Data-Driven Control of Positive Linear Systems using Linear Programming

Jared Miller Tianyu Dai Mario Sznaier Bahram Shafai IEEE CDC: WeB17.1

Design a controller for an unknown plant

Control system directly from data, no sysid required

Sneak Preview of Positive-Stabilization

Single controller stabilizes all data-consistent plants

Desired model: Virtual Reference Feedback Tuning **Set-Membership** (this talk)

- (Data-consistent plants) \subseteq (K-Stabilized plants)
- Certificates: Farkas, Interval, S-Lemma, SOS

Behavioral

- Parameterize and pick out best system trajectory (MPC)
- Willem's Fundamental Lemma (DeePC)

Learning: Koopman, Gaussian Processes, Regression

Describe positive systems

Pose data-driven positive stabilization problem

Demonstrate on example systems

Positive Systems

Dynamics $\delta x(t) = f(x(t), u(t))$ such that (full-state):

$$x(0), u(t) \ge 0 \implies x(t) \ge 0$$
 (1)

Internal/External positivity under input-output

Applications in:

- Compartmental Models
- Chemical Reaction Networks
- Economics
- Networked Control

System $\delta x = Ax$ is positive-stable if:

Continuous-time: *A* is Hurwitz and Metzler Discrete-time: *A* is Schur and Nonnegative

 $\forall t : x(t) \geq 0 \text{ and } \lim_{t \to 0} x(t) = \mathbf{0}$

Controlled system: B must be nonnegative

(Metzler: nonnegative off-diagonals)

Copositive Lyapunov Functions

Functions V(x) satisfying Lyapunov inequalities over $\mathbb{R}^+_{>0}$:

Linear: $V(x) = \sum_{i=1}^{n} a_i x_i, \quad a \in \mathbb{R}^n_{>0}$ Dual Linear: $V(x) = \max_i x_i / v_i, \quad v \in \mathbb{R}^n_{>0}$ Quadratic: $V(x) = x^T M x, \quad M \in \mathrm{COP}^n$

Positive-stabilize $\delta x = Ax + Bu$ using u = Kx with $K \in \mathbb{R}^{m \times n}$: Copositive CLF max x./v with $X = \text{diag}(v), Y \in \mathbb{R}^{m \times n}$

Continuous-time system:

$$-(AX + BY)\mathbf{1}_n \in \mathbb{R}^n_{>0}$$
 $AX + BY$ is Metzler (2a)

Discrete-time system:

 $v - (AX + BY)\mathbf{1}_n \in \mathbb{R}^n_{>0}$ $AX + BY \in \mathbb{R}^{n \times n}_{>0}$ (2b)

If system is feasible, then recover controller by $K = YX^{-1}$

Data-Driven Positive Stabilization

Collect data $\ensuremath{\mathcal{D}}$ with

Discrepancy matrix ${\boldsymbol{\mathsf{W}}}$ from observation

$$\mathbf{W} = \mathbf{X}_{\delta} - (A\mathbf{X} + B\mathbf{U}) \tag{4}$$

Assumption on **W**: $\forall t : ||w(t)||_{\infty} \leq \epsilon$

Form polytopic sets of plants (A, B)

 P_1 : Set of plants consistent with data ${\cal D}$

$$P_1: \{(A,B) \mid \|\delta x(t) - (Ax(t) - Bu(t))\|_{\infty} \le \epsilon\}$$
 (5)

 P_2 : Set of plants positive-stabilized by $\mathcal{K}=YX^{-1}$ $(\eta>0)$

 $-(AX+BY)\mathbf{1}_n-\eta\mathbf{1}_n\in\mathbb{R}_{\geq 0}$ (continuous-time) (6a)

$$\mathbf{v} - (AX + BY)\mathbf{1}_n - \eta \mathbf{1}_n \in \mathbb{R}_{\geq 0}$$
 (discrete-time). (6b)

Positive-stabilization occurs if $P_1 \subseteq P_2$, need to certify

Extended Farkas Lemma (Hennet 1989) For sets $P_1 = \{x \mid G_1 x \le h_1\}$ and $P_2 = \{x \mid G_2 x \le h_2\}$, the relation $P_1 \subseteq P_2$ iff $\exists Z \in \mathbb{R}_{\ge 0}^{c_2 \times c_1}$ with: $ZG_1 = G_2, \qquad Zh_1 \le h_2.$ (7)

