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Abstract— Inverse optimization (Inverse optimal control) is
the task of imputing a cost function such that given test points
(trajectories) are (nearly) optimal with respect to the discovered
cost. Prior methods in inverse optimization assume that the true
cost is a convex combination of a set of convex basis functions
and that this basis is consistent with the test points. However,
the consistency assumption is not always justified, as in many
applications the principles by which the data is generated are
not well understood. This work proposes using the distance
between a test point and the set of global optima generated
by the convex combinations of the convex basis functions as a
measurement for the expressive quality of the basis with respect
to the test point. A large minimal distance invalidates the set
of basis functions. The concept of a set of global optima is
introduced and its properties are explored in unconstrained and
constrained settings. Upper and lower bounds for the minimum
distance in the convex quadratic setting are implemented by
bi-level gradient descent and an enriched linear matrix in-
equality respectively. Extensions to this framework include max-
representable basis functions, nonconvex basis functions (local
minima), and applying polynomial optimization techniques.

I. INTRODUCTION

There is a consensus in the literature on biomechanics,
human motor control, and robotics to say that numerous
human motions can be modeled and predicted using optimal
control approaches [1-6]. This is especially the case for
repetitive motions or tasks that are subject to strict biome-
chanical constraints such as walking [7]. To determine the
cost function(s) used by humans, the use of Inverse Optimal
Control (IOC) methods has been proposed and extensively
studied [1-6]. Let a general motion be represented as a
vector x from R”, and in particular, let observations be
denoted by y. The application of IOC requires at least
one (nearly) optimal observation y € R™, knowledge of
the constraints related to the biomechanics of the task and
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of the human body that define the set of feasible motions
X C R", and a finite-cardinality set of basis cost functions
F = {fi(x)}™,. Under the assumption that the cost func-
tion underlying human motion is a convex combination of
functions from the basis f(z) = >, o fi(x), the goal of
IOC is to identify parameters «v; such that the observation(s)
y is (are) optimal. The basis functions are chosen based
on physiological observations and are often related to the
mechanical energy or motion smoothness [1].

IOC is often solved in human motor control or robotics
by using a computationally expensive bi-level optimization
approach [1-3, 7]. The bi-level approach consists of two opti-
mization processes, one nested inside the other, that explicitly
aim to minimize over the parameters « the Root-Mean-
Square-Error between optimal observation y and the result
of the so-called Direct Optimal Control (DOC) problem
that returns the optimal solution z* given the cost function
f(x). This approach tends to be abandoned due to its long
execution time, which can take up to several days, but has the
merit of being able to deal with relatively noisy input data
[8] since the explicit minimization of the distance between y
and the result of the inner optimization problem is accounted
for.

Recently, an approximate solution method for the IOC
problem was proposed based on a relaxation of the Karush-
Kuhn-Tucker (KKT) optimality conditions, allowing to look
for solutions by solving a linear least-square KKT-residual
minimization [9]. Even for high-dimensional non-linear mod-
els of the DOC, the IOC admits an almost instantaneous
solution, but requires the observation y to be within, or
very close, to the set of possible solutions of the DOC
denoted G¢ later (or G in the absence of constraints). This
method has motivated a fair amount of work in robotics
[10-13] and human-motion analysis [4—6]. Many of these
works are grounded in the analysis of the properties of the
technique itself [14—16]. The method is based on a relaxation
of the exact feasibility problem of inverse optimization,
formulated as Problem 5 (resp. 3), for a constrained (resp.
unconstrained) direct optimization problem.

Though these approximate methods [9, 10, 17] have con-
siderable computational advantages with respect to the bi-
level approach, they are known to be sensitive to noise
[15, 18] and are statistically inconsistent [8]. However, when
dealing with human motion, inherent simplifications are
necessary in the modeling of the complex musculoskeletal
system which introduces modelling errors that add up with
non negligible measurement errors. For example, joint an-
gles, that are often used as optimal observation y for IOC,



can have several degrees of error at the hip level during
ground walking [19].

