu, \mu_{c} \in \mathcal{M}_{+}\left(\left[t_{0}, T\right] \times X\right) \\
& \mu_{p} \in \mathcal{M}_{+}\left(\left[t_{0}, T\right] \times X_{u}\right)
\end{aligned}
$$

Relaxed occupation measure $\left(\mu_{0}, \mu_{u}+\mu_{c}, \mu\right)$,
Strongly dual to previous continuous-function program

SOS Expectation-Peak

$$
\begin{align*}
d_{\mathbb{R}}^{*}= & \min \int_{x} v(0, x) d \mu_{0}(x) \tag{8a}\\
\text { s.t. } & -\mathcal{L} v(t, x) \in \Sigma[0, T] \times X] \\
& v(t, x)-p(x) \in \Sigma[[0, T] \times X] \tag{8c}\\
& v \in \mathbb{R}[t, x]
\end{align*}
$$

(8b)
(8d)

SOS Concentration-Peak

Second-order cone $\mathbb{L}^{n}:\left\{(u, q) \in \mathbb{R}^{n} \times \mathbb{R}_{\geq 0} \mid q \geq\|u\|_{2}\right\}$

$$
\begin{align*}
d_{r}^{*}= & \min \quad u_{1}+2 u_{3}+\int_{X_{0}} v\left(0, x_{0}\right) d \mu_{0}\left(x_{0}\right) \tag{9a}\\
\text { s.t. } \quad & -\mathcal{L} v(t, x) \in \Sigma[[0, T] \times X] \tag{9b}\\
& v(t, x)+u_{1} p^{2}(x)-2 u_{2} p(x)-p(x) \tag{9c}\\
& \in \Sigma[[0, T] \times X] \\
& \left(\left[u_{1}+u_{3},-(r / 2), u_{2}\right], u_{3}\right) \in \mathbb{L}^{3} \tag{9d}\\
& u \in \mathbb{R}^{3}, v \in \mathbb{R}[t, x]
\end{align*}
$$

SOS CVaR-Peak

$$
\begin{align*}
d_{c}^{*}= & \min \quad u+\int_{X} v(0, x) d \mu_{0}(x) \tag{10a}\\
\text { s.t. } & -\mathcal{L} v(t, x) \in \Sigma[[0, T] \times X] \tag{10b}\\
& v(t, x)-w(p(x)) \in \Sigma[[0, T] \times X] \tag{10c}\\
& u+\epsilon w(q)-q \in \Sigma\left[p_{\min }, p_{\max }\right] \tag{10d}\\
& w(q) \in \Sigma\left[p_{\min }, p_{\max }\right] \\
& u \in \mathbb{R}, v \in \mathbb{R}[t, x]
\end{align*}
$$

(10e)
(10f)

Time-Delay Approach (Bad, Don't Do This)

Embed as non-Markovian stochastic process:

$$
\begin{array}{ll}
P^{*}= & \sup _{t^{*}, x_{0}^{*}} \quad R\left(\beta\left(t^{*}\right)\right) \\
\text { s.t. } & x(t) \text { follows } \mathcal{L} \quad \forall t \in\left[0, \min \left(t^{*}, \tau_{x}\right)\right] \\
& d \beta=[p(x(t))-p(x(t-h))](1 / h) d t \\
& \beta(h)=(1 / h) \int_{0}^{h} p\left(x\left(t^{\prime}\right)\right) d t^{\prime} \\
& x(0)=x_{0}^{*} \\
& t^{*} \in[h, T], x_{0}^{*} \in X_{0}
\end{array}
$$

Could introduce relaxation gap, requires $2 n+2$ states

SOS Time-Window Mean

$$
\begin{array}{ll}
d_{k}^{*}= & \min _{v, \gamma, \xi} \gamma+h \xi \\
\text { s.t. } & \gamma-v(s, 0, x) \in \Sigma\left[[h, T] \times X_{0}\right] \\
& v(t, t, x) \in \Sigma[[h, T] \times X]_{\leq 2 k} \\
& \xi-p(x) / h-\hat{\mathcal{L}} v(s, t, x) \in \Sigma\left[\Omega_{+} \times X\right] \\
& -\mathcal{L}_{f} v(s, t, x) \in \Sigma\left[\Omega_{-} \times X\right] \\
& v \in \mathbb{R}[s, t, x] \tag{11f}\\
& \gamma, \xi \in \mathbb{R}
\end{array}
$$

(11g)

SOS Time-Window CVAR

$$
\begin{align*}
d_{k}^{*}= & \min _{v, \gamma, \xi, \beta, w} \gamma+h \xi+\beta \tag{12a}\\
\text { s.t. } & \gamma-v(s, 0, x) \in \Sigma\left[[h, T] \times X_{0}\right] \tag{12b}\\
& v(t, t, x) \in \Sigma[[h, T] \times X] \tag{12c}\\
& \xi-w(p(x)) / h-\hat{\mathcal{L}} v(s, t, x) \in \Sigma\left[\Omega_{+} \times X\right] \tag{12d}\\
& -\mathcal{L}_{f} v(s, t, x) \in \Sigma\left[\Omega_{-} \times X\right] \tag{12e}\\
& w(q), \epsilon w(q)+\beta \in \Sigma\left[\left[p_{\min }, p_{\max }\right]\right] \tag{12f}\\
& v \in \mathbb{R}[s, t, x] \tag{12~g}\\
& w \in \mathbb{R}[q] \tag{12h}\\
& \gamma, \xi, \beta \in \mathbb{R} \tag{12i}
\end{align*}
$$

Time-Windowed Mean Example $(h=1.5)$

Instantaneous and time-windowed mean are separated
$\left(p(x)=x_{2}\right)$

Time-Windowed CVaR Example $(h=1.5)$

Peak CVaR is close to peak instantaneous p (with $\epsilon=0.15$)

[^0]: ${ }^{1}$ Bienstock, Daniel. Electrical transmission system cascades and vulnerability: an operations research viewpoint. Society for Industrial and Applied Mathematics, 2015.

[^1]: ${ }^{5}$ Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SICON 40.6 (2002): 1965-1982.

