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Abstract— This paper proposes a method to find super-
stabilizing controllers for discrete-time linear systems that are
consistent with a set of corrupted observations. The L-infinity
bounded measurement noise introduces a bilinearity between
the unknown plant parameters and noise terms. A super-
stabilizing controller may be found by solving a feasibility
problem involving a set of polynomial nonnegativity constraints
in terms of the unknown plant parameters and noise terms. A
sequence of sum-of-squares (SOS) programs in rising degree
will yield a super-stabilizing controller if such a controller exists.
Unfortunately, these SOS programs exhibit very poor scaling as
the degree increases. A theorem of alternatives is employed to
yield equivalent, convergent (under mild conditions), and more
computationally tractable SOS programs.

I. INTRODUCTION

The data-driven control problem has received renewed
interest in the last few years, as an alternative to conventional
approaches that first identify a model and then use it to
design a controller. Given data generated by an (unknown)
system of the form,

xt+1 = Axt +But + wt (1)
x̂t = xt +∆xt, ût = ut +∆ut, (2)

where wt, ∆xt, ∆ut respectively represent process, mea-
surement, and input noise, the goal is to use measured data
(ût, x̂t) to find a gain K such that (A + BK) is Hurwitz,
for all possible pairs (A,B) consistent with this data.

For the case of noise-free data, the milestone paper [1]
based on the Willem’s fundamental lemma [2] parameterized
the controller directly from the input/output data. The case
of systems subject to process noise only (e.g. ∆x,∆u ≡ 0)
has been well studied, under different scenarios: [3]–[5]
focus on control under bounded-energy (ℓ2 norm) process
noise, and solve this type of problem by polynomial-time
Semidefinite Programming SDP. The work in [5] provides
further discussion on the ℓ∞ bounded process noise setting.
This setting is more desirable than the ℓ2 norm in many
scenarios, since it allows for considering noise bounds that
are independent of the measurement horizon [5]. Thus, data
can be added as it becomes available during operation. In
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addition, these ℓ∞ error bounds arise naturally when the
discrete system (1) originates from the discretization of a
continuous time sysetm, in which case wt models the error
when approximating the time derivative with finite differ-
ences. Finally, ℓ∞ bounds are relevant when the goal is to de-
sign ℓ1 optimal controllers capable of handling time-varying
uncertainty. Unfortunately, the computational complexity of
handling ℓ∞ bounded uncertainty grows exponentially with
the number of measurements [5]. A tractable alternative to
handle ℓ∞ noise was proposed in [6]–[8], based on the
concept of superstability. Superstability is more conservative
than stability, but it may be solved in a tractable manner
through convex optimization and it also provides peak values
of the states [9], [10].

To the best of our knowledge, the Error in Variables (EIV)
case has not been addressed in the context of data-driven
control. Writing (1) in terms of the measured variables,

x̂t+1 −∆xt+1 = A(x̂t −∆xt) +B(ût −∆ut) + wt, (3)

highlights the main difficulty here: the bilinearities
(A∆xt, B∆ut) between unknown variables that lead to
generically NP hard problems. This paper proposes a convex,
computationally tractable convex relaxation for robust data
driven control with ℓ∞ bounded measurement and process
noise. Its main contributions are

1) To show that, in this scenario, robust superstabilizing
controllers can be designed by solving Sum of Squares
(SOS)-based feasibility problems, which can be posed
as Semidefinite Programs (SDPs). Robust stabilization
is guaranteed by ensuring that all closed loop plants
consistent with the observed data are superstable.

2) A theorem of alternatives reformulation that drastically
reduces the number of variables involved and yields
more tractable SDPs [11].

This paper has the following structure: Section II will
review preliminaries such as notation, notions of stability
for linear systems, and SOS proofs of polynomial nonneg-
ativity. Section III will present a description of the semial-
gebraic consistency sets and an SOS program in variables
(A,B,∆x) to find a superstabilizing controller. Section IV
applies a Theorem of Alternatives to form an equivalent SOS
program in (A,B) with a reduced computational complexity
as compared to the Full program in (A,B,∆x). Section V
performs a comparison of computational complexity between
the Full and Alternatives program. Section VI presents
numerical experiments validating this method. Section VII
details extensions such as the varying noise sets, input noise,



and the combination of process noise and EIV. The paper is
concluded in Section VIII.

