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Main Ideas

Peak estimation problems posed under polyhedral uncertainty

Use polytopic structure to simplify Lie constraints

Apply to L∞ bounded noise setting
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Peak Estimation Background



Peak Estimation Problem

Find maximum value of p(x) along trajectories

P∗ = max
t, x0∈X0

p(x(t))

ẋ(t) = f (t, x(t)) t ∈ [0,T ]

x(0) = x0 ∈ X0

ẋ = [x2,−x1 − x2 + x31/3] 2



Peak Function Program

Infinite dimensional linear program (Fantuzzi, Goluskin, 2020)

Uses auxiliary function v(t, x)

d∗ = min
γ∈R

γ (1)

γ ≥ v(0, x) ∀x ∈ X0 (2)

Lf v(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X (3)

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X (4)

v ∈ C 1([0,T ]× X ) (5)

Lie Derivative Lf v(t, x) = ∂tv + f (t, x) · ∇xv

P∗ = d∗ holds if [0,T ]× X is compact, f Lipschitz
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Auxiliary Evaluation along Optimal Trajectory
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Peak Estimation with Uncertainty

Dynamics ẋ = f (t, x(t),w(t))

Uncertain process w(t) ∈ W , ∀t ∈ [0,T ]

Time-dependent w

Lf (t,x ,w)v(t, x) ≤ 0 ∀(t, x ,w) ∈ ∀[0,T ]× X ×W
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System with Uncertainty Example

ẋ(t) = [x2(t),−x1w(t)− x2(t) + x1(t)
3/3]

w(t) ∈ [0.5, 1.5]
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Assumptions

Set [0,T ]× X is compact

Uncertainty W is a compact polytope {w | Aw ≤ b}

Nonempty interior: ∃w ∈ RL | Aw < b

Dynamics f (t, x ,w) are Lipschitz

Input-affine f (t, x ,w) = f0(t, x) +
∑L

ℓ=1 wℓfℓ(t, x)
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Constraint Decomposition



Feasibility Pair

Polyhedral-constrained input w(t) ∈ W

Problem is Feasible

Lf (t,x ,w)v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

Problem is Infeasible

Lf (t,x ,w)v(t, x) > 0 ∃(t, x ,w) ∈ [0,T ]× X ×W

Pair of Strong Alternatives
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Theorem of Alternatives

Lagrange dual function g

g(ζ) = sup
w∈RL

S(w ; ζ) = sup
w∈RL

Lf v +
m∑

k=1

ζk(t, x)(bk − Akw)

Certificate ζ that Lf v > 0 is empty:

∀(t, x) ∈ [0,T ]× X : g(ζ) ≤ 0, ζ(t, x) ≥ 0

Weak alternative g(ζ) ≤ 0 also strong:

• w -affine functions Lf v and b − Aw are w -concave

• Exists a point w : Aw < b (Slater)
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Lie Polytopic Decomposition

Original

Lf v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

Decomposed

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )ℓζ(t, x) = fℓ · ∇xv(t, x) ∀ℓ = 1, . . . , L

ζk(t, x) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m

Strong equivalence (given affine structure in w)
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Peak Estimation (revisited)



Peak Original Program

Include time-varying uncertainty w(t) ∈ W

d∗ = min
γ∈R

γ

γ ≥ v(0, x) ∀x ∈ X0

Lf v(t, x) ≤ 0 ∀(t, x ,w) ∈ [0,T ]× X ×W

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X

v ∈ C 1([0,T ]× X )
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Peak Decomposed Program

Only the Lie Derivative constraint changes

d∗ = min
γ∈R

γ

γ ≥ v(0, x) ∀x ∈ X0

Lf0v(t, x) + bT ζ(t, x) ≤ 0 ∀(t, x) ∈ [0,T ]× X

(AT )ℓζ(t, x) = (fℓ · ∇x)v(t, x) ∀ℓ = 1, . . . , L

v(t, x) ≥ p(x) ∀(t, x) ∈ [0,T ]× X

v(t, x) ∈ C 1([0,T ]× X )

ζk(t, x) ∈ C+([0,T ]× X ) ∀k = 1, . . . ,m
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Data Driven Setting



