
Data-Driven Control of Positive Linear

Systems using Linear Programming

Jared Miller

Tianyu Dai

Mario Sznaier

Bahram Shafai

IEEE CDC: WeB17.1



What is Data-Driven Control?

Design a controller for an unknown plant
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Control system directly from data, no sysid required
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Sneak Preview of Positive-Stabilization

Single controller stabilizes all data-consistent plants
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Algorithms for Data-Driven Control

Desired model: Virtual Reference Feedback Tuning

Set-Membership (this talk)

• (Data-consistent plants) ⊆ (K -Stabilized plants)

• Certificates: Farkas, Interval, S-Lemma, SOS

Behavioral

• Parameterize and pick out best system trajectory (MPC)

• Willem’s Fundamental Lemma (DeePC)

Learning: Koopman, Gaussian Processes, Regression
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Flow of Presentation

Describe positive systems

Pose data-driven positive stabilization problem

Demonstrate on example systems
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Positive Systems



What are Positive Systems?

Dynamics δx(t) = f (x(t), u(t)) such that (full-state):

x(0), u(t) ≥ 0 =⇒ x(t) ≥ 0 (1)

Internal/External positivity under input-output

Applications in:

• Compartmental Models

• Chemical Reaction Networks

• Economics

• Networked Control
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Stability of Positive Systems

System δx = Ax is positive-stable if:

Continuous-time: A is Hurwitz and Metzler

Discrete-time: A is Schur and Nonnegative

∀t : x(t) ≥ 0 and limt→0 x(t) = 0

Controlled system: B must be nonnegative

(Metzler: nonnegative off-diagonals)
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Copositive Lyapunov Functions

Functions V (x) satisfying Lyapunov inequalities over R+
≥0:

Linear: V (x) =
∑n

i=1 aixi , a ∈ Rn
>0

Dual Linear: V (x) = maxi xi/vi v ∈ Rn
>0

Quadratic: V (x) = xTMx M ∈ COPn

x1 + x2 max(x1; x2)
p

x2
1 + x2

2
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Positive Stabilization

Positive-stabilize δx = Ax +Bu using u = Kx with K ∈ Rm×n:

Copositive CLF max x ./v with X = diag(v), Y ∈ Rm×n

Continuous-time system:

−(AX + BY )1n ∈ Rn
>0 AX + BY is Metzler (2a)

Discrete-time system:

v − (AX + BY )1n ∈ Rn
>0 AX + BY ∈ Rn×n

≥0 (2b)

If system is feasible, then recover controller by K = YX−1
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Data-Driven Positive

Stabilization



Consistency Set

Collect data D with

X := [x(0) x(1) . . . x(T − 1)]

U := [u(0) u(1) . . . u(T − 1)]

Xδ := [δx(0) δx(1) . . . δx(T − 1)]

(3)

Discrepancy matrix W from observation

W = Xδ − (AX+ BU) (4)

Assumption on W: ∀t : ∥w(t)∥∞ ≤ ϵ
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Sets for Positive-Stabilization

Form polytopic sets of plants (A,B)

P1 : Set of plants consistent with data D

P1 : {(A,B) | ∥δx(t)− (Ax(t)− Bu(t))∥∞ ≤ ϵ} (5)

P2 : Set of plants positive-stabilized by K = YX−1 (η > 0)

−(AX + BY )1n − η1n ∈ R≥0 (continuous-time) (6a)

v − (AX + BY )1n − η1n ∈ R≥0 (discrete-time). (6b)

10



Set-Membership Containment

Positive-stabilization occurs if P1 ⊆ P2, need to certify

Extended Farkas Lemma (Hennet 1989)

For sets P1 = {x | G1x ≤ h1} and P2 = {x | G2x ≤ h2},
the relation P1 ⊆ P2 iff ∃Z ∈ Rc2×c1

≥0 with:

ZG1 = G2, Zh1 ≤ h2. (7)

Use Extended Farkas Lemma to prove containment
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Set-Membership Positive Stabilization

Stabilizing set P2 depends on v ,Y

Choose v ,Y to attempt satisfaction of:

find
v ,Y ,Z

ZG1 = G2(v ,Y ), Zh1 ≤ h2(v ,Y ) (8a)

v − η1n ∈ Rn
≥0 (8b)

Y ∈ S (8c)

Z ∈ Rq×2nT
≥0 , (8d)

If successful, recover controller with K = Y diag(1./v)
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Computational Complexity

Solve a single LP to find v ,Y such that P1 ⊆ P2

# Ineq. # Eq.

v n 0

Y ≤ mn 0

Z 2nTq 0

Farkas q qn(n +m)

More efficient than existing LMI based methods for

data-driven positive-stabilization
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Switching Behavior

Adapt literature on switched positive systems towards

data-driven setting

• Arbitrary switching permitted

• Linear-Parameter Varying dynamics

• Discrete-time switching on transition graph

Cannot yet handle continuous-time dwell-time constraints
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Peak-to-Peak Gain



Peak-to-Peak Gain Setup

Disturbance term ξ, controlled output z

δx(t) = Ax(t) + Bu(t) + Eξ(t) (9a)

z(t) = Cx(t) + Du(t) + F ξ(t). (9b)

Assume C ,D,E ,F are known nonnegative matrices

Minimize peak-to-peak (p2p) gain ξ → z
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Peak-to-Peak Gain Program

Continuous-time p2p gain ≤ γ if:

− (AX + BY )1n − E1e ∈ Rn
>0 (10a)

γ1q − (CX + DY )1n − F1e ∈ Rq
>0 (10b)

CX + DY ∈ Rq×n
≥0 (10c)

AX + BY is Metzler (10d)

Infimize γ for suboptimal control

Use (10a) and (10a) to form P2 given D
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Examples



Example 1: Continuous-Time System

Continuous-time system with T = 5 samples, ϵ = 0.1

A =

−0.55 0.3 0.65

0.06 −1.35 0.25

0.1 0.15 0.4

 B =

0.18 0.08

0.47 0.25

0.07 0.95


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Lyapunov Function along Trajectories
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Example 2: Discrete-Time System

Plant with n = 5 states and m = 3 inputs

Sign pattern (⊕ nonneg, ⊖ nonpos, ⊙ zero, ⊛ arbitrary)

S =

⊙ ⊙ ⊙ ⊙ ⊖
⊙ ⊙ ⊛ ⊙ ⊕
⊙ ⊙ ⊙ ⊛ ⊛


Derived certificate and controller

v =
[
0.2147 0.1259 0.2448 0.2516 0.1630

]T
K =

0 0 0 0 −0.6853

0 0 −0.3206 0 0.1206

0 0 0 −0.5604 −0.3317


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Example 3: Peak-to-Peak Gain

Worst-case Peak-to-Peak gain falls as T rises

T 20 30 50 80 120

No Prior 6.4823 5.0719 4.5292 4.0659 4.0029

A Metzler 6.4539 5.0182 4.4967 4.0619 4.0028

Can prior knowledge to (A,B) by augmenting P1
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Example 4: Stabilization under Arbitrary Switching

Both linear subsystems are positive-stabilized by same K
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Take-aways



Conclusion

Positive-stabilization of unknown systems

Requires bounds on process noise

Simple linear programming problems

Nonconservative (up to common dual linear copositive CLFs)

21



Acknowledgements

Roy Smith, Automatic Control Lab (IfA)

POP group at LAAS-CNRS

NCCR Automation

Air Force Office for Scientific Research

National Science Foundation

22



Thanks!

Questions?
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