Few studies [16] propose to evaluate how well a basis of
cost functions F can represent a given motion y. One way
could be to perform repeated IOC-DOC cycles with different
initialization for either the bi-level or the approximate ap-
proaches, and look for the smallest obtainable error. Another
approach would be to use the residual of the approximate
KKT approach [9]. Unfortunately, what constitutes a good
value for the residual can wildly vary from problem to
problem, and even within the same problem depending on
the conditioning [16].

This work proposes to evaluate how well a basis of cost
functions F can represent a given motion y. To make this
concept intuitive, the concept of the set of global minima
G° (@) is introduced. The problem of evaluating a basis of
cost functions F is then formulated as the minimum-distance
projection from the observation y to the set of global minima
G° (G). The projection is equivalent to finding the global
minima of the bi-level problem, which is in general non-
convex admitting no reliable way of finding global solutions.
However, one can bound this distance from above, and
from below under some assumptions. While the distance
between any point from G¢ to y yields an upper bound
on the minimum distance, one should strive to make the
bound tighter by picking at least a local minimum of the
bi-level problem. An approach based on an enhanced LMI
will be presented for bounding the distance from below. As
medium-sized LMIs are readily solved, this approach applies
to problems of moderate sizes.

The set of global minima G° (G) is characterized for
convex bases F, both with constrained and unconstrained
DOC models. The problem of checking whether there ex-
ists a cost function parametrization o which makes the
observation y exactly optimal is formulated as a linear
program. The projection problem, equivalent to the bi-level
approach, is then re-formulated as a single-level optimization
process using the classical KKT-transformation of bi-level
problems [20]. This reformulation allows for the application
of enhanced LMIs for lower bounding the distance, in cases
where the DOC model is polynomial in cost and constraints.

Further considerations are restricted to unconstrained and
constrained quadratic programs as DOC models. Meaning
the members of the set of basis functions F are assumed
quadratic and the constraints are, if existent, assumed linear.
The geometry of the corresponding sets G and G¢ are inves-
tigated, as well as the mappings between optimal motions
x, cost function parametrizations «, and the dual variables
A and p when constraints are present, through the extended
global minima sets g and gc

In this context, the contributions of this work are,

o The formulation of the Projection onto Global Minimiz-

ers (ProjGM) problem 2,

o The characterization of global optima set geometry,

o The use of numerical algorithms to determine upper and

lower bounds in the convex quadratic setting.

This paper has the following structure: Section II defines

notation and introduces the problems that will be addressed
in this work. Section III describes the structure of un-
constrained global-optima sets, with specific reference to
cases where each f; is a strongly convex quadratic. Section
IV analyzes constrained global-optima sets, and similarly
focuses on the Quadratic Program (QP) case where the
objective functions are weakly convex. Section V acquires
upper bounds for program 2 using local search and lower
bounds through an Linear Matrix Inequality (LMI). Section
V presents a numerical example of the proposed ProjGM ap-
proach. Section VII details extensions to the current method,
including adding support for maximum-representable func-
tions in the cost functions set F.

II. PRELIMINARIES
A. Notations

The set of real numbers is R, the n-dimensional Euclidean
space is R", and its nonnegative real orthant is R’ . The
vector of all zeros is 0 and of all ones is 1. The set of
natural numbers (incl. 0) is N, and its subset between 1 and
N is 1..N. The n-dimensional probability simplex is A™.
The set of m x n real-valued matrices is R™*". The set of
n x n symmetric real matrices satisfying Q = Q7 is S”. A
symmetric matrix is Positive Semidefinite (PSD) (Q € S7})
if Yo € R* : 27Qx > 0, and is Positive Definite (PD)
(Qest,)ifVzeR", 2 #0:27Qz > 0.

