Facial Input Decompositions for Robust Peak Estimation under Polyhedral Uncertainty

Jared Miller, Mario Sznaier ROCOND, Convex Optimization (WeTS2.6), Aug 31, 2022

Peak estimation problems posed under polyhedral uncertainty

Use polytopic structure to simplify Lie constraints

Apply to L_∞ bounded noise setting

Peak Estimation Background

Peak Estimation Problem

Find maximum value of p(x) along trajectories

$$P^* = \max_{t, x_0 \in X_0} p(x(t))$$
$$\dot{x}(t) = f(t, x(t)) \qquad t \in [0, T]$$
$$x(0) = x_0 \in X_0$$

Peak Function Program

Infinite dimensional linear program (Fantuzzi, Goluskin, 2020) Uses auxiliary function v(t, x)

$$d^{*} = \min_{\gamma \in \mathbb{R}} \gamma$$
(1)

$$\gamma \ge v(0, x) \qquad \forall x \in X_{0}$$
(2)

$$\mathcal{L}_{f}v(t, x) \le 0 \qquad \forall (t, x) \in [0, T] \times X$$
(3)

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$
(4)

$$v \in C^{1}([0, T] \times X)$$
(5)

Lie Derivative $\mathcal{L}_f v(t,x) = \partial_t v + f(t,x) \cdot \nabla_x v$

 $P^* = d^*$ holds if $[0, T] \times X$ is compact, f Lipschitz

Auxiliary Evaluation along Optimal Trajectory

Optimal v(t, x) should be constant until peak is achieved

Dynamics $\dot{x} = f(t, x(t), w(t))$ Uncertain process $w(t) \in W, \ \forall t \in [0, T]$

Time-dependent w

 $\mathcal{L}_{f(t,x,w)}v(t,x) \leq 0 \qquad \forall (t,x,w) \in \forall [0,T] \times X \times W$

System with Uncertainty Example

$$\dot{x}(t) = [x_2(t), -x_1 w(t) - x_2(t) + x_1(t)^3/3]$$

 $w(t) \in [0.5, 1.5]$

Set $[0, T] \times X$ is compact

Uncertainty W is a compact polytope $\{w \mid Aw \leq b\}$

Nonempty interior: $\exists w \in \mathbb{R}^L \mid Aw < b$

Dynamics f(t, x, w) are Lipschitz

Input-affine $f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^L w_\ell f_\ell(t, x)$

Constraint Decomposition

Polyhedral-constrained input $w(t) \in W$

Problem is Feasible

$$\mathcal{L}_{f(t,x,w)}v(t,x) \leq 0 \qquad \forall (t,x,w) \in [0,T] \times X \times W$$

Problem is Infeasible

 $\mathcal{L}_{f(t,x,w)}v(t,x) > 0 \qquad \exists (t,x,w) \in [0,T] \times X \times W$

Pair of Strong Alternatives

Lagrange dual function g

$$g(\zeta) = \sup_{w \in \mathbb{R}^L} S(w; \zeta) = \sup_{w \in \mathbb{R}^L} \mathcal{L}_f v + \sum_{k=1}^m \zeta_k(t, x) (b_k - A_k w)$$

Certificate ζ that $\mathcal{L}_f v > 0$ is empty:
 $orall (t, x) \in [0, T] \times X : \qquad g(\zeta) \le 0, \quad \zeta(t, x) \ge 0$

Weak alternative $g(\zeta) \leq 0$ also strong:

- *w*-affine functions $\mathcal{L}_f v$ and b Aw are *w*-concave
- Exists a point w : Aw < b (Slater)

Original

 $\mathcal{L}_f v(t,x) \leq 0$ $\forall (t,x,w) \in [0,T] \times X \times W$

Decomposed

$$\begin{split} \mathcal{L}_{f_0} v(t,x) + b^T \zeta(t,x) &\leq 0 \qquad \forall (t,x) \in [0,T] \times X \\ (A^T)_\ell \zeta(t,x) &= f_\ell \cdot \nabla_x v(t,x) \quad \forall \ell = 1, \dots, L \\ \zeta_k(t,x) \in C_+([0,T] \times X) \qquad \forall k = 1, \dots, m \end{split}$$

Strong equivalence (given affine structure in w)

Peak Estimation (revisited)