Use Extended Farkas Lemma to prove containment

Stabilizing set P_2 depends on v, Y

Choose v, Y to attempt satisfaction of:

$find_{v,Y,Z}$	$ZG_1=G_2(v,Y),$	$Zh_1 \leq h_2(v, Y)$	(8a)
	$\mathbf{v} - \eta 1_n \in \mathbb{R}^n_{\geq 0}$		(8b)
	$Y\in\mathcal{S}$		(8c)
	$Z \in \mathbb{R}^{q \times 2nT}_{>0}$,		(8d)

If successful, recover controller with $K = Y \operatorname{diag}(1./v)$

Solve a single LP to find v, Y such that $P_1 \subseteq P_2$

	# Ineq.	# Eq.
V	п	0
Y	\leq mn	0
Ζ	2nTq	0
Farkas	q	qn(n+m)

More efficient than existing LMI based methods for data-driven positive-stabilization

Adapt literature on switched positive systems towards data-driven setting

- Arbitrary switching permitted
- Linear-Parameter Varying dynamics
- Discrete-time switching on transition graph

Cannot yet handle continuous-time dwell-time constraints

Peak-to-Peak Gain

Disturbance term ξ , controlled output z

$$\delta x(t) = Ax(t) + Bu(t) + E\xi(t)$$
(9a)

$$z(t) = Cx(t) + Du(t) + F\xi(t).$$
(9b)

Assume C, D, E, F are known nonnegative matrices Minimize peak-to-peak (p2p) gain $\xi \rightarrow z$ Continuous-time p2p gain $\leq \gamma$ if:

$$-(AX+BY)\mathbf{1}_n - E\mathbf{1}_e \in \mathbb{R}^n_{>0}$$
(10a)

$$\gamma \mathbf{1}_q - (CX + DY)\mathbf{1}_n - F\mathbf{1}_e \in \mathbb{R}^q_{>0}$$
(10b)

$$CX + DY \in \mathbb{R}^{q imes n}_{\geq 0}$$
 (10c)

$$AX + BY$$
 is Metzler (10d)

Infimize γ for suboptimal control Use (10a) and (10a) to form P_2 given $\mathcal D$

Examples

Example 1: Continuous-Time System

Continuous-time system with T=5 samples, $\epsilon=0.1$

$$A = \begin{bmatrix} -0.55 & 0.3 & 0.65 \\ 0.06 & -1.35 & 0.25 \\ 0.1 & 0.15 & 0.4 \end{bmatrix} \qquad B = \begin{bmatrix} 0.18 & 0.08 \\ 0.47 & 0.25 \\ 0.07 & 0.95 \end{bmatrix}$$

Example 2: Discrete-Time System

Plant with n = 5 states and m = 3 inputs

Sign pattern (\oplus nonneg, \ominus nonpos, \odot zero, \circledast arbitrary)

$$\mathcal{S} = \begin{bmatrix} \odot & \odot & \odot & \odot & \ominus \\ \odot & \odot & \circledast & \odot & \oplus \\ \odot & \odot & \odot & \circledast & \circledast \end{bmatrix}$$

Derived certificate and controller

$$v = \begin{bmatrix} 0.2147 & 0.1259 & 0.2448 & 0.2516 & 0.1630 \end{bmatrix}^{T}$$
$$K = \begin{bmatrix} 0 & 0 & 0 & 0 & -0.6853 \\ 0 & 0 & -0.3206 & 0 & 0.1206 \\ 0 & 0 & 0 & -0.5604 & -0.3317 \end{bmatrix}$$

Worst-case Peak-to-Peak gain falls as T rises

Т	20	30	50	80	120
No Prior	6.4823	5.0719	4.5292	4.0659	4.0029
A Metzler	6.4539	5.0182	4.4967	4.0619	4.0028

Can prior knowledge to (A, B) by augmenting P_1

Example 4: Stabilization under Arbitrary Switching

Both linear subsystems are positive-stabilized by same K

Positive-stabilization of unknown systems

Requires bounds on process noise

Simple linear programming problems

Nonconservative (up to common dual linear copositive CLFs)

- Roy Smith, Automatic Control Lab (IfA)
- POP group at LAAS-CNRS
- NCCR Automation
- Air Force Office for Scientific Research
- National Science Foundation

Thanks!

Questions?