Risk Analysis of Stochastic Processes using Linear Programming

Jared Miller

April 11, 2024 L2S: H-CODE Series

Collaborators

Didier Henrion

Roy S. Smith

Ashkan Jasour

Mario Sznaier

Niklas Schmid

Matteo Tacchi

Motivation

Power System Example

Sources of randomness¹:

- Thermal noise
- Measurement errors
- Unknown demand
- Intermittent wind/solar
- Extreme weather

Need to have reliable grid operation

¹Bienstock, Daniel. Electrical transmission system cascades and vulnerability: an operations research viewpoint. Society for Industrial and Applied Mathematics, 2015.

Power System Failure

Comparatively small-scale: a building

Power System Failure

Large-scale: City of Houston, TX (Feb. 7 and 16, 2021)

NASA Earth Observatory/Joshua Stevens

Failure Modes

Overcurrent, overvoltage, voltage collapse, short circuit, etc.

Machines can safely pull large currents for short times

 AC/DC converters have hard current limits

Different settings require different notions of risk.

This seminar will discuss three risk quantifiers:

- 1. Probability of Unsafety
- 2. Instantaneous Risk
- 3. Time-Windowed Risk

Stochastics Background

Stochastic Process

A collection of time-indexed probability distributions $\{\mu_t\}$

SDE: dx = f(t, x)dt + g(t, x)dw (Itô)

Stochastic Process Examples

Geometric Brownian motion (left), Merton jump diffusion (right)

Given a state function p(x) (e.g. height, current, voltage) Bound the following quantities along stochastic trajectories:

- Probability of entering unsafe set
- Mean of p
- 90% quantile of p
- Mean value above 90% quantile of p
- Other risk measures of p

Risk analysis problems are generally nonconvex

What we want in an algorithm:

Convex	single optimal solution
Tight	same objective value
Tractable	can be solved/approximated by computers
Bounded	have error bounds/sidedness
Bisection-free*	only solve a single problem

Our approach: infinite-dimensional LP in measures/functions scenario approach: asymptotic/bounds in prob., no sidedness

Generator \mathcal{L} of process $(\forall v \in \operatorname{dom}(\mathcal{L}) = \mathcal{C})$:

$$\mathcal{L}_{ au} oldsymbol{v} = \lim_{ au' o au} \left(\mathbb{E}[oldsymbol{v}(t+ au', x) \mid \mu_{t+ au'}] - oldsymbol{v}(t, x)) \, / au'$$

For all solutions $\{\mu_t\}_{t=0}^T$ (with $x(t) \sim \mu_t$) following \mathcal{L} , $\forall v \in \mathcal{C}$:

$$\mathbb{E}_{x \sim \mu_{\mathcal{T}}}[v(\mathcal{T}, x)] = \mathbb{E}_{x \sim \mu_0}[v(0, x)] + \int_{t=0}^{\mathcal{T}} \mathbb{E}_{x \sim \mu_t}[\mathcal{L}_0 v(t, x)] dt$$

End = Start + Accumulated Change (in expectation)

Discrete-time Markov Process ($C = C([0, T] \times X)$)

$$egin{aligned} X_{t+ au} &= {\sf F}(t,X_t,\omega_t), \qquad \omega_t \sim \xi \ ext{(sampled)} \ \mathcal{L}_ au {\sf v} &= \left(\int_\Omega {\sf v} \left(t+ au,{\sf F}(t,x,\omega)
ight) d\xi(\omega) - {\sf v}
ight)/ au \end{aligned}$$

Stochastic Differential Equation ($C = C^{1,2}([0, T] \times X))$

$$dx = f(t, x)dt + g(t, x)dW,$$

$$\mathcal{L}_0 v = \partial_t v + f \cdot \nabla_x v + g^T (\nabla_{xx}^2 v)g/2$$

Others: Lévy processes, hybrid, switching, time-delay

Stochastic Safety

Hazardous unsafe set X_u present:

- The ground (when flying)
- Overcurrent
- Other cars on road
- Temperature Violation