II. PRELIMINARIES

A. Notation

The set Rn is the n-dimensional Euclidean space, Rn
+

is the nonnegative real orthant, and the set Rm×n is the
set of m × n matrices with real number entries. The set
of real polynomials with indeterminate variables x is R[x],
and the set of polynomials up to degree d is R[x]≤d. The
notation (R[x])m×n will correspond to a matrix-valued m×n
polynomial with a variable x, and (R[x])m is a vector-
valued m × 1 polynomial. The transpose of a matrix M
is MT , and a square symmetric matrix (M = MT ) is
Positive Semidefinite (PSD) (M ⪰ 0) if xTMx ≥ 0 for all
x ̸= 0. The ℓ∞ operator norm of a matrix M is ∥M∥∞ =
maxj |Mij |. The imaginary number is j =

√
−1, and the

symbol 1 is a vector of all ones. The set of natural numbers
between 1 and N is 1..N .

B. Superstability of Discrete-Time Linear Systems

A closed loop system Acl = A+BK is superstable if,

∥A+BK∥∞ < 1 (ℓ∞ Operator Norm). (4)

Superstability implies that the ℓ∞ norm ∥x∥∞ is a polyhedral
Lyapunov function of the closed loop system, proving that
the origin is globally asymptotically stable. Another conse-
quence of superstability is that every pole pi = ai + jbi of
Acl satisfies |ai|+ |bi| < 1 (ℓ1 norm of poles).

An equivalent definition of superstability through the
method of convex lifts from [12] is that ∃M ∈ Rn×n with,∑n

j=1Mij < 1 ∀i = 1..n (5a)

−Mij ≤ Aij +
∑m

ℓ=1BiℓKℓj ≤Mij ∀i, j = 1..n. (5b)

If A + BK is superstable, an admissible selection of M
satisfying (5) is Mij = |Aij +

∑m
ℓ=1BiℓKℓj |, ∀i, j = 1..n.

Superstability is not necessarily preserved under a change-
of-basis transformation of the closed-loop plant Acl.

C. Semialgebraic Geometry and Sum of Squares

A Basic Semialgebraic (BSA) set is a set defined by
a finite number of bounded-degree inequality and equality
constraints. Every BSA set K can be represented as,

K = {x | gi(x) ≥ 0, hj(x) = 0}, (6)

for appropriate describing polynomials {gi(x)}
Ng

i=1 and
{hj(x)}Nh

j=1. The intersection of two BSA sets remains BSA,
and may be acquired by concatenating the describing poly-
nomial constraints. The projection operation πx : (x, y) 7→ x
applied to a BSA set Ḡ(x, y) is,

G(x) = πxḠ(x, y) = {x | ∃y : (x, y) ∈ Ḡ}. (7)

Semialgebraic sets are the closure of BSA sets under
unions and projections. The projections of BSA sets in (x, y)
may be described as the union of disjoint BSA sets in x
alone, and this task may be accomplished through quantifier

elimination algorithms such as the Cylindrical Algebraic
Decomposition [13] in typically (doubly) exponential time.

A polynomial nonnegativity constraint for p(x) ∈ R[x]
is p(x) ≥ 0,∀x ∈ K. Verifying polynomial nonnegativity
is generically NP-hard, but SOS methods employ SDPs to
find nonnegativity certificates through convex means [14].
A polynomial p(x) is SOS (p(x) ∈ Σ[x]) if there exists
a vector of polynomials v(x) ∈ (R[x])s and a symmetric
PSD matrix Q ∈ Rs×s such that p(x) = v(x)TQv(x). The
Q matrix is also called the Gram matrix. If Q = STS is a
matrix decomposition of Q, then the elements q(x) = Sv(x)
satisfy p(x) =

∑s
i=1 qi(x)

2. The vector v is often chosen as
a monomial map up to a specified degree, where there exists(
n+d
d

)
monomials in n variables up to degree d.