Let X and Y be a pair of spaces. A single valued function
may be written as f : X — Y, and a set valued function F':
2% — 2Y may be expressed as F': X = Y. The projection
7 : (,7) — x operation applied to a set J C X x Y is,

) =7"J(z,y)={z |y e : (a,

y)edt. M
B. Problem Statement

A convex combination cost f, of basis functions from
F = {fi(x)}™, given weights o may be expressed as,

falr) =370, o fj(@)

where A" is the m-dimensional probability simplices A™ =
{ao € R™ | @ > 0,>,a; = 1}. This paper attempts to
answer the following two problems:

Problem 1 (Feasibility): Does there exist an o € A™
such that y is a global optimum?

a €A™ )

ﬁend y € argming y ZJ 1o fi(z) 3)
Problem 2 (ProjGM): What is the distance from y to the
set of global optima?

(4a)

Ja € A™ | x € argming ¢ x >,y o fi(2') (4b)

If « solves the feasibility program 1, then the objective

from problem 2 will necessarily be p* = 0 with x = y. Both

problems will be treated under the following assumption (the
same setting as used in [9]),

Assumption 1 (Convexity): Each f; is a C' convex func-
tion and X is a convex set.

* : _ 2
p* = min ly — =2



Problem 1 under Assumption 1 may be decided by analyz-
ing the feasibility of a simple n-dimensional Linear Program
(LP) in «. Problem 2 is a bilevel optimization problem that
assesses the quality of the basis F from (2) in characterizing
y as an optimal point. A large distance p* from Program (4)
indicates that the basis J does not accurately describe y
as a global minimum and therefore F should be redesigned.
Problem 2 is a generically nonconvex and nontrivial problem
even under Assumption 1. Local search and trust-region
methods may be used to find upper bounds for p*, but
exact computation of p* is typically intractable. An LMI
is introduced to obtain lower bounds for p*, and this LMI
relaxation is tight to p* if the PSD matrix variable is rank-1.

Unconstrained set of global optima G
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Fig. 1: A set of unconstrained global optima in 3D

III. GEOMETRY OF UNCONSTRAINED OPTIMAL SETS

This section formulates and defines properties of sets
of global optima when X = R™. Due to repeated usage
throughout this section, the symbol W will denote R™ x A™,

A. Convex Case

The set of global optima and weights associated with a F
yielding mixed cost functions (2) given Assumption 1 is,

G ={(x,0) €W | Vafa(z) =0}. )

Convexity of f, implies that every local minimizer with
Vi fa(z) =0 is also a global minimizer.

As condition V, f,(y) = 0 is linear in «, the feasibility
problem 1 given y € R™ may be posed as an LP in o,

Problem 3 (Unconstrained Feasibility):

findacam (y,0) €G. (6)
The unconstrained ProjGM problem for the same y is,
Problem 4 (Unconstrained ProjGM):

min |ly — z|)3. (7

(z,a

p* =

B. Quadratics Only

Further analysis in this section will require the following
assumption,

Assumption 2 (Strictly Convex Quadratics): Functions in
F are strictly convex quadratics with,

fi(@) = (@ — )7 Q;(x — =) /2
Vafi(z) = Qj(x —27)

where all elements in (Q;, x;c ) are bounded and @Q; € ST
forall j =1..m.

The optima-weight sets G(z, o) and G () under Assump-
tion 2 is,

G={(w.0)eW|(L,0Q;) =5, 0;Q5]}  ©
G =n"G. (10)

Vi=1.m (8a)

Vj=1.m. (8b)

Remark 1: Letting {e;}].; be the standard basis vectors

in R™, the points {(z],e;)}7, n
Remark 2: All descriptor constraints in G from (9) have
polynomial degree at most two, and there is a bilinearity
between (a, ).
The mapping x : A™ — G with k(a) = z¥ in terms of
finding an optimal x minimizing f, is single-valued, and has
an expression,

k(@) = 2% = (Zj Oéij)71 (Zj OéijCC;) .

are all members of Q .

(an

Remark 3: Conversely, the mapping k= : G = A™
is set-valued. Its values are the compact polytopic sets
containing feasible points of program (6).

Theorem 3.1: The map k(«) from (11) is a continuous
surjection from A" onto G under Assumption 2.

