Peak Estimation of Rational Systems using Convex Optimization

Jared Miller Roy S. Smith

European Control Conference Paper ThB5.5 June 27, 2024

ETH zürich

Rational dynamical systems have special structure

Deploy 'trick' from optimization towards dynamical systems

(Empirically) acquire tighter upper-bounds using the trick

Background

Find the maximum:

- Congestion in network
- Current across a power converter component
- Concentration of a chemical species
- Angular velocity of a motor

All instances of maximizing a state function p

Find peak value P^* of p(x) in state set X:

$$egin{aligned} P^* &= \sup_{t^*,\,x_0} & p(x(t \mid x_0)) \ \dot{x}(t) &= f(t,x) & orall t \in [0,\,t^*] \ & x_0 \in X_0 ext{ (initial set)} \end{aligned}$$

Finite dimensional but (usually) nonconvex problem in (t^*, x_0)

This work: restrict to rational f(t, x)

Peak estimation is an instance of Optimal Control (Stopping):

- Zero stage cost
- Terminal cost p(x)
- Free terminal time
- Choice of initial conditions (in X_0)

Rational dynamical system (polynomials f_0, N_ℓ, D_ℓ):

$$\dot{x}(t) = f(t,x) = f_0(t,x) + \sum_{\ell=1}^{L} \frac{N_\ell(t,x)}{D_\ell(t,x)}$$
 (1)

Commonly found in:

- Chemical reaction networks
- Telecommunications
- Population models
- Rigid-body kinematics

Lower bounds: sample, adjoint/trajectory optimization

Upper bounds: occupation measures/auxiliary functions

Sometimes (if lucky): explicit solutions

Auxiliary Function Methods

A function v(t, x) that behaves nicely along trajectories Examples:

- Value function
- Lyapunov function
- Barrier function

Infinite-dimensional LP¹ with auxiliary function v(t, x)

$$d^{*} = \inf_{\gamma \in \mathbb{R}} \gamma$$
(2a)

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$
(2b)

$$(\partial_{t} + f \cdot \nabla_{x})v(t, x) \le 0 \qquad \forall (t, x) \in [0, T] \times X$$
(2c)

$$\gamma \ge v(0, x) \qquad \forall x \in X_{0}$$
(2d)

$$v \in C^{1}([0, T] \times X)$$
(2e)

$P^* = d^*$ if $[0, T] \times X$ compact, p l.s.c., f Lipschitz

¹Cho, Moon Jung, and Richard H. Stockbridge. "Linear programming formulation for optimal stopping problems." SIAM Journal on Control and Optimization 40.6 (2002): 1965-1982.

Complementary Slackness Interpretation

Consider tuple (x_0^*, t_p^*) with $d^* = p(x(t_p^* \mid x_0^*))$ Comp. slackness: $v^*(t_p^*, x(t_p^* \mid x_0^*)) = d^*$, can fall after

Infinite-dimensional LP must be discretized for computation

More complexity: more accurate solutions

Method	Increasing Complexity
Gridding (MDP)	# Grid Points
Basis Functions (ADP)	# Functions
Random Sampling	# Samples
Sum-of-Squares	Polynomial Degree
Neural Nets (FOSSIL)	Width and Depth
Your Favorite Method	Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

Rational Peak Estimation

Liouville equation involves term

$$\langle (\partial_t + f \cdot \nabla_x) v(t, x), \mu(t, x) \rangle$$
 (3)

Use rational structure of dynamics

$$\dot{x}(t) = f(t,x) = f_0(t,x) + \sum_{\ell=1}^{L} \frac{N_\ell(t,x)}{D_\ell(t,x)}$$
 (4)

Trajectories with rational f may be non-Lipschitz

Use arguments from non-smooth analysis²

Lipschitz f not needed assuming $[0, T] \times X$ compact

(theory contribution)

²L. Ambrosio and G. Crippa, "Continuity equations and ODE flows with non-smooth velocity," Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 144, no. 6, pp. 1191–1244, 2014.

