Safety Analysis and Control using Measures

Jared Miller, Mario Sznaier

Robust Systems Lab, Electrical and Computer Engineering

Motivation
Quantify the safety of trajectories

Use convex optimization to compute converging distance-lower-bounds

Peak Estimation
Utilize theory of peak estimation

Find bounds on state function \(p(x) \)

\[
P^* = \min_{t, x_0 \in X_0} p(x(t | x_0))
\]

\[
\dot{x}(t) = f(t, x(t)) \quad t \in [0, T]
\]

Finite dimensional but nonconvex

Occupation Measures
Returns the time trajectories spend in each set (given initial distribution)

Convex but infinite-dimensional (LP)

Distance Estimation
Distance \(c(x, y) \) (e.g. Euclidean \(\|x - y\|_2 \))

Unsafe-set \(c(x; X_u) = \min_{y \in X_u} c(x, y) \)

Peak estimation with \(p(x) = c(x; X_u) \)

Variable groups \((t, x)\) and \((x, y)\)

Approx. recovery: rank-1 solutions

Separability reduces SDP complexity: \(c(x, y) = \sum_{k=1}^n c_k(x_k, y_k) \)

Safety of Points

Safety of Shapes (rotating square)

Hybrid Dynamics
Transitions between locations

Guards and resets (e.g. contact)

Uncontrolled to infinity

Controlled to gray region

Further details and papers

Uncertainty
Compactly supported uncertainty

Time-dependent (bounded noise) or time-independent (parametric)

Exploit polytopic and switching structure

Stochastic Dynamics
Probabilistic bounds on peak/distance

Use upper-bounds of Value-at-Risk

Dotted: 50% bound, Solid: 85% bound

Time Delay
Discrete time delay \(\tau \), history \(x_h \)

\[
\dot{x}(t) = f(t, x(t), x(t - \tau)) \quad t \in [0, T]
\]

\[
x(s) = x_h(s) \quad s \in [-\tau, 0]
\]

Gray: history, cyan: system trajectory