Proof: Surjection holds by definition of Gin (9): x is
only a member of Q if there exists an o/ € A™ such that
x = z,. Continuity of z}, is based on continuity of the
matrix inverse A~ for all nonsingular matrices A € R"*",

|

Definition 3.1 (Compact): A set X € R" is compact if it
is closed and bounded (Heine-Borel). A consequence is that
X is compact if there exists a finite R > 0 such that X is a
subset of the ball with radius R: {z | ||z||2 < R} [21].

Theorem 3.2: Under Assumption 2, the set Q is compact.

Proof: There exists a finite quantity R > 0 that satisfies
max; ||:cf l2 < R due to boundedness of /. It is implied that
maxaeAmHZ;n:l ajx]f.||2 < R by convexity of the norm
[Ill2- Let A be the solution to,

A= min A\pin (Zg anj) .

12
acAm (12)

It holds that A > 0 because PD matrices form a convex (non-
pointed) cone. The maximum norm of any global-optimal
point in G is bounded above by,

In@lle = 1(S;050) (5,050 ) b
< (1/A)H(Zj oszjxf) |2 < R/A < o0 (13b)

(13a)



The compact set {(z,a) € W | |lz]l2 < R/A} is a
superset of G from (9), which proves that G is compact.
|

Definition 3.2 (Path-Connected): A set X is path-
connected if for every two points z°,2' € X there
exists a continuous path (curve) w : [0,1] — X with
w(0) = 2%, w(1) = x! such that w(t) € X Vt € [0,1] [21].

Theorem 3.3: Under Assumption 2, the set G is path-
connected.

Proof: Let 2, x' be a pair of distinct points in G.
Choose o’ € k71(2°) and o' € k~!(z!) as weights
generating the optimal points z°, 2. A path w : [0,1] — A™
may be drawn between the points by w(t) : ot +al(1—1).
The path (w(t), x(w(t))) remains inside G for all ¢ € [0,1] by
continuity of x from Theorem 3.1. This containment holds
for all pairs (2, z'), so G is path-connected. [

Remark 4: No conclusions can be drawn in this manner
about path-connectedness of G.

Figure 1 depicts the set of unconstrained global minima
G for x € R3, generated by 5 different basis functions, thus
a € A®. Optimal points of the individual basis functions,
as well as the 1-level-sets of the quadratics are plotted, in
order to give a sense of pairs (Qj,xf )?:1 involved. The
black edges connecting pairs of z{ correspond to edges
of the geometric shape, but also to sets of global minima
of pairwise function combinations. Compactness and path-
connectedness are visually obvious for this example.

IV. GEOMETRY OF CONSTRAINED OPTIMAL SETS

This section will extend III to consider the case when
X C R" is a convex constraint set.

A. Convex Case

The following assumption and representation is required,
Assumption 3: There exists matrices Ay € RI*", beq €
R? and C' convex functions {gx(x)}s_, such that,

X={zeR"| Az = beg, gr(x) <0OVEk=1l.r} (14)

Assumption 4 (Slater’s Condition): There exists a point
x' € R™ such that Az’ = b and gi(2') < 0 VE = 1..n,
meaning X is non-empty.

Define ¢ € R’ and A € R? as dual variables against the
inequality and equality constraints describing X respectively.
The Karush-Kuhn-Tucker (KKT) necessary conditions are
sufficient to classify all optimal (minimizer) points of f, (x)
given a weighting @ € A™ and assumptions 1, 3, 4 [22]:

Vafa(@) + ALN+300 1 ik Vagr(z) =0 (15a)
Aegr = b (15b)
gr(x) <0, up >0 Vk=1..n (15¢)
>k Hegr(x) = 0. (15d)

Define the symbol W¢ = R"™ x A™ x R} x RY as the
resident set containing (z, a, i, \).
The optima-weight set in the constrained case is,

G° = {(z,a,1,\) € W | KKT conditions (15) hold} (16)
Ge = n"Ge. amn

The feasibility LP to check if a y € R™ is constrained-
optimal (similar to (6) for the unconstrained case) is,
Problem 5 (Constrained Feasibility):

findacam, perr, aers (Y, 0,1, A) €G%, (18)
with a constrained ProjGM program,
Problem 6 (Constrained ProjGM):
p*=  min |y — |3 (19)
(m,0,1,A)€G®

B. Quadratic Programming
We note that the special case of QP involves candidate
functions and a constraint set,
fi=2TQx/2+ ¢ x, Vj=1.m
X ={zeR"| Aggx = bey, Ax < b},

(20a)
(20b)

for matrices {Q; € S}, ¢; € R"}j—1.m and Aey €
RI*™ by € R?, A € R™", b e R" such that Assumption
4 (Slater) holds.