Estimate probability of entering X_u

Iceland Monitor

Find probability of unsafety starting at X_0 :

$$\begin{aligned} P^*(t_0, x_0) &= \sup_{t^* \in [t_0, T]} & \operatorname{Prob}_{\mu_{t^*}}[x \in X_u] \\ \text{s.t.} \quad x(t) \text{ follows } \mathcal{L} & \forall t \in \min(t^*, \tau_X) \\ & x(0) \in X_0 \end{aligned}$$

Worst-case over X_0 : $P^*(t_0, X_0) = \sup_{x_0 \in X_0} P^*(t_0, x_0)$ τ_X is exit time distribution (leaving X) Proof of γ -probability safety for $x(0) \in X_0^{-2}$

$$B^{*}(x) = \underset{B \in \mathcal{C}}{\text{find }} B(x) \leq \gamma \qquad \forall x \in X_{0}$$

s.t. $B(x) \geq 1 \qquad \forall x \in X_{u}$
 $B(x) \geq 0 \qquad \forall x \in X$
 $\mathcal{L}B(x) < 0 \qquad \forall x \in X$

Requires bisection on γ , inconclusive if γ fails (truncations)

²Prajna, Stephen, Ali Jadbabaie, and George J. Pappas. "A framework for worst-case and stochastic safety verification using barrier certificates." IEEE Transactions on Automatic Control 52.8 (2007): 1415-1428.

Discretization necessary to solve on computer

More complexity: more accurate solutions

Method	Increasing Complexity
Gridding	# Grid Points
Basis Functions	# Functions
Random Sampling	# Samples
★ Sum-of-Squares (SOS)	Polynomial Degree
Your Favorite Method	Some Accuracy Parameter

Runtime usually exponential in dimension, complexity Infeasibility: unsolvable problem or not enough compute? Minimize probability γ , use time-dependent function v(t, x)

$$P(t_0, X_0) = \inf_{\gamma \in \mathbb{R}} \gamma$$

s.t. $\gamma \ge v(0, x)$ $\forall x \in X_0$
 $\mathcal{L}v(t, x) \le 0$ $\forall (t, x) \in [t_0, T] \times X$
 $v(t, x) \ge 0$ $\forall (t, x) \in [t_0, T] \times X$
 $v(t, x) \ge 1$ $\forall (t, x) \in [t_0, T] \times X_u$
 $v \in C$

 $P(t, X_0) = P^*(t, X_0)$ under compactness, regularity

Average unsafe probability over initial distribution $\mu_{\rm 0}$

$$J^{*}(t_{0}, \mu_{0}) = \inf \int_{X} v(t_{0}, x_{0}) d\mu_{0}(x_{0})$$

s.t. $\mathcal{L}v(t, x) \leq 0$ $\forall (t, x) \in [t_{0}, T] \times X$
 $v(t, x) \geq 0$ $\forall (t, x) \in [t_{0}, T] \times X$
 $v(t, x) \geq 1$ $\forall (t, x) \in [t_{0}, T] \times X_{u}$
 $v \in \mathcal{C}$

Feasible solutions satisfy $v(t_0, x_0) \ge P^*(t_0, x_0)$

 L_1 convergence $v \rightarrow P^*$ under same conditions

Discrete-Time System Example

$$x_+ = egin{bmatrix} -0.3x_1 + 0.8x_2 + x_1x_2\lambda/4 \ -0.9x_1 - 0.1x_2 - 0.2x_1^2 \end{bmatrix}, \qquad \lambda \in \mathcal{N}(0,1)$$

Unsafe probabilities $R_0 = 0 :\le 7.052e-4$, $R_0 = 0.4 :\le 0.4017$

Risk Contours

(a) Disc X_0 : Prob \leq 0.4017 (b) Averaged unsafety contour

Risk contours (upper-bounds) with poly. deg v(t, x) = 12

Swept unsafe regions as T increases

Risk propagation of $dx = [-x_2; x_1]dt + [0; 0.1]dW$

Not Just Convex Obstacles!