The Putinar Positivestellensatz (Psatz) gives a condition
for a polynomial p(x) to be positive over a BSA K [15],

p(x) = σ0(x) +
∑

i σi(x)gi(x) +
∑

j ϕj(x)hj (8a)

∃σ0(x) ∈ Σ[x], σ(x) ∈ (Σ[x])Ng , ϕ ∈ (R[x])Nh . (8b)

The set K is Archimedean if there exists an R ∈ (0,∞)
such that R − ∥x∥22 has a Putinar certificate in the sense
of (8). The set of polynomials in (8b) is called the
Weighted Sum of Squares (WSOS) cone Σ[K]. The degree-
(≤ d) WSOS cone Σ[K]≤2d restricts all polynomials
(σ0(x), {σi(x)gi(x)}

Ng

i=1, {ϕj(x)hj(x)}
Nh
j=1) to have degree

at most 2d. If the set K is Archimedean, then for every
bounded-degree p(x) that is positive over K, there exists
a finite integer d such that p(x) ∈ Σ[K]≤2d. The process
of increasing the degree until a WSOS certificate is found
is called the (moment)-SOS hierarchy, and each step in the
hierarchy requires solving an SDP of increasing complexity.
Details about the convergence rate of the moment-SOS hier-
archy for polynomial optimization problems as d increases
may be found in [16].

The per-iteration complexity of an Interior Point Method
in solving (up to arbitrary accuracy) an SDP with M affine
constraints and a PSD constraint of size N is O(N3M +
M2N2) [17]. Finding a degree-d SOS certificate of p(x)’s
positivity over Rn requires a Gram matrix Q of size N =(
n+d
d

)
and a set of M =

(
n+2d
2d

)
affine constraints between

coefficients of p and sums of coefficients in Q. The per-
iteration complexity of Putinar-derived SOS SDPs therefore
scales in a polynomial manner as d increases for fixed n as
O(d4n), and vice versa as n increases for fixed d as O(n6d).

III. SUPERSTABILIZING CONTROLLER DESIGN VIA SOS
This section will present an SOS feasibility program to

recover a superstabilizing controller K compatible with all
plants consistent with D .

= {x̂t, ût}Tt=1 and the noise bounds.
For simplicity, we start with the case where wt,∆ut ≡ 0 and
defer the analysis where these input and process noise terms
are present to Section VII.

A. Consistency Sets

The BSA set of plants (A,B) ∈ Rn×n×Rn×m and noise
values ∆x ∈ Rn×T consistent with D and noise bound ϵ is
the set P̄(A,B,∆x) such that:



P̄ :

{
0 = −∆xt+1 +A∆xt + h0t ∀t = 1..T − 1
∥∆xt∥∞ ≤ ϵ ∀t = 1..T

}
, (9)

where the affine weight h0 is defined by,

h0t = x̂t+1 −Ax̂t −But ∀t = 1..T − 1. (10)

Remark 1: Data from multiple trajectories of the same
system {Dk}Nd

k=1 may be merged to form P̄ = ∩Nd

k=1P̄(Dk).
The semialgebraic consistency set of plants P(A,B) com-

patible with D is the projection,

P(A,B) = πA,BP̄(A,B,∆x). (11)

B. Statement of the Problem

Given an a-priori bound ϵ on the ℓ∞ norm of the noise
and experimental data D, our goal is to find a gain K such
that the closed loop system (A+BK) is superstable for all
pairs (A,B) in the consistency set. Formally:

Problem 1: Find K such that ∥A + BK∥∞ < 1, for all
(A,B) ∈ P .

Remark 2: All constraints describing P̄ in (9) are affine
in the noise terms ∆x. For a fixed plant (A0, B0), checking
set membership (A0, B0) ∈ P can be determined by solving
a Linear Program (LP) feasibility problem in ∆x.

Remark 3: The sets P̄ and P may be disconnected.

C. An Equivalent Nonnegativity Program

Superstabilization of all plants in P by a given con-
troller K ∈ Rm×n can be certified through equation (5).
The M matrix may be chosen as a matrix-valued function
M(A,B,∆x) : Rn×n × Rn×m × Rn×T → Rn×n that can
vary over plants (A,B) and noise in the consistency set ∆x
and satisfies:

∀i = 1..n : 1− δ −
∑n

j=1Mij(A,B,∆x) ≥ 0 (12a)

∀i = 1..n, j = 1..n : (12b)
Mij(A,B,∆x)− (Aij +

∑m
ℓ=1BiℓKℓj) ≥ 0

Mij(A,B,∆x) + (Aij +
∑m

ℓ=1BiℓKℓj) ≥ 0

for some sufficiently small stability margin δ > 0.
The following assumption is required for finite conver-

gence of the sequence of relaxations to Problem 1,
Assumption 1 (Compactness): Sufficient data is collected

such that P̄ (and therefore P) are compact (Archimedean).
Lemma 3.1: The function M(A,B,∆x) has a continuous

selection under Assumption 1.
Proof: (sketch) For fixed K, let S be the set of feasible

M ∈ Rn×n satisfying (12). The set-valued map ΞK : P̄ ⇝ S
is lower semicontinuous by Thm. 2.2 of [18]. The map ΞK

has closed and convex images in S, so by Michael’s Theorem
(9.1.2 in [19]), a continuous selection exists.