The constrained-optimal solution map given « and the
parameters in (20) is,

K(a) = argming e YL, g fy(a). QD)

Remark 5: Due to possible weak convexity of some cost
functions in F, there may exist points @ € A™ such
that k°(«) is set-valued rather than single-valued. This will
occur when @, = (ijzl a;Q;) is rank-deficient and

™ oaips) i h 1 to Q,’s nullspace
(2_j=1 aj¢p;) is orthogona o pace.
In this case, the possibly discontinuous selection (translation
of the minimum map),

s(r°(a)) = argmin|ly — 2|3,
zERS ()

(22)

will denote a constrained-optimal point in k¢(a) that is
closest to y. Finding a selection s(k¢(«)) requires solving a
second QP over the X-intersected subspace of solutions of
(21). This two-step approach involving a minimal selection
was also performed in [23].

Figure 2 depicts constrained global optima G¢, and it’s
unconstrained version G generated from the same basis
function set F. Here 2 variables, 3 cost functions, and 4
inequality constraints with (z,a, 1) € R? x A% x R% are
considered. Unconstrained and constrained optimal points of
the individual basis functions, x{:5 and x{é, are shown as
colored dots. The black square denotes the feasible region.
The blue ellipses are the level sets of the quadratic cost
functions, chosen to highlight the spots where they are
tangential to the constrained set boundary (implying the
position of their constrained minima). The red box highlights
the spot where the intersection of G and the complement of
G is non-empty.

V. NUMERICAL METHODS

This section will present numerical approaches to find
upper and lower bounds for the Unconstrained ProjGM 4
and Constrained ProjGM 6.



Sets of unconstrained and constrained global optima G and G¢
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Fig. 2: The set G¢ is not necessarily a subset of G

A. Upper Bounds

Upper bounds of p* may be computed through sampling
and local search optimization. The ProjGM problems may
be formulated solely in terms of « through the use of the
optimization maps x(a) and k°(a) for @ € A* (bi-level
optimization).

The objective in 4 and its gradient with respect to « is,

Fla) = [lne) - yl3
VaF(a); = 2(0) = )7 (£;0,Q5)  Qsa] = sla)).

A Hessian for F' may be similarly derived in closed form
(omitted due to space constraints). Local solvers such as
fmincon in MATLAB or Manopt' [24] may be given this
value and derivative information to perform optimization
over a € A™ (e.g. L-BFGS, trust-region).

The constrained objective in 6 may be expressed as,

Fe(a) = [|s(s°(a)) — yll3.

The constrained objective (24) is not generally differ-
entiable with only the weak convexity assumption. Two
possible options to minimize F°(«) include gridding A™,
and using fmincon in terms of (x,«, p,\) € Ge directly
on the constrained optimization problem 6.

(23)

(24)

B. Lower Bounds

Lower bounds p;,,, < p* to problems 4 and 6 in the
quadratic case may be acquired through semidefinite pro-
gramming. The presented method in this subsection is a

IAs A™ is not a manifold, the Hadamard parameterization A™ = {z ©®
z | ||z]|3 = 1} may be employed.

Quadratically Constrained Quadratic Programming (QCQP)
that is equivalent to the degree-1 moment-Sum of Squares
(SOS) hierarchy LMI enriched by additional constraints.