Instantaneous Risk Estimation

Desired State function p(x) (e.g., current, height, speed) Pushforward $p_{\#}$: samples satisfy $p(x(t)) \sim p_{\#}\mu_t$

Some properties of $p_{\#}\mu_t$:

- Mean
- 90% Value-at-Risk (quantile)
- 90% Conditional Value-at-Risk
- Essential Supremum

Choose risk *R* from the above list, consider $R(p_{\#}\mu_t)$

What is the maximum risk R along the stochastic trajectory?

$$\begin{aligned} P^* &= \sup_{t^* \in [0, \mathcal{T}]} & R(p_{\#} \mu_{t^*}) \\ \text{s.t.} & x(t) \text{ follows } \mathcal{L} & \forall t \in [0, \min(t^*, \tau_X)] \\ & x(0) \sim \mu_0 \text{ (or } x(0) \in X_0) \end{aligned}$$

Quantifies safety: greater risk could mean more unsafe

Maximal Value at Risk (VaR)

Red + Black areas = 10% probability

Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, $\Delta t = 10^{-3}$

26

A brief interlude about measures

Another source of intuition when forming programs

Measures LPs are (weakly) dual to function LPs

- strong duality under mild conditions
- solutions come 'for free' with discretization

Nonnegative Borel Measure μ : Set(X) $\rightarrow \mathbb{R}_+$ (σ -algebra)

 $\mu \in \mathcal{M}_+(X)$: space of nonneg. measures on X

 $f \in C(X)$: continuous function on X

Pairing by Lebesgue integration:

$$\langle f, \mu \rangle = \int_X f(x) d\mu(x)$$

 $\mu(X) = \langle 1, \mu \rangle = 1$: Probability distribution Product measure $\mu_1 \otimes \mu_2 \in \mathcal{M}_+(X_1) \times \mathcal{M}_+(X_2)$

Dirac delta
$$\delta_{x=x'}(A) = \begin{cases} 1 & x' \in A \\ 0 & x' \notin A \end{cases}$$

Probability measure: $\delta_{x=x'}(X) = 1$

 $\mu(A) = 1$: Solid Box $\mu(A) = 0$: Dashed Box

Notation: Time 0 is $\delta_{t=0} = \delta_0$

x' is the green dot

 μ : stochastic kernel from $\{\mu_t\}$

Set \mapsto Avg. time spent in the set

Average: μ_0 and stoch. dynamics

Averaged value of $v \in C$: $\langle v, \mu \rangle = \int_0^T \mathbb{E}_{x \sim X_t}[v(t, x)]dt$

Martingale Relation

 $\mathsf{End} = \mathsf{Start} + \mathsf{Accumulated Change} (in \mathbb{E})$

$$\begin{aligned} \forall \mathbf{v} \in \mathcal{C} : \ \mathbb{E}[\mathbf{v}(t+s,x) \mid \mu_{t+s}] &= \mathbb{E}[\mathbf{v}(t,x) \mid \mu_t] \\ &+ \int_{t'=t}^{t+s} \mathbb{E}[\mathcal{L}\mathbf{v}(t',x) \mid \mu_{t'}] dt' \end{aligned}$$

Relation between measures (μ_t, μ_{t+s}, μ) for all $v \in C$

$$\langle \mathbf{v}(t+s,x), \mu_{t+s}(x) \rangle = \langle \mathbf{v}(t,x), \mu_t(x) \rangle + \langle \mathcal{L}\mathbf{v}, \mu \rangle$$

Compress notation using adjoint \mathcal{L}^{\dagger} (implicitly express $\forall v$)

$$\mu_{t+s} = \mu_t + \mathcal{L}^\dagger \mu$$

Back to the regularly scheduled instantaneous risk estimation

When R is the mean, can solve an infinite LP^3 :

$$p^* = \sup \langle p(x), \mu_{\tau} \rangle$$

s.t. $\mu_{\tau} = \delta_0 \otimes \mu_0 + \mathcal{L}_f^{\dagger} \mu$
 $\mu, \mu_{\tau} \in \mathcal{M}_+([0, T] \times X)$

Instance of a stochastic Optimal Control Program⁴

$$(\mu_{ au}^{*},\mu^{*})$$
 is feasible with ${\it P}^{*}=\langle {\it p}(x),\mu_{ au}^{*}
angle \leq {\it p}^{*}$

 $P^* = p^*$ if compactness, regularity properties hold

³Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SICON 40.6 (2002): 1965-1982.

⁴Vinter, Richard B., and Richard M. Lewis. "The equivalence of strong and weak formulations for certain problems in optimal control." SICON 16.4 (1978): 546-570.