Expand Lie derivative constraint $(\forall (t, x) \in [0, T] \times X)$:

$$(\partial_t + f \cdot \nabla_x) v(t, x) \leq 0$$
 (5)

$$(\partial_t + f_0 \cdot \nabla_x) v(t, x) + \sum_{\ell=1}^L \frac{N_\ell(t, x)}{D_\ell(t, x)} \cdot \nabla_x v(t, x) \le 0 \qquad (6)$$

Key: affine in rational terms N_ℓ/D_ℓ

Prior Methods

Two dominant approaches:

- Add new states (lifting) ³
- Clear to common denominators⁴

Ours is a third approach (Sum-of-Rational Lie Constraint)

 $^{^3}V.$ Magron, M. Forets, and D. Henrion, "Semidefinite approximations of invariant measures for polynomial systems," Discrete & Continuous Dynamical Systems - B, vol. 22, no. 11, p. 1–26, 2017

⁴J. P. Parker, D. Goluskin, and G. M. Vasil, "A study of the double pendulum using polynomial optimization," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 10, 2021

Define new variable y_{ℓ} for each rational term Augmented space Ω :

$$\Omega = \{(t,x,y) \in [0,T] imes X imes \mathbb{R}^L \mid \ orall \ell: \ y_\ell D_\ell(t,x) = 1\}$$

Lie derivative constraint reformulation $\forall (t, x, y) \in \Omega$:

$$\mathcal{L}_{f_0} v(t, x) + \sum_{\ell=1}^{L} y_{\ell}(N_{\ell} \cdot \nabla_x v(t, x)) \leq 0$$
 (7)

Large number of states (t, x, y): curse of dimensionality

Product of denominators $\Phi(t, x) = \prod_{\ell=1}^{L} D_{\ell}(t, x)$ Assuming that $\forall \ell : D_{\ell} > 0$, it holds that $\Phi > 0$ Multiply Lie constraint by $\Phi(t, x)$ to get polynomial

$$\Phi\left((\partial_t + f_0 \cdot \nabla_x)v + \sum_{\ell=1}^L \frac{N_\ell}{D_\ell} \cdot \nabla_x v\right) \le 0 \tag{8}$$

High-degree verification needed when L large

Our Approach

Add new function $q_{\ell} \in C([0, T] \times X)$ for each rational term⁵:

$$D_{\ell}(t,x)q_{\ell}(t,x) \leq N_{\ell}(t,x) \cdot \nabla_{x}v(t,x)$$
(9)

Sandwiched Lie derivative constraint, same solution:

$$(\partial_t + f_0 \cdot \nabla_x) v(t,x) + \sum_{\ell=1}^L q_\ell(t,x) \le 0$$
 (10)

SOS: Restrict v, $\{q_{\ell}\}$ to polynomials

⁵Bugarin, Florian, Didier Henrion, and Jean Bernard Lasserre. "Minimizing the sum of many rational functions." Mathematical Programming Computation 8.1 (2016): 83-111. (used in optimization, not dynamical systems)

Can be used many in continuous-time analysis/control tasks

- Peak estimation (this work)
- Reachable set estimation
- Optimal control
- Stochastic analysis/control (SDE with rational drift)
- Global attractor estimation

Does not work for discrete-time systems

Examples

Michaelis-Menten Kinetics

Rational-inhibited chemical reaction network Structurally stable ⁶ with equilibrium $x_{eq} = [0.3203, 0.7027]$

⁶Blanchini, Franco, et al. "Michaelis-Menten networks are structurally stable." Automatica 147 (2023): 110683.

Michaelis-Menten Comparison

System structure: linear plus (sum of cubic-over-quadratics)

Formulated sandwiched-Liouville sum-of-rational program

Gets better upper-bounds in experiments

Applicable to rational continuous-time dynamics (e.g. SDE)

Still vulnerable to the curse of dimensionality

Use Rational Structure!

Also, I'll be on the job market soon