Maximizing the Slice-Volume of

Semialgebraic Sets

Jared Miller
Chiara Meroni
Matteo Tacchi
Mauricio Velasco
MoPAT: University of Konstanz

An alternate title for this presentation

Volume Computation

 but Worse
Flow of Presentation

Background of Volume, Slice-Volume problems

SOS-based algorithm to solve Slice-Volume

Complexity reductions to improve tractability

Stokes constraints to improve accuracy

Background

Volume vs. Slice-Volume

We have a set $L \in \mathbb{R}^{n}$ inside ball of radius $R<\infty$
Volume (prior work):
Find $V^{*}=\operatorname{Vol}_{n}(L)$

Slice-Volume (ours):

Find a direction θ and an affine offset t to supremize

$$
\begin{gathered}
P^{*}=\sup _{\theta, t} \operatorname{Vol}_{n-1}((\theta \cdot x=t) \cap L) \\
\\
\theta \in S^{n-1}, t \in[-R, R] .
\end{gathered}
$$

Slice-Volume: Radon Transform

Radon Transform of function f (supported in X):

$$
\mathcal{R} f(\theta, t)=\int_{(\theta \cdot x=t) \cap x} f(x) d x
$$

Slice-Volume: Find (θ, t) to supremize $\mathcal{R} I_{L}$ (indicator of L)

Slice-Volume: History

Busemann-Petty problem (1956) ${ }^{1}$

For convex (L, T), does the statement
$\forall \theta \in S^{n}: \operatorname{Vol}_{n-1}((\theta \cdot x=0) \cap L) \geq \operatorname{Vol}_{n-1}((\theta \cdot x=0) \cap T)$ imply that $\operatorname{Vol}_{n}(L) \geq \operatorname{Vol}_{n}(T)$?

Busemann-Petty true in $n \leq 4$, false in $n \geq 5$.
Slice-Volume solved completely for polytopes ${ }^{2}$

[^0]
How to compute volume?

Volume computation is \#P hard, even for polytopes Some established methods include:

- Monte-Carlo Methods (doubly exponentially slow)
- Real algebraic geometry (rational periods)
- Moment-SOS hierarchy

Volume Computation LP

Find volume of a set $L \subset X^{3}$

$$
\begin{gather*}
V^{*}=\inf \int_{X} w(x) d x \tag{1a}\\
w(x) \geq 0 \tag{1b}\\
w(x)-1 \geq 0 \tag{1c}\\
w(x) \in C(X) \tag{1d}
\end{gather*}
$$

Restrict ≥ 0 (continuous) to your preferred Psätz $(\mathbb{R}[x])$.
Convergence rate: $V_{k}^{*}-V^{*} \in O\left(k^{-z}\right)$ for some $z>0^{4}$
${ }^{3}$ D. Henrion, J. B. Lasserre, and C. Savorgnan, "Approximate volume and integration for basic semial- gebraic sets," SIAM review, vol. 51, no. 4, pp. 722-743, 2009
${ }^{4}$ C. Schlosser, M. Tacchi, and A. Lazarev, "Convergence rates for the moment-sos hierarchy," arXiv preprint arXiv:2402.00436, 2024.

Volume Computation in Practice (Stokes later)

Volume of $L=[0.1,0.5] \cup[0.8,0.9]$ within $X=[0,1]$

Function	$k=6$	$k=20$	$k=120$	Truth
Volume (upper)	0.9269	0.7472	0.6740	0.5

Slice-Volume Variables

Slice-Volume is defined in terms of (θ, t)
New members:

- $Z \in \mathbb{R}^{n \times(n-1)}$ (local coordinate frame)
- $y \in \mathbb{R}^{n-1}$ (local offset in frame defined by Z)

Global frame expression $\left(x \in B_{R}^{n}\right): x=\theta t+Z y$

Support Sets

Domain of optimization variables (θ, t, Z) :

$$
\begin{aligned}
\Omega & =\left\{(\theta, t) \in S^{n} \times[-R, R]\right\} \\
\Omega_{z} & =\left\{(\theta, t, Z) \in S^{n} \times[-R, R] \times \mathbb{R}^{n \times(n-1)} \mid[\theta, Z] \in O(n)\right\}
\end{aligned}
$$

Reparameterization of B_{R}^{n} and L

$$
\begin{aligned}
\Psi & =\left\{(\theta, t, Z, y) \in \Omega_{z} \times B_{R}^{n-1}\right\} \\
\Psi_{L} & =\Psi \cap\{(\theta t+Z y) \in L\}
\end{aligned}
$$