VaR is nonconvex, nonsubadditive (unfriendly) Concentration inequalities can upper-bound VaR

 $VaR_{\epsilon}(\nu) \leq \mathsf{stdev}(\nu)r + \mathsf{mean}(\nu)$

 $\begin{array}{lll} \mbox{Name} & \mbox{r value} & \mbox{Valid condition} \\ \mbox{Cantelli} & \sqrt{1/(\epsilon)-1} & \mbox{ν probability distribution} \\ \mbox{VP} & \sqrt{4/(9\epsilon)-1} & \mbox{ν unimodal, $\epsilon < 1/6$} \end{array}$

(will talk about CVaR later)

Apply concentration inequalities to get upper bound $P_r^* \ge P^*$ Objective upper-bounds VaR w.r.t. time- t^* distribution μ_{t^*}

$$P_{r}^{*} = \sup_{t^{*} \in [0,T]} r \sqrt{\langle p^{2}, \mu_{t^{*}} \rangle - \langle p, \mu_{t^{*}} \rangle^{2}} + \langle p, \mu_{t^{*}} \rangle$$
$$x \text{ follows } \mathcal{L}$$
$$x(0) \sim \mu_{0}$$

SOCP in measures for $p_r^* \ge P_r^* \ge P_{VAR}^*$ (3d SOC constraint) Same constraints as mean-maximization, different objective

Conditional Value-at-Risk

CVaR: Average quantity above the Value-at-Risk $CVaR_{\epsilon}(\nu(\omega)) = (1/\epsilon)\int_{\omega \geq VaR_{\epsilon}(\nu)} \omega d\nu(\omega)$

Uniform distributions with same VaR, different CVaR (70%)

CVaR Linear Program

Highest CVaR along stochastic trajectories

$$P_{c}^{*} = \sup_{t^{*} \in [0, T]} \text{CVaR}_{\epsilon}(p_{\#}\mu_{t^{*}})$$

s.t. x follows \mathcal{L}
 $x(0) \sim \mu_{0}$

Almost the same as VaR chance-peak, with $P_c^* \ge P^*$

Add CVaR objective, constraints to chance-peak

$$p_{c}^{*} = \sup \operatorname{mean}(\psi)$$

s.t.
$$\mu_{\tau} = \delta_{0} \otimes \mu_{0} + \mathcal{L}^{\dagger}\mu$$
$$\langle 1, \psi \rangle = 1$$
$$\epsilon \psi + \hat{\psi} = p_{\#}\mu_{\tau}$$
$$\mu, \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X)$$
$$\psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})$$

Upper-bound $p_c^* \ge P_c^* \ge P^*$, LP in measures

- $P_r^* = p_r^*$ and $P_c^* = p_c^*$ if
 - 1. Closure and boundedness conditions on $\mathsf{dom}(\mathcal{L})$
 - 2. $[0, T] \times X$ compact (absorbing boundaries)
 - 3. p(x) is continuous (lower semicontinuous?)

 $P^*_{Cantelli} \ge P^*_c$ always, but (P^*_c, P^*_{VP}) incomparable (so far) Empirically, degree-k moment LMIs satisfy $p^*_{Cantelli,k} \ge p^*_{c,k}$

Chance-Peak Examples

Two-State

Stochastic Flow (Prajna, Rantzer) with T = 5, $p(x) = -x_2$

$$dx = \begin{bmatrix} x_2 \\ -x_1 - x_2 - \frac{1}{2}x_1^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} dw$$

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP)

Three-State

Stochasic Twist system with T = 5, $p(x) = x_3$ $dx = \begin{bmatrix} -2.5x_1 + x_2 - 0.5x_3 + 2x_1^3 + 2x_3^3 \\ -x_1 + 1.5x_2 + 0.5x_2 - 2x^3 - 2x^3 \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0 \end{bmatrix} dw$

$$\begin{array}{c} x = \begin{bmatrix} -x_1 + 1.3x_2 + 0.5x_3 - 2x_2 - 2x_3 \\ 1.5x_1 + 2.5x_2 - 2x_3 - 2x_1^3 - 2x_2^3 \end{bmatrix} \\ \begin{array}{c} dt + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} \\ \end{array}$$

d = 6 (translucent=50%, gray=85% CVAR, solid=85% VP) ⁴¹

Two-State Switching

Switching subsystems at T = 5, $p(x) = -x_2$ $dx = \left\{ \begin{bmatrix} -2.5x_1 - 2x_2\\ -0.5x_1 - x_2 \end{bmatrix}, \begin{bmatrix} -x_1 - 2x_2\\ 2.5x_1 - x_2 \end{bmatrix} \right\} dt + \begin{bmatrix} 0\\ 0.25x_2 \end{bmatrix} dw$

d = 6 (dash-dot=50%, dotted=85% CVAR, solid=85% VP)