Include time-varying uncertainty $w(t) \in W$

$$d^* = \min_{\gamma \in \mathbb{R}} \quad \gamma$$

$$\gamma \ge v(0, x) \qquad \forall x \in X_0$$

$$\mathcal{L}_f v(t, x) \le 0 \qquad \forall (t, x, w) \in [0, T] \times X \times W$$

$$v(t, x) \ge p(x) \qquad \forall (t, x) \in [0, T] \times X$$

$$v \in C^1([0, T] \times X)$$

Only the Lie Derivative constraint changes

 $d^* = \min_{\gamma \in \mathbb{R}} \gamma$ $\gamma \geq v(0,x)$ $\forall x \in X_0$ $\mathcal{L}_{f_0}v(t,x) + b^T\zeta(t,x) < 0$ $\forall (t,x) \in [0,T] \times X$ $(A^{\mathsf{T}})_{\ell}\zeta(t,x) = (f_{\ell} \cdot \nabla_x)v(t,x) \quad \forall \ell = 1, \dots, L$ v(t,x) > p(x) $\forall (t, x) \in [0, T] \times X$ $v(t,x) \in C^1([0,T] \times X)$ $\zeta_k(t,x) \in C_+([0,T] \times X)$ $\forall k = 1, \ldots, m$

Data Driven Setting

Ground truth $\dot{x} = F(t, x)$

Corrupted observations of system F in $t \in [0, T]$

$$(t_j, x_j, \dot{x}_j)$$
 $\forall j = 1, \dots, N_s$

Assumption of L_∞ bounded noise

$$\|F(t_j, x_j) - \dot{x}_j\|_{\infty} \le \epsilon \qquad \forall j = 1, \dots, N_s$$

Sampling: Flow System

$$\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3]$$

Parameterize unknown F by functions in dictionary

$$\dot{x}(t) = f(t, x, w) = f_0(t, x) + \sum_{\ell=1}^{L} w_\ell f_\ell(t, x)$$

Affine in uncertainties w

Bounded noise constraint ϵ

$$\|F(t_j, x_j) - \dot{x}_j\|_{\infty} \le \epsilon \qquad \forall j = 1, \dots, N_s$$
$$\|f(t_j, x_j, w) - \dot{x}_j\|_{\infty} \le \epsilon \qquad \forall j = 1, \dots, N_s$$

2 linear constraints for each coordinate i, sample j

$$-\epsilon \leq f_0(t_j, x_j)_i + \sum_{\ell=1}^L w_\ell f_\ell(t_j, x_j)_i - (\dot{x}_j)_i \leq \epsilon$$

Polytopic region $W = \{w \in \mathbb{R}^L \mid Aw \leq b\}$ with $b \in \mathbb{R}^{2N_xN_s}$

 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3], \ T = 5$

18

Size of largest PSD matrix in SDP (without symmetries):

Original
$$\begin{pmatrix} 1+N_x+L+d+\lceil \deg(f)/2\rceil-1\\ 1+N_x+L \end{pmatrix} = \begin{pmatrix} 18\\ 13 \end{pmatrix} = 8568$$

Decomposed
$$\binom{1+N_x+d+\lceil \deg(f)/2\rceil-1}{1+N_x} = \binom{8}{3} = 56$$

Order d = 4, L = 10, $N_x = 2$

W has 33 faces, 7534 vertices

100 Noisy Observations with ϵ =0.5

 $m = 2N_s N_x = 600$ constraints

L = 18, m = 600 (70 nonredundant)

Tractable peak estimation problems (after preprocessing)

More SOS constraints in fewer variables

Data-driven estimates given L_{∞} -bounded noise

Reachable Set Estimation Example (Twist)

Unknown A, Known B

L = 9, m = 600 (34 nonredundant)

- Streaming data and warm starts
- Maximum positively invariant sets
- Hybrid systems
- Compatibility with structure (e.g. sparsity)

- LAAS-CNRS: Didier Henrion, POP group
- Robust Systems Lab: Tianyu Dai
- Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.
- National Science Foundation
- Air Force Office of Scientific Research

Thank you for your attention

arxiv:2112.14838 github.com/jarmill/data_driven_occ

Extra Material

Preprocessing: Centering

Chebyshev center c: center of sphere with largest radius in WFind through linear programming max r $A_k c + r \|A_k\|_2 < b_k$ $\forall k$ $r > 0, c \in \mathbb{R}^{L}$ Shifted dynamics $f_0 \leftarrow f_0 + \sum_{\ell=1}^{L} c_{\ell} f_{\ell}$

Preprocessing: Redundancy

Majority of $m = 2N_x N_s$ constraints are often redundant

Convex hull of dual polytope: Time: $\Omega(m \log m + m^{\lfloor L/2 \rfloor})$

Linear program per constraint: Time: $m \times \tilde{O}(mL + L^3)$ (Jan van den Brand *et. al.* 2020)