Slice-Volume Auxiliary Function

Volume computation had $w(x) \in C(X)$
Slice-volume has $w(\theta, t, Z, y) \in C(\Psi)$
Linear operator to integrate out y coordinate:

$$
\Lambda_{R} w(\theta, t, Z)=\int_{B_{R}^{n-1}} w(\theta, t, Z, y) d y
$$

Association with radon transform \mathcal{R} :

$$
\Lambda_{R} I_{\psi_{L}}(\theta, t, Z)=\mathcal{R} I_{L}(\theta, t)
$$

Slice-Volume Program

Constrain that $w \geq / \Psi_{L}$

$$
\begin{align*}
p^{*}= & \inf _{\gamma \in \mathbb{R}} \quad \gamma \tag{2a}\\
& \gamma \geq \Lambda_{R} w(\theta, t, Z) \tag{2b}\\
& w(\theta, t, Z, y) \geq 1 \tag{2c}\\
& w(\theta, t, Z, y) \geq 0 \tag{2d}\\
& w(\theta, t, Z, y) \in C(\Psi) . \tag{2e}
\end{align*}
$$

There is no relaxation gap (infimum) $p^{*}=P^{*}$

SOS Considerations

Restrict $w(\theta, t, Z, y)$ to be polynomial
Good news: SOS convergence $p_{k}^{*} \rightarrow P^{*}$ (if L Archimedean)
Bad news: Poor computational scaling

Problem	variables	$\#$ parameters	PSD matrix size
Volume	x	n	$\binom{n+k}{k}$
Slice-Volume	(θ, t, Z, y)	$n^{2}+2 n$	$\binom{n^{2}+2 n+k}{k}$

This is prohibitive for SDP methods to solve

Complexity Reduction

Complexity Reduction Overview

Three (interoperable) ways to reduce complexity:

1. Symmetry (separate from symmetries of L)
2. Algebraic structure
3. Topological properties ($n \in\{2,3,4,8\}$)
(Stokes constraints improve accuracy, but increase complexity)

Symmetry

Consider the constraint $(\theta t+Z y) \in L$ in Ψ_{L}
Discrete symmetry $(\theta, t, Z, y) \leftrightarrow(-\theta,-t,-Z,-y)$
Also $O(n-1)$ continuous symmetry:

$$
\forall P \in O(n-1): \quad(\theta, t, Z, y) \leftrightarrow\left(\theta, t, Z P^{\top}, P y\right)
$$

Discrete: choose w even
Continuous: harder, derive invariant SOS ring ${ }^{5}$ (help?)
${ }^{5}$ K. Gatermann and P. A. Parrilo, "Symmetry groups, semidefinite programs, and sums of squares," Journal of Pure and Applied Algebra, vol. 192, no. 1-3, pp. 95-128, 2004

Algebraic Structure

Support sets have equality constraints:

$$
\|\theta\|_{2}^{2}=1 \quad[\theta Z] \in O(n)
$$

Use Gröbner basis reduction on constraints ${ }^{6}$
(need SAGBI/subduction to use with symmetry)
${ }^{6}$ P. A. Parrilo, "Exploiting structure in sum of squares programs," in 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 5. IEEE, 2003, pp. 4664-4669.

Topological Properties ($n \in\{2,4,8\}$)

A manifold \mathcal{M} is parallelizable if there is a continuous map from $x \in \mathcal{M}$ to a coordinate frame at x

Only spheres that are parallelizable ${ }^{7}: S^{1}, S^{3}, S^{7}$
Explicit (nonunique) parameterization for Z in terms of θ

$$
[\theta, Z]=\left[\begin{array}{cc}
\theta_{1} & -\theta_{2} \\
\theta_{2} & \theta_{1}
\end{array}\right], \quad[\theta, Z]=\left[\begin{array}{cccc}
\theta_{1} & -\theta_{2} & -\theta_{3} & \theta_{4} \\
\theta_{2} & \theta_{1} & -\theta_{4} & -\theta_{3} \\
\theta_{3} & -\theta_{4} & \theta_{1} & -\theta_{2} \\
\theta_{4} & \theta_{3} & \theta_{2} & \theta_{1}
\end{array}\right]
$$

[^1]
Topological Properties $(n=3)$

S^{2} is not parallelizable (unfortunately)
But the cross product \times exists!
Define a new direction $b \in S^{2}$, coordinate frame of

$$
\left[\begin{array}{ll}
\theta & z
\end{array}\right]=\left[\begin{array}{lll}
\theta & b & \theta \times b
\end{array}\right]
$$

Support set (with SO(2) symmetry)

$$
\Psi_{L}^{3}=\left\{(\theta, t, b, y) \in \Omega \times S^{2} \times B_{R}^{2} \left\lvert\, \begin{array}{c}
\theta t+b y_{1}+(\theta \times b) y_{2} \in L \\
\theta \cdot b=0\}
\end{array}\right.\right\}
$$

Topological Properties: Complexity Reduction

Massive savings in computational complexity possible:

$$
\begin{array}{r|cccccccc}
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { \# variables } & 4 & 9 & 8 & 35 & 48 & 63 & 16 & 99
\end{array}
$$

But 8 variables is still too big for most SOS methods.