Time-Windowed Risk Estimation

Time-Windowed Average Motivation: Signal

Oscillations near instanataneous peak (t = 2)

Time-Windowed Average Example

Instantaneous maximal risks may not give full picture

Large time-windowed avg. current on wire pprox overheating

Time-Windowed Risk Example

Choose a time window h

Form a prob. dist. $\zeta(t)$ from $\{p(x(t'))\}_{t'=t-h}^{t}$

Analyze risk of $R(\zeta(t))$

Given R and h, choose optimal t^*, x_0^* :

$$P^* = \sup_{t^*, x_0^*} R\left(\frac{1}{h} \int_{t^*-h}^{t^*} p(x(t'))dt'\right)$$

s.t. $x(t)$ follows $\mathcal{L} \quad \forall t \in [0, \min(t^*, \tau_X)]$
 $x(0) = x_0^*$
 $t^* \in [h, T], x_0^* \in X_0$

Integral in objective collapses (marginalizes) time Limits: Chance-peak as $h \rightarrow 0$, Risk-averse stopping as $h \rightarrow T$. We can stick to ODE methods by adding a new time s

Two continuous times (t, s):

Active time	$t \in [0, T]$	$\dot{t} = 1$
Stopping time	$s \in [h, T]$	$\dot{s} = 0$

Temporal support sets Ω_{\pm} :

 $\Omega_-: t \in [0, s-h]$ $\Omega_+: t \in [s-h, s]$

Risk evaluated in Ω_+ , similar process in discrete-time

Two Time Coordinates?

Curves (t, p(t), s): time intervals [0, s - h], [s - h, s], [s, T]

Mean-type risk estimation measures (with constant state s)

$\mu_0(s,x) \in \mathcal{M}_+([h,T] \times X_0)$	Initial
$\mu_{\tau}(s,x) \in \mathcal{M}_{+}([h,T] \times X)$	Terminal
$\mu_+(s,t,x)\in\mathcal{M}_+(\Omega_+ imes X)$	Risk Occ.
$\mu_{-}(s,t,x)\in\mathcal{M}_{+}(\Omega_{-} imes X)$	Past Occ.

Time-windowed risk evaluation: $\frac{1}{h}\int_{s-h}^{s} p(x(t'))dt' \rightarrow \frac{1}{h}p_{\#}\mu_{+}$

The last technical detail needed: a time-duplicating map φ

$$\varphi:(s,x)\mapsto(s,s,x)$$

For all test functions $\omega(s, t, x) \in C([h, T] \times [0, T] \times X)$

$$\langle \omega(s,t,x), \varphi_{\#} \mu_{\tau}(s,t,x) \rangle = \langle \omega(s,s,x), \mu_{\tau}(s,x) \rangle$$

Relaxed occupation measure of $\hat{\mathcal{L}}$: $(\mu_0, \varphi_{\#}\mu_{\tau}, \mu_+ + \mu_-)$

Non-conservative infinite LP with generator $\hat{\mathcal{L}}$: $(\mathcal{L},\dot{s}=0)$

$$\begin{split} p^* &= \sup \quad \langle p, \mu_+ \rangle / h \\ \text{s.t. } \varphi_{\#} \mu_{\tau} &= \delta_0 \otimes \mu_0 + \hat{\mathcal{L}}^{\dagger} (\mu_- + \mu_+) \\ \langle 1, \mu_0 \rangle &= 1 \\ \langle 1, \mu_+ \rangle &= h \\ \text{Mean-type time-windowed support constraints} \end{split}$$