Noise Model

Ground truth ẋ = F (t, x)

Corrupted observations of system F in t ∈ [0,T ]

(tj , xj , ẋj) ∀j = 1, . . . ,Ns

Assumption of L∞ bounded noise

∥F (tj , xj)− ẋj∥∞ ≤ ϵ ∀j = 1, . . . ,Ns

13



Sampling: Flow System
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Dynamics Model

Parameterize unknown F by functions in dictionary

ẋ(t) = f (t, x ,w) = f0(t, x) +
L∑

ℓ=1

wℓfℓ(t, x)

Affine in uncertainties w

Bounded noise constraint ϵ

∥F (tj , xj)− ẋj∥∞ ≤ ϵ ∀j = 1, . . . ,Ns

∥f (tj , xj ,w)− ẋj∥∞ ≤ ϵ ∀j = 1, . . . ,Ns

15



Noise Constraints

2 linear constraints for each coordinate i , sample j

−ϵ ≤ f0(tj , xj)i +
L∑

ℓ=1

wℓfℓ(tj , xj)i − (ẋj)i ≤ ϵ

Polytopic region W = {w ∈ RL | Aw ≤ b} with b ∈ R2NxNs
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Peak Estimation Example (Flow)
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Peak Estimation Example (Flow)

ẋ = [x2, −wx1 − x2 + x31/3]

L = 1, m = 80 (2 nonredundant)
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Peak Estimation Example (Flow)

ẋ = [x2, cubic(x1, x2)]

L = 10, m = 80 (33 nonredundant)
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Computational Considerations (Flow)

Size of largest PSD matrix in SDP (without symmetries):

Original
(
1+Nx+L+d+⌈deg(f )/2⌉−1

1+Nx+L

)
=

(
18
13

)
= 8568

Decomposed
(
1+Nx+d+⌈deg(f )/2⌉−1

1+Nx

)
=

(
8
3

)
= 56

Order d = 4, L = 10, Nx = 2

W has 33 faces, 7534 vertices
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Peak Estimation Example (Flow)

ẋ = [x2, cubic(x1, x2)]

X0 = {x | (x1 − 1.5)2 + x2 ≤ 0.42}
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Peak Estimation Example (Twist)

Dynamics model:

ẋi = Aijxj − Bij(4x
3
j − 3xj)

A =

−1 1 1

−1 0 −1
0 1 −2



B =

−1
2
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1
2

1
2

1
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0


X0 = [−1, 0, 0], T = 8
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Peak Estimation Example (Twist)

m = 2NsNx = 600 constraints
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Peak Estimation Example (Twist)

Unknown A, Known B

L = 9, m = 600 (34 nonredundant) 24



Peak Estimation Example (Twist)

Known A, Unknown B

L = 9, m = 600 (30 nonredundant) 25



Peak Estimation Example (Twist)

Unknown A, Unknown B

L = 18, m = 600 (70 nonredundant) 26



Take-aways



Conclusion

Tractable peak estimation problems (after preprocessing)

More SOS constraints in fewer variables

Data-driven estimates given L∞-bounded noise
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Reachable Set Estimation Example (Twist)

Unknown A, Known B

L = 9, m = 600 (34 nonredundant)
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Future Work

• Streaming data and warm starts

• Maximum positively invariant sets

• Hybrid systems

• Compatibility with structure (e.g. sparsity)
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Extra Material



Preprocessing: Centering

Chebyshev center c : center of sphere

with largest radius in W

Find through linear programming

max r

Akc + r∥Ak∥2 ≤ bk ∀k
r ≥ 0, c ∈ RL

Shifted dynamics f0 ← f0 +
∑L

ℓ=1 cℓfℓ
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Preprocessing: Redundancy

Majority of m = 2NxNs

constraints are often redundant

Convex hull of dual polytope:

Time: Ω(m logm +m⌊L/2⌋)

Linear program per constraint:

Time: m × Õ(mL+ L3)

(Jan van den Brand et. al. 2020)

Dual Polytope

Primal Polytope

32


	Peak Estimation Background
	Constraint Decomposition
	Peak Estimation (revisited)
	Data Driven Setting
	Take-aways
	Extra Material