Stokes Constraints

Stokes Constraints: Volume Approximation

Smooth set $L=\left\{x \in \mathbb{R}^{n} \mid g(x) \geq 0\right\}$,
Redundancy: $u(x) g(x)$ integrates to 0 on ∂L (where $g=0$)
Better accuracy at degree- k, avoids discontinuities ${ }^{8}$

$$
\begin{array}{ll}
V^{*}=\inf \int_{x} w(x) d x & \\
& w(x) \geq 0
\end{array} \quad \forall x \in X,
$$

[^2]
Stokes Comparison

Degree $k=16$ approximation, Left: Indicator, Right: Stokes ${ }^{9}$

Method	Indicator	Stokes	True
Area	1.1626	0.7870	$\pi / 4 \approx 0.7854$

${ }^{9}$ image from "Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets" (8)

Slice-Volume Stokes

Group average w.r.t. group $G:[\cdot]_{G}$ (e.g. discrete reflection) Boundary $\Psi_{L}^{i}=\Psi_{L}^{i} \cap\left\{x \mid g_{i}(\theta t+Z y)=0\right\}$

$$
\begin{aligned}
p_{s}^{*}= & \inf _{\gamma \in \mathbb{R}} \gamma & & \\
& \gamma \geq \Lambda_{R} w(\theta, t, Z) & & \forall(\theta, t, Z) \in \Omega_{Z} \\
& w(\theta, t, Z, y) \geq 1+\left[\nabla_{y} \cdot u(\theta, t, Z, y)\right]_{G} & & \forall(\theta, t, Z, y) \in \Psi_{L} \\
& -\left[u(\theta, t, Z, y) \cdot \nabla_{y} g_{i}(\theta t+Z y)\right]_{G} \geq 0 & & \forall(\theta, t, Z, y) \in \Psi_{L}^{i} \\
& w(\theta, t, Z, y) \geq 0 & & \forall(\theta, t, Z, y) \in \Psi \\
& w(\theta, t, Z, y) \in C(\Psi)^{G} & & \\
& u(\theta, t, Z, y) \in\left[C^{0,0,0,1}\left(\Psi_{L}\right)\right]^{n} . & &
\end{aligned}
$$

Same slice-volume objective P^{*}, better finite-degree bounds

Examples

Double-Lobe Set (rotation and translation)

Order (k)	1	2	3	4	5	6
Indicator	2.0	2.0	1.9910	1.9833	1.8608	1.8294
Stokes	2.0	2.0	1.9799	1.6123	1.5409	1.4728

Union of Ellipses (only translation)

Order (k)	4	5	6	7	8	9
Indicator	3.1029	2.9132	2.8556	2.7739	2.6986	2.6653
Stokes	2.8013	2.5739	2.2680	2.1333	2.1261	2.0814

Take-aways

Conclusion

Solved the Slice-Volume problem using SOS methods

Reduced complexity (symmetry, algebraic, topological)

Incorporated Stokes constraints for better accuracy

Future Work

- Local coordinate frames
- Exploit continuous symmetry (SAGBI)
- Faster numerical solutions
- Real rational periods

Acknowledgements

Roy S. Smith, Automatic Control Lab at ETHZ
Mohab Safey El Din
Didier Henrion
Jesús de Loera and the ICERM Discrete Optimization
Semester
Jie Wang
Philipp di Dio and Tobias Sutter

Thank you for your attention!

https://github.com/jarmill/slice_volume

Slice-Volume Measure Program

μ_{0} is a probability distribution over (θ, t, Z) :
μ is distributed over (θ, t, Z, y) in $L\left(\Psi_{L}\right)$
Objective $\langle 1, \mu\rangle$ integrates the slice-volume

$$
\begin{aligned}
m^{*}= & \sup \langle 1, \mu\rangle \\
& \mu_{0} \otimes \lambda_{R}^{n-1}=\mu+\hat{\mu} \\
& \left\langle 1, \mu_{0}\right\rangle=1 \\
& \mu_{0} \in \mathcal{M}_{+}\left(\Omega_{z}\right), \\
& \hat{\mu} \in \mathcal{M}_{+}(\Psi) \\
& \mu \in \mathcal{M}_{+}\left(\Psi_{L}\right) .
\end{aligned}
$$

[^0]: ${ }^{1}$ Busemann, Herbert; Petty, Clinton Myers (1956), "Problems on convex bodies", Mathematica Scandinavica, 4: 88-94
 ${ }^{2}$ K. Berlow, M.-C. Brandenburg, C. Meroni, and I. Shankar, "Intersection bodies of polytopes," Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, vol. 63, no. 2, pp. 419-439, 2022

[^1]: ${ }^{7}$ R. Bott and J. Milnor, "On the parallelizability of the spheres," Bulletin of the American Mathematical Society, vol. 64, no. 3.P1, pp. $87-89,1958$.

[^2]: ${ }^{8}$ M. Tacchi, J. B. Lasserre, and D. Henrion, "Stokes, Gibbs, and Volume Computation of Semi-Algebraic Sets," Discrete \& Computational Geometry, vol. 69, no. 1, pp. 260-283, 2023