Constraint $\langle 1, \mu_+ \rangle = h$ imposes that h time units elapse CVaR modification: sup mean (ψ) : $\epsilon \psi + \hat{\psi} = (p_{\#}\mu_+)/h$

Time-Windowed Stoch. Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated $(p(x) = x_2)$

Time-Windowed Stoch. CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with $\epsilon = 0.15$)

Risk-Aware Control (overview)

Minimize in risk in objective/risk constraints (difficult)

Approximate

- Sample-Average Approximations
- Upper-bound CVAR
- Min-Max Approaches
- Boole's Inequality

Exact (up to structure)

- Distributional Robustness
- Dynamic Programming Principles (unconstrained)
- Nested Risk
- (Joint Chance Constraint)

Continuous-time: Pontryagin Max., not constructive

Talk to Gabriel Velho, Riccardo Bonalli, Benoît Bonnet-Weill

Risk estimation is important

Three problems: Unsafe Prob., Chance-Peak, Time-Window

Solved using infinite-dimensional LPs/SOCPs in measures

Certified outer-approximations of risk

Nice risk-aware control/tractable analysis is still open

Part 1: Jared Miller, Matteo Tacchi, Didier Henrion, and Mario Sznaier. *Unsafe Probabilities and Risk Contours for Stochastic Processes using Convex Optimization*, 2024. arXiv:2401.00815

Part 2: Jared Miller, Matteo Tacchi, Mario Sznaier, and Ashkan Jasour. *Peak Value-at-Risk Estimation of Stochastic Processes using Occupation Measures*, 2024. arXiv:2303.16064

Part 3: Jared Miller, Niklas Schmid, Matteo Tacchi, Didier Henrion, and Roy S. Smith. *Peak Time-Windowed Risk Estimation of Stochastic Processes*, 2024. arXiv:2404.06961

Thanks!

Bonus Slides

Miller, J., Tacchi, M., Henrion, D., Sznaier, M. (2024). Unsafe probabilities and risk contours for stochastic processes using convex optimization. arXiv:2401.00815.

Miller, J., Tacchi, M., Sznaier, M., Jasour, A. (2023). Peak Value-at-Risk Estimation for Stochastic Differential Equations using Occupation Measures. In 2023 62nd IEEE Conference on Decision and Control (CDC) (pp. 4836-4842). IEEE.

Miller, J., Tacchi, M., Sznaier, M., Jasour, A. (2023). Peak Value-at-Risk Estimation for Stochastic Stochastic Processes using Occupation Measures. arxiv:2303.16064. Assumptions used in all presented programs⁵:

- 1. Trajectories stop upon the first exit from X ($\tau_X \wedge T$).
- 2. The test function set $C = dom(\mathcal{L})$ satisfies $C \subseteq C([t_0, T] \times X)$ with $1 \in C$ and $\mathcal{L}1 = 0$.
- 3. The set $\ensuremath{\mathcal{C}}$ separates points and is multiplicatively closed.
- There exists a countable set {v_k} ∈ C such that ∀v ∈ C : (v, Lv) is contained in the bounded pointwise closure of the linear span of {(v_k, Lv_k)}.

⁵Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SICON 40.6 (2002): 1965-1982.

Occupation Measure (Deterministic)

Time trajectories spend in set

Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$

Unsafe Probability using Measures

Maximize prob. $\langle 1, \mu_p \rangle$ of ending in X_u (with $\mu_p + \mu_c = \mu_\tau$)

$$p^{*}(t_{0}, X_{0}) = \sup \langle 1, \mu_{p} \rangle$$

s.t.
$$\mu_{p} + \mu_{c} = \delta_{t_{0}} \otimes \mu_{0} + \mathcal{L}^{\dagger} \mu$$
$$\langle 1, \mu_{0} \rangle = 1$$
$$\mu_{0} \in \mathcal{M}_{+}(X_{0})$$
$$\mu, \ \mu_{c} \in \mathcal{M}_{+}([t_{0}, T] \times X)$$
$$\mu_{p} \in \mathcal{M}_{+}([t_{0}, T] \times X_{u})$$