1) Unconstrained Lower Bound: Every point (z,«) € W
defines a rank-1 PSD matrix M = [1 z a][1 = o). Setting
M € S{T*™ indexed by (1,7, ) as a matrix variable,

My My, Mg
M = Mxl M;mc an ) (25)
Mal Max Maa

the objective ||y — z||3 may be converted into an affine
expression,

Yoimt (Moo, = 24iMua,) + yll3 (26)
Containment in G from (9) may be expressed as,

Z;ﬁ:l My1=1 (27a)

Mu1 20 Vi=1.m (27b)

S QiMya, — (Qjal)Mia, =0. (27¢)

Valid constraints are a set of relations that are always
satisfied by an M generated by the optimal point (z*, a*)
solving Problem 4. These valid constraints include,

My = Z;"’:l Moo, Vi #£ j (28a)
Mua; >0 Vi #£ j (28b)
Myo; < ag, My,o; < o Vi #£ j (28¢)
My,a, < Mg, Vi=1.m (28d)
Mey,o, <1/4 Vi # j. (28e)

Constraints (28a)-(28b) arise from multiplying together
defining constraints for the simplex . The diagonal entry
Ma,q, will automatically be positive by M € SiT7m.
Constraints (28c)-(28e) originate from observations about the
simplex A™. Because o € A™ C [0,1]™, coordinate-wise
multiplication will satisfy o;0; < o for all 4,7 € 1.n.

Constraint (28e) results from the fact that elementary sym-
metric polynomials on the probability simplex A are maxi-
mized at the vector 1/0. The elementary symmetric polyno-
mial applied to o/ € A7 is e§(a) = >, o<, ¥}, and

g0
admits the maximum value of maxe§ = (). The valid
inequality derived from o = 2 with maxe§ = % is written

in (28e). Valid inequalities with higher 0 may be written at
the cost of including a combinatorially increasing number of
constraints.

Algorithm 1: Unconstrained LMI

Input: y, Q, xy
Output: p; . M (or Infeasibility)
Solve (or find infeasibility certificate):

Diow = mj\/i{n Objective (26) (29a)
Optimality (27), Valid (28) (29b)
My =1, M e Sk, (29¢)




A rank-1 matrix solution M of Algorithm 1 certifies
that pj,, = p*. The optimal entries (x, «) can then be
read from the solution’s entries (M7,, Mi,). Adding valid
inequalities (28) can encourage rank-1 solutions of LMI
lower bound problem, refer to [25] for further examples of
this phenomenon.

2) Constrained Lower Bounds: The lower bound SDP
for the QP setting in Section IV-B requires a matrix M €
SIF™F™H and a vector A € R? such that the entries of M
are indexed by [1, z, «, p1]. The equality multipliers A may be
ommited from M because there is no multiplication in (15)
between terms that contain x and A. The affine constraint
interpretation of the KKT conditions in (15) is,

Z;'n:l(QjMzaj —+ (PjMajl) —+ AZ:])\ + ATM,ul = O (303)

Aequl = beq (30b)
AM, <b M, >0 (30c)
— "Myt + 35y ApMyy, = 0. (30d)

The notation Aj in the complementary slackness con-
straint (30d) indicates row k of the matrix A. Valid inequal-
ities for the constrained QP case include (with inequality
constraint indices (k, ¢)),

My, >0 Vk #£ £ (31a)
M0, >0 Vk=1.r, i=1.m. (31b)
My, < My, Vk=1.r, i=1.m. (3lc)

Both o € A™ and p € R’ are nonnegative, so their
multiplications should also be nonnegative. The QP-lower-
bounding LMI is,

Algorithm 2: Constrained LMI
Input: Y, Q7 2 Aa b7 Aeq; beq
Output: pj, ., M (or Infeasibility)
Solve (or find infeasibility certificate):

Dl = AE%PM Objective (26) (32a)
Simplex (27a)-(27b), KKT (30)  (32b)
Valid (28), (31) (32¢)
My =1, M e Sitntmtr (32d)

The accuracy of pj,,, < p* from Algorithm 2 may be
improved if an upper bound for u? (M,,,,) was known
for each k. Bisection-based approaches with convex cost
heuristics may also be applied to the presented LMIs [26].

