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Main Ideas

L∞ bounded noise setting yields polytopic constraints

Use polytopic structure to simplify nonpositivity

Apply to Peak and Reachable Set Estimation
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Peak Estimation Background



Peak Estimation Problem

Find maximum value of p(x) along trajectories

P∗ = max
t, x0∈X0

p(x(t))

ẋ(t) = f (t, x(t)) t ∈ [0,T ]

x(0) = x0 ∈ X0

ẋ = [x2,−x1 − x2 + x31/3] 2



Peak Function Program

Infinite dimensional linear program (Fantuzzi, Goluskin, 2020)

Uses auxiliary function v(t, x)

d∗ = min
γ∈R

γ

γ ≥ v(0, x) ∀x ∈ X0

Lf v(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X

v ∈ C 1([0,T ]× X )

P∗ = d∗ holds if [0,T ]× X is compact, f Lipschitz
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Auxiliary Evaluation along Optimal Trajectory
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System with Uncertainty Example

Time-Independent Uncertainty Time-Dependent Uncertainty

ẋ = [x2,−x1w − x2 + x31/3]

w ∈ [0.5, 1.5], x0 = [1; 0]
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Peak Estimation with Uncertainty

Dynamics ẋ = f (t, x(t),w(t))

Uncertain process w(t) ∈ W , ∀t ∈ [0,T ]

Time-dependent w

Lf v(t, x) ≤ 0 ∀(t, x ,w) ∈ ∀[0,T ]× X ×W

Time-independent w (dw
dt

= 0)

Lf v(t, x ,w) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W
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Data Driven Setting



Noise Model

Ground truth ẋ = F (t, x)

Corrupted observations of system F in t ∈ [0,T ]

(tj , xj , ẋj) ∀j = 1, . . . ,Ns

Assumption of L∞ bounded noise

‖F (tj , xj)− ẋj‖∞ ≤ ε ∀j = 1, . . . ,Ns
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Sampling: Flow System
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Dynamics Model

Parameterize unknown F by functions in dictionary

ẋ(t) = f (t, x ,w) = f0(t, x) +
L∑
`=1

w`f`(t, x)

Affine in uncertainties w

Bounded noise constraint ε

‖F (tj , xj)− ẋj‖∞ ≤ ε ∀j = 1, . . . ,Ns

‖f (tj , xj ,w)− ẋj‖∞ ≤ ε ∀j = 1, . . . ,Ns
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Noise Constraints

2 linear constraints for each coordinate i , sample j

−ε ≤ f0(tj , xj)i +
L∑
`=1

w`f`(tj , xj)i − (ẋj)i ≤ ε

Polytopic region W = {w ∈ RL | Aw ≤ b} with b ∈ R2NxNs
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Prior Work

Data Driven Solving Methods:

• Interval Analysis

• Koopman Operators

• Infinite LPs

• SVM/Deep Learning

Data Driven Polytopic Framework:

• Safety Verification

• Stabilizing and Safe Control (barrier/density)
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Summary of Assumptions

Set [0,T ]× X is compact

Dynamics f (t, x ,w) are Lipschitz, affine in w

Uncertainty W is a compact polytope {w | Aw ≤ b}

Nonempty interior: ∃w ∈ RL | Aw < b
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Constraint Decomposition



Feasibility Pair

Setting of time-dependent uncertainty w(t) ∈ W

Problem is Feasible

Lf (t,x ,w)v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

Problem is Infeasible

Lf (t,x ,w)v(t, x) > 0 ∃(t, x ,w) ∈ [0,T ]× X ×W

Pair of Strong Alternatives
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Inequalities and Multipliers

One strict inequality, m non-strict inequalities

R = {w | H(w) > 0, h1(w) ≥ 0, . . . , hm(w) ≥ 0}

Define weighted sum with multipliers ζ ≥ 0

S(w ; ζ) = H(w) +
m∑

k=1

ζkhk(w)

S is positive for all w ∈ R , ζ ≥ 0
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Theorem of Alternatives

Lagrange dual function g

g(ζ) = sup
w∈RL

S(w ; ζ) = sup
w∈RL

H(w) +
m∑

k=1

ζkhk(w)

Certificate ζ that R is empty:

g(ζ) ≤ 0 ∀ζ ≥ 0

Weak alternative g(ζ) ≤ 0 is strong if:

• H(w), ∀khk(w) convex in w

• Exists a point w : ∀khk(w) > 0 (Slater)

15



Apply Alternatives

Region R = {w | Lf v(t, x) > 0, Aw ≤ b}

Form Lagrange dual g(ζ; v) = supw∈RL S(w ; ζ, t, x):

g(ζ; v) =

Lf0v + bT ζ (AT )`ζ − f` · ∇xv = 0 ∀`
∞ else

Bounded g requires equality constraints over [0,T ]× X
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Lie Polytopic Decomposition

Original

Lf v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

Decomposed

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )`ζ(t, x) = f` · ∇xv(t, x) ∀` = 1, . . . , L

ζk(t, x) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m

Strong equivalence (given convexity in w)
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Summary of Relaxations

Time-independent to time-dependent uncertainty

Nonnegativity to Sum of Squares

Sum of Squares at finite degree
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Peak Estimation (revisited)



Peak Original Program

Include time-varying uncertainty w(t) ∈ W

d∗ = min
γ∈R

γ

γ ≥ v(0, x) ∀x ∈ X0

Lf v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X

v ∈ C 1([0,T ]× X )
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Peak Decomposed Program

Only the Lie Derivative constraint changes

d∗ = min
γ∈R

γ

γ ≥ v(0, x) ∀x ∈ X0

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )`ζ(t, x) = (f` · ∇x)v(t, x) ∀` = 1, . . . , L