Relaxed occupation measure $(\mu_0, \mu_u + \mu_c, \mu)$,

Strongly dual to previous continuous-function program

$$d_{\mathbb{E}}^* = \min \quad \int_X v(0, x) \ d\mu_0(x) \tag{8a}$$

s.t.
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (8b)

$$v(t,x) - p(x) \in \Sigma[[0,T] \times X]$$
(8c)

$$v \in \mathbb{R}[t, x]$$
 (8d)

Second-order cone \mathbb{L}^n : { $(u, q) \in \mathbb{R}^n \times \mathbb{R}_{\geq 0} \mid q \geq ||u||_2$ }

$$d_r^* = \min \quad u_1 + 2u_3 + \int_{X_0} v(0, x_0) d\mu_0(x_0)$$
(9a)

s.t.
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (9b)

$$v(t, x) + u_1 p^2(x) - 2 u_2 p(x) - p(x)$$
(9c)

$$\in \Sigma[[0, T] \times X]$$

$$([u_1 + u_3, -(r/2), u_2], u_3) \in \mathbb{L}^3$$
(9d)

$$u \in \mathbb{R}^3, \ v \in \mathbb{R}[t, x]$$

$$d_c^* = \min \quad u + \int_X v(0, x) \ d\mu_0(x)$$
 (10a)

s.t.
$$-\mathcal{L}v(t,x) \in \Sigma[[0,T] \times X]$$
 (10b)

$$v(t,x) - w(p(x)) \in \Sigma[[0,T] \times X]$$
 (10c)

$$u + \epsilon w(q) - q \in \Sigma[p_{min}, p_{max}]$$
 (10d)

$$w(q) \in \Sigma[p_{min}, p_{max}]$$
 (10e)

$$u \in \mathbb{R}, v \in \mathbb{R}[t, x]$$
 (10f)

Embed as non-Markovian stochastic process:

$$P^* = \sup_{t^*, x_0^*} R(\beta(t^*))$$

s.t. $x(t)$ follows $\mathcal{L} \quad \forall t \in [0, \min(t^*, \tau_X)]$
 $d\beta = [p(x(t)) - p(x(t-h))](1/h)dt$
 $\beta(h) = (1/h) \int_0^h p(x(t'))dt'$
 $x(0) = x_0^*$
 $t^* \in [h, T], x_0^* \in X_0$

Could introduce relaxation gap, requires 2n + 2 states

$$d_k^* = \min_{v,\gamma,\xi} \gamma + h\xi \tag{11a}$$

s.t.
$$\gamma - v(s, 0, x) \in \Sigma[[h, T] \times X_0]$$
 (11b)

$$v(t,t,x) \in \Sigma[[h,T] \times X]_{\leq 2k}$$
(11c)

$$\xi - p(x)/h - \hat{\mathcal{L}}v(s, t, x) \in \Sigma[\Omega_+ \times X]$$
(11d)

$$-\mathcal{L}_{f}v(s,t,x)\in\Sigma[\Omega_{-}\times X]$$
(11e)

$$v \in \mathbb{R}[s, t, x]$$
 (11f)

$$\gamma, \xi \in \mathbb{R} \tag{11g}$$

SOS Time-Window CVAR

$$d_{k}^{*} = \min_{v,\gamma,\xi,\beta,w} \gamma + h\xi + \beta$$
(12a)
s.t. $\gamma - v(s,0,x) \in \Sigma[[h,T] \times X_{0}]$ (12b)
 $v(t,t,x) \in \Sigma[[h,T] \times X]$ (12c)
 $\xi - w(p(x))/h - \hat{\mathcal{L}}v(s,t,x) \in \Sigma[\Omega_{+} \times X]$ (12d)
 $- \mathcal{L}_{f}v(s,t,x) \in \Sigma[\Omega_{-} \times X]$ (12e)
 $w(q), \ \epsilon w(q) + \beta \in \Sigma[[p_{\min}, p_{\max}]]$ (12f)
 $v \in \mathbb{R}[s,t,x]$ (12g)
 $w \in \mathbb{R}[q]$ (12h)
 $\gamma, \xi, \beta \in \mathbb{R}$ (12i)

Time-Windowed Mean Example (h = 1.5)

Instantaneous and time-windowed mean are separated $(p(x) = x_2)$

Time-Windowed CVaR Example (h = 1.5)

Peak CVaR is close to peak instantaneous p (with $\epsilon = 0.15$)