VI. NUMERICAL EXAMPLE

This section contains a small-scale toy example with
visuals, to develop intuition. The example will showcase
flaws in the approximate projection method [9] when an
inconsistent basis is supposed, and the robustness of the bi-
level method. The proposed distance-bounding methods will
also be displayed. Future works will showcase the method
for larger-scale examples and will be applied to real data.

The method is designed to invalidate a proposed set of
basis functions with respect to a data set. In other words,
the method is able to say whether IOC with proposed basis
functions can be successfully applied to a given data set.

Assume that an observed human decision (or trajectory)
can be represented by a vector y € R2, and that it is
generated via an unknown process (as is actually the case
in real-world applications). Assume a basis F of 5 quadratic
cost functions believed to be underlying the decision-making
(or trajectory-generation). Figure 3 depicts the 2-dimensional
test point y € R?, and the set of unconstrained global optima
G which is generated using F.

On Figure 3 the actual minimum distance projection
Projg(y) is shown as reference, and is computed by a
combined brute-force grid search and local bi-level search
on the cost function parametrization o € A®. The minimum
distance local bi-level formulation result, initialized with
a; = 0.2, is annotated as ProjGM and shown, alongside the
Keshavaraz minimum KKT-constraint violation formulation
[9]. The M, entry of the PSD matrix output by algorithm
1 is also shown.

Progcction of a random point onto unconstrained set of global optima G

Xo-axis

4 2 0 2 4 6
X-axis
G = {z|Vay;5} y
ozl Projg(y)

ProjGM = —-—-LMI

Keshavaraz

Fig. 3: Comparison of the projection onto an unconstrained
set of optima G.

From figure 3 it is possible to see that the approximate
Keshavaraz method can impute a strongly inconsistent ob-
jective if the test point is outside the set of global optima G.
In this example the local bi-level search reaches the global
minimum of distance, but may get stuck in a local minimum
depending on problem structure.

Given a data set of a 100 points y € R? generated by
adding Gaussian noise to the shown test point in 3 we
calculate the distance of each of them to the set of global
optima with different methods. We obtain that the mean
distance to the set of global optima for different methods



is, in ascending order, dry = 3.78, dprojam = 4.09 and
dKeshavaraz = 6.98, the true value being dpy,j,(y) = 4.09.
In practice, for higher-dimensional data, running the bi-
level method may be expensive. If the Keshavaraz method
does not produce a zero or extremely-close-to-zero error, it
is useful to be able to run the LMI algorithm to check the
lower-bound of the distance from the set of global optima.
If the lower bound is higher than the desired error in data
replication, we can conclude that the proposed set of basis
functions F is not good enough to represent the data.

Mean distance of randomly generated points
to set of global optima G estimated by different methods

=

ot

Mean Distance
w -

)

-

0

LMI Projg(y) ProjGM Keshavaraz

Fig. 4: Comparison of the projection distance onto an un-
constrained set of optima G.

MATLAB (2021b) code to replicate figures and ex-
periments is publicly available at https://github.
com/jarmill/inverse—optimal. Dependencies in-
clude Mosek [27] and YALMIP [28].

VII. EXTENSIONS

This section will detail extensions of the current work and
some discussion of future research directions.

A. Piecewise Functions and Convex Lifts

The method of convex lifts [29,30] may be applied to
solve the ProjGM problem over some classes of piecewise-
defined costs f;. Assume there exists a set of C !_continuous
functions {wﬂ(x)}f:j ; with L; finite such that the convex
f; satisfies,

fi(@) =

max wj(x). (33)

(el1..L;
Remark 6: Convexity is preserved under the pointwise
maximum operation (though not under pointwise minimum).
Remark 7: The class of convex piecewise affine functions
with w;(z) = mJTZ:z: — bjg for mj, € R™1 b, € 1 may be
expressed as an instance of (33).
New variables 7; may be added for every max-representable
function f;(z), forming the equivalent optimization problems
with equal objectives:

fr=min>i, f(z) (34)
f :xeXmiTnE]Rm Z;n:l 7 (35)

ajwie(zr) < T V¢=1..L;, j=1.m.

