# **Safety Analysis and Control using Measures**

Jared Miller, Mario Sznaier

Robust Systems Lab, Electrical and Computer Engineering

| Motivation                          | <b>Peak Estimation</b>                                                                 | <b>Occupation Measures</b>                                                   |
|-------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Quantify the safety of trajectories | Utilize theory of peak estimation                                                      | Returns the time trajectories spend in each set (given initial distribution) |
|                                     | Find bounds on state function $p(x)$<br>$P^* = \min_{t, x_0 \in X_0} p(x(t \mid x_0))$ | 4 - 3                                                                        |
|                                     | $\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$<br>Finite dimensional but nonconvex      |                                                                              |



Use convex optimization to compute converging distance-lower-bounds





### **Distance Estimation**

Distance c(x, y) (e.g. Euclidean  $||x - y||_2$ ) Unsafe-set  $c(x; X_u) = \min_{y \in X_u} c(x, y)$ 

Variable groups (t, x) and (x, y)

Approx. recovery: rank-1 solutions

## **Hybrid Dynamics**

Transitions between locations Guards and resets (e.g. contact)



| Uncertainty |
|-------------|
|-------------|

Compactly supported uncertainty Time-dependent (bounded noise) or time-independent (parametric)

### **Stochastic Dynamics**

Probabilistic bounds on peak/distance Use upper-bounds of Value-at-Risk

## **Time Delay**

Discrete time delay  $\tau$ , history  $x_h$  $\dot{x}(t) = f(t, x(t), x(t - \tau)) \ t \in [0, T]$ 





Dotted: 50% bound, Solid: 85% bound