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X

v(t, x) ∈ C 1([0,T ]× X )

ζk(t) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m

20



Peak Estimation Example (Flow)
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Peak Estimation Example (Flow)

ẋ = [x2, −wx1 − x2 + x31/3]

L = 1, m = 80 (2 nonredundant)
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Peak Estimation Example (Flow)

ẋ = [x2, cubic(x1, x2)]

L = 10, m = 80 (33 nonredundant)
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Peak Estimation Example (Flow)

ẋ = [x2, cubic(x1, x2)]

X0 = {x | (x1 − 1.5)2 + x2 ≤ 0.42}
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Peak Estimation Example (Epidemic)

Dynamics model:

S ′ = −βSI
I ′ = βSI − γI

Truth: β = 0.4, γ = 0.1

m = 400 constraints
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Peak Estimation Example (Epidemic)

T = 40, Unknown (β, γ)

L = 2, m = 400 (5 nonredundant) 26



Peak Estimation Example (Twist)

Dynamics model:

ẋi = Aijxj − Bij(4x3j − 3xj)
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X0 = [−1, 0, 0], T = 8
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Peak Estimation Example (Twist)

m = 2NsNx = 600 constraints
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Peak Estimation Example (Twist)

Unknown A, Known B

L = 9, m = 600 (34 nonredundant)
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Peak Estimation Example (Twist)

Known A, Unknown B

L = 9, m = 600 (30 nonredundant)
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Peak Estimation Example (Twist)

Unknown A, Unknown B

L = 18, m = 600 (70 nonredundant)
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Reachable Set Estimation



Reachable Set Estimation

Find set of states reachable from x0 ∈ X0 at time t = T

P∗ = max
XT⊆X

vol(XT )

XT : ∃x(t | xh) :

ẋ(t) = f (t, x(t),w(t)) ∀t ∈ [0,T ]

w(t) ∈ W ∀t ∈ [0,T ]

x(0) ∈ X0, x(T ) ∈ XT
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Indicator Function Approximation

Reachability indicator function χT

χT (x) =

1 x ∈ XT

0 x 6∈ XT

Create upper bound approximant ω(x) ∈ C (X ):

ω(x) ≥ 1 ∀x ∈ XT ⊆ X

ω(x) ≥ 0 ∀x ∈ X

Stone-Weierstrass: ω(x) is polynomial
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Indicator Function Approximation Example

Determine quality by comparing
∫
X
ω(x)dx vs vol(XT )

XT = [0.1, 0.5] ∪ [0.8, 0.9]
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Reachable Set Standard Program

Infinite dimensional linear program (Henrion, Korda, 2012)

d∗ = min

∫
X

ω(x)dx

v(0, x) ≤ 0 ∀x ∈ X0

Lf (t,x ,w)v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

v(T , x) + ω(x) ≥ 1 ∀x ∈ X

v(t, x) ∈ C 1([0,T ]× X )

ω(x) ∈ C+(X )

Approximation XT ⊂ {x ∈ X | ω(x) ≥ 1}
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Reachable Set Decomposed Program

Approximation XT ⊂ {x ∈ X | ω(x) ≥ 1}

d∗ = min

∫
X

ω(x)dx

v(0, x) ≤ 0 ∀x ∈ X0

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )`ζ(t, x) = (f` · ∇x)v(t, x) ∀` = 1, . . . , L

v(T , x) + ω(x) ≥ 1 ∀x ∈ X

v(t, x) ∈ C 1([0,T ]× X )

ω(x) ∈ C+(X )

ζk(t) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m
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Reachable Set Estimation Example (Flow)

L = 1, m = 80 (2 nonredundant)
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Reachable Set Estimation Example (Flow)

L = 10, m = 80 (33 nonredundant)
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Reachable Set Estimation Example (Flow)

Unknown A, Known B

L = 9, m = 600 (34 nonredundant)
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Take-aways



Conclusion

Exploit polytopic structure of L∞-bounded noise

More SOS constraints in fewer variables

Tractable optimization problems (after preprocessing)
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Future Work

• Streaming data and warm starts

• Time-space partitioning

• Maximum positively invariant sets

• Optimal control and extraction

• Hybrid systems

• Compatibility with structure (e.g. sparsity)
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Thank you

Thank you for your attention
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Extra Material



Preprocessing: Centering

Chebyshev center c : center of sphere

with largest radius in W

Find through linear programming

max r

Akc + r‖Ak‖2 ≤ bk ∀k
r ≥ 0, c ∈ RL

Shifted dynamics f0 ← f0 +
∑L

`=1 c`f`
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Preprocessing: Redundancy

Majority of m = 2NxNs

constraints are often redundant

Convex hull of dual polytope:

Time: Ω(m logm + mbL/2c)

Linear program per constraint:

Time: m × Õ(mL + L3)

(Jan van den Brand et. al. 2020)

Dual Polytope

Primal Polytope
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Variations: Nonnegative Control

Control set is W = {w | Aw ≤ b, w ≥ 0}

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )`ζ(t, x) ≥ f` · ∇xv(t, x) ∀(t, x) ∈ [0,T ]× X ,∀`
ζk(t, x) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m

Mix ≥ and = depending on input structure
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Variations: Centrally Symmetric Control Set

If w ∈ W , then −w ∈ W

Control set is W = {w | −b ≤ Aw ≤ b}

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )`ζ(t, x) ≥ |f` · ∇xv(t, x)| ∀(t, x) ∈ [0,T ]× X ,∀`
ζk(t, x) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m

Generalization of ”Convex Optimization of Nonlinear Feedback

Controllers via Occupation Measures” by Majumdar et. al.

(A = I , b = 1)
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