The formerly non-differentiable objectives f;(z) from (34)
are lifted into the constrained problem (35) where each
wje(x) is differentiable for all z € X. KKT equations may
then be written for (35) and then utilized in (16) to describe
the cone Qc(m, 7, a, p, A) for use in the constrained ProjGM
problem 6.

Remark 8: Minimization of the L; norm ||z||; may be
expressed as min Z?zl ti: —t; < x; <t; in 2n inequality
constraints by adding n new variables {¢;}? , for use in
constrained ProjGM. L, norms with rational p € [1,00)
admit second-order-cone representations [31] through lifting,
and can therefore be members of the dictionary F.

A rank-1 solution M of (29) certifies that p}, = p* from
(7), and the optimal (x, ) may be read from M, and M,

B. Projection onto Local Minimizers

This paper was restricted to convex cost functions in F
and convex sets X . Problem 2 may be extended to finding the
minimum distance p* between y and some local minimizer of
fa(z). Theorem 12.6 (Eq. (12.65)) of [32] outlines second-
order necessary conditions for a point z* to be a local
minimizer. In the unconstrained case, the Hessian matrix
V2 f.(x) must be PD in addition to (z,«) satisfying the
first-order condition V, f,(xr) = 0. The constrained case
with non-convex functions requires more delicacy, as the
quadratic form w — w?' V2 f,(x)w must be positive for all
w # 0 vectors inside the Critical Cone (Eq. (12.53) of [32])
formed by (z, A, ).

C. Polynomial Optimization

The ProjGM programs 4 and 6 are instances of
Polynomial Optimization Problems when f;(z), gx(z)
are all convex polynomial functions of z. The sets
Q(m, a), Qc(x, a, i1, \) are basic semialgebraic sets, and their
projections G(x),G¢(x) are in turn semialgebraic sets. The
projections G(x), G¢(x) may be analyzed by quantifier elim-
ination algorithms such as the Cylindrical Algebraic Decom-
position [33]. The moment-SOS hierarchy is a method that
yields a rising sequence of lower bounds to the distances p*
by solving a sequence of LMIs in combinatorially increasing
size [34]. Theorem 3.2 assures (under mild conditions) that
the moment-SOS relaxations of the unconstrained problem 4
will converge at a finite degree. Convergence of the moment-
SOS hierarchy for bilevel Polynomial Optimization Problems
are established in [35]. The LMI presented in Section V-
B is an instance of the degree-1 moment-SOS hierarchy as
enriched with valid constraints.

Given arbitrary convex polynomials f;(x), gx(z), all con-
straints in G (x, ) are affine w.r.t. . Likewise, the describ-
ing constraints of Qc(x,a,u,A) are affine in («, p, A) all
together. A theorem of alternatives may be used to eliminate
the affine-dependent groups () or (a, i, A), yielding a set of
linked LMI constraints of smaller size that solely depend on
x [36]. This reduction in the number of variables decreases
the computational burden of solving LMIs as the degree
increases. A full presentation and application of polynomial
optimization for ProjGM will take place in sequel work.


https://github.com/jarmill/inverse-optimal
https://github.com/jarmill/inverse-optimal

VIII. CONCLUSION

This paper introduced a cost functions set invalidation
interpretation of the ProjGM problem. The geometry of opti-
mal sets were explored in the constrained and unconstrained
cases (focusing on quadratics). Numerical algorithms were
implemented to upper and lower bound the ProjGM optima.
Future work includes performing cost-function discovery in
order to generate candidate functions f(z) that would reduce
the distance p* from (4) when added to the set of cost
functions F. The proposed method should be applied for
IOC problem based actual noisy human data.

On the theoretical side, sensitivity methods from set valued
analysis will be applied to determine which properties of G
and G are preserved when assumptions are lifted (e.g. does
Theorem 3.3 hold when all f; are strongly convex rather
than strongly convex quadratic?). Continuity properties of the
solution map (21) and its selection (22) will also be explored
[37,38].
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