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Main Ideas

Rational dynamical systems have special structure

Deploy ‘trick’ from optimization towards dynamical systems

(Empirically) acquire tighter upper-bounds using the trick
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Background



Peak Estimation Task

Find the maximum:

• Congestion in network

• Current across a power converter component

• Concentration of a chemical species

• Angular velocity of a motor

All instances of maximizing a state function p
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Peak Estimation Problem

Find peak value P∗ of p(x) in state set X :

P∗ = sup
t∗, x0

p(x(t | x0))

ẋ(t) = f (t, x) ∀t ∈ [0, t∗]

x0 ∈ X0 (initial set)

Finite dimensional but (usually) nonconvex problem in (t∗, x0)

This work: restrict to rational f (t, x)
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Peak Estimation from Optimal Control

Peak estimation is an instance of Optimal Control (Stopping):

• Zero stage cost

• Terminal cost p(x)

• Free terminal time

• Choice of initial conditions (in X0)
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Rational Systems

Rational dynamical system (polynomials f0,Nℓ,Dℓ):

ẋ(t) = f (t, x) = f0(t, x) +
L∑

ℓ=1

Nℓ(t, x)

Dℓ(t, x)
(1)

Commonly found in:

• Chemical reaction networks

• Telecommunications

• Population models

• Rigid-body kinematics
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How do we solve peak estimation?

Lower bounds: sample, adjoint/trajectory optimization

Upper bounds: occupation measures/auxiliary functions

Sometimes (if lucky): explicit solutions
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Auxiliary Function Methods



Auxiliary Function

A function v(t, x) that behaves nicely along trajectories

Examples:

• Value function

• Lyapunov function

• Barrier function
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Peak Function Program

Infinite-dimensional LP1 with auxiliary function v(t, x)

d∗ = inf
γ∈R

γ (2a)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X (2b)

(∂t + f · ∇x)v(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X (2c)

γ ≥ v(0, x) ∀x ∈ X0 (2d)

v ∈ C 1([0,T ]× X ) (2e)

P∗ = d∗ if [0,T ]× X compact, p l.s.c., f Lipschitz
1Cho, Moon Jung, and Richard H. Stockbridge. ”Linear programming formulation for

optimal stopping problems.” SIAM Journal on Control and Optimization 40.6 (2002):

1965-1982.
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Complementary Slackness Interpretation

Consider tuple (x∗0 , t
∗
p) with d∗ = p(x(t∗p | x∗0 ))

Comp. slackness: v ∗(t∗p , x(t
∗
p | x∗0 )) = d∗, can fall after
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Ways to Discretize

Infinite-dimensional LP must be discretized for computation

More complexity: more accurate solutions

Method Increasing Complexity

Gridding (MDP) # Grid Points

Basis Functions (ADP) # Functions

Random Sampling # Samples

Sum-of-Squares Polynomial Degree

Neural Nets (FOSSIL) Width and Depth

Your Favorite Method Some Accuracy Parameter

Runtime usually exponential in dimension, complexity
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Rational Peak Estimation



Rational Structure

Liouville equation involves term

⟨(∂t + f · ∇x)v(t, x), µ(t, x)⟩ (3)

Use rational structure of dynamics

ẋ(t) = f (t, x) = f0(t, x) +
L∑

ℓ=1

Nℓ(t, x)

Dℓ(t, x)
(4)

11



Removal of Lipschitz Assumption

Trajectories with rational f may be non-Lipschitz

Use arguments from non-smooth analysis2

Lipschitz f not needed assuming [0,T ]× X compact

(theory contribution)

2L. Ambrosio and G. Crippa, “Continuity equations and ODE flows with non-smooth

velocity,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol.

144, no. 6, pp. 1191–1244, 2014.
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Lie Derivative Constraint

Expand Lie derivative constraint (∀(t, x) ∈ [0,T ]× X ):

(∂t + f · ∇x)v(t, x) ≤ 0 (5)

(∂t + f0 · ∇x)v(t, x) +
L∑

ℓ=1

Nℓ(t, x)

Dℓ(t, x)
· ∇xv(t, x) ≤ 0 (6)

Key: affine in rational terms Nℓ/Dℓ
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Prior Methods



Prior Methods (in SOS)

Two dominant approaches:

• Add new states (lifting) 3

• Clear to common denominators4

Ours is a third approach (Sum-of-Rational Lie Constraint)

3V. Magron, M. Forets, and D. Henrion, “Semidefinite approximations of invariant

measures for polynomial systems,” Discrete & Continuous Dynamical Systems - B,

vol. 22, no. 11, p. 1–26, 2017
4J. P. Parker, D. Goluskin, and G. M. Vasil, “A study of the double pendulum using

polynomial optimization,” Chaos: An Interdisciplinary Journal of Nonlinear Science,

vol. 31, no. 10, 2021

14



Add new states

Define new variable yℓ for each rational term

Augmented space Ω :

Ω = {(t, x , y) ∈ [0,T ]× X × RL | ∀ℓ : yℓDℓ(t, x) = 1}

Lie derivative constraint reformulation ∀(t, x , y) ∈ Ω:

Lf0v(t, x) +
L∑

ℓ=1

yℓ(Nℓ · ∇xv(t, x)) ≤ 0 (7)

Large number of states (t, x , y): curse of dimensionality
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Clear to Common Denominators

Product of denominators Φ(t, x) =
∏L

ℓ=1Dℓ(t, x)

Assuming that ∀ℓ : Dℓ > 0, it holds that Φ > 0

Multiply Lie constraint by Φ(t, x) to get polynomial

Φ

(
(∂t + f0 · ∇x)v +

L∑
ℓ=1

Nℓ

Dℓ

· ∇xv

)
≤ 0 (8)

High-degree verification needed when L large
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Our Approach



Employ trick from optimization

Add new function qℓ ∈ C ([0,T ]× X ) for each rational term5:

Dℓ(t, x)qℓ(t, x) ≤ Nℓ(t, x) · ∇xv(t, x) (9)

Sandwiched Lie derivative constraint, same solution:

(∂t + f0 · ∇x)v(t, x) +
L∑

ℓ=1

qℓ(t, x) ≤ 0 (10)

SOS: Restrict v , {qℓ} to polynomials

5Bugarin, Florian, Didier Henrion, and Jean Bernard Lasserre. ”Minimizing the sum

of many rational functions.” Mathematical Programming Computation 8.1 (2016):

83-111. (used in optimization, not dynamical systems)
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Other applications

Can be used many in continuous-time analysis/control tasks

• Peak estimation (this work)

• Reachable set estimation

• Optimal control

• Stochastic analysis/control (SDE with rational drift)

• Global attractor estimation

Does not work for discrete-time systems
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Examples



Michaelis-Menten Kinetics

Rational-inhibited chemical reaction network

Structurally stable 6 with equilibrium xeq = [0.3203, 0.7027]

ẋ1 = −3

4
x1 +

1

1 + 4.5x2

ẋ2 = − 9

16
x2 +

1.25

1 + 6.75x1

6Blanchini, Franco, et al. ”Michaelis–Menten networks are structurally stable.”

Automatica 147 (2023): 110683.
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Michaelis-Menten Comparison
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Rational Twist Example

System structure: linear plus (sum of cubic-over-quadratics)
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Take-aways



Conclusion

Formulated sandwiched-Liouville sum-of-rational program

Gets better upper-bounds in experiments

Applicable to rational continuous-time dynamics (e.g. SDE)

Still vulnerable to the curse of dimensionality
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Use Rational Structure!

Also, I’ll be on the job market soon
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