Lemma 3.2: The function M(A,B,∆x) can be taken to
be a polynomial Mp(A,B,∆x).

Proof: (sketch) Assumption 1 and continuity of the
M(A,B,∆x) allows to find a polynomial approxima-
tion Mp(A,B,∆x) satisfying (12) by invoking the Stone-
Weierstrass theorem [20].

Using Lemma 3.2, Problem 1 can be recast into the
following polynomial feasibility form:

Problem 2: Find K and a polynomial matrix
M(A,B,∆x) such that (12) holds for all (A,B,∆x) ∈
P̄(A,B,∆x).

D. SOS Program and Numerical Considerations

Program (12) may be approximated through SOS methods
as discussed in Section II-C by imposing that M is a
polynomial matrix M(A,B,∆x) ∈ (R[A,B,∆x])n×n.

Let qrow
i (A,B,∆x;K) be the LHS constraint of equation

(12a), and q±ij(A,B,∆x;K) be the LHS constraints of (12b).
As an example, one of the constraints from (12b) at (i, j)

may be represented as

q+ij(A,B,∆x;K) =Mij(A,B,∆x)− (Aij +
∑

ℓBiℓKℓj) .

The degree-d WSOS tightening of Problem 2 is presented
in Algorithm 1 (up to > 0 in (8) and ≥ 0 in (12)).

Algorithm 1: Full Superstability Program
Input: d, δ, D, ϵ
Output: K, M (or Infeasibility)
Solve (or find infeasibility certificate):

K ∈ Rn×m (13a)

M ∈ (R[A,B,∆x])n×n
≤2d (13b)

qrowi ∈ Σ[P̄]≤2d ∀i ∈ 1..n (13c)

q±ij ∈ Σ[P̄]≤2d ∀i, j ∈ 1..n (13d)

IV. ALTERNATIVES PROGRAM

While in principle Problem 2 can be solved using the
techniques outlined above, the resulting SOS scales as(
n(n+m+T )+d

d

)
, limiting the approach to relatively low order

systems and short data records. This section addresses this
issue by eliminating the noise variables ∆x through the use
of the Theorem of Alternatives.

A. Theorem of Alternatives

If the constraint,

q(A,B) ≥ 0 ∀(A,B,∆x) ∈ P̄, (14)

is satisfied, then the problem of finding an (A,B,∆x) ∈ P̄
with −q(A,B) > 0 is infeasible. Dual variable functions
ζ±(A,B) : Rn×n × Rn×m → Rn×T

+ and µi,t(A,B) :
Rn×n × Rn×m → Rn×(T−1) multiplying against the con-
straints in (9) may be defined for each fixed (A,B) to form
the weighted sum,

S = −q(A,B) +
∑T

t=1(ϵ1−∆xt)
T ζ+t + (ϵ1+∆xt)

T ζ−t

+
∑T−1

t=1 µT
t (−∆xt+1 +A∆xt + h0t )

= −q(A,B) +
∑T

t=1 ϵ1
T (ζ+t + ζ−t ) +

∑T−1
t=1 µT

t h
0
t

+
∑T−1

t=1 µT
t A∆xt −

∑T
t=2 µ

T
t ∆xt−1. (15)



The terms of (15) that are independent of ∆x may be
isolated into Q(A,B; ζ±, µ) as,

Q = −q(A,B)+
∑T

t=1 ϵ1
T (ζ+t,i+ζ

−
t,i)+

∑T−1
t=1 µT

t h
0
t . (16)

Finding a (ζ±, µ) pair such that sup∆x∈Rn×T S ≤ 0 is
necessary and sufficient to prove that (14) holds (by [11] and
Section 5.8 of [21]), given that the describing constraints in
(9) are affine (convex and concave) in ∆x. The supremal
value of S for each (A,B; ζ±, µ) is,

sup
∆x

S =



Q ζ+1 − ζ−1 = ATµ1

ζ+T − ζ−T = −µT−1

ζ+t − ζ−t = ATµt − µt−1 ∀t = 2..T − 1

ζ±1:T ≥ 0

∞ else.
(17)

The term Q(A,B; ζ±, µ) must be nonpositive, and the case
statements on the right side of (17) must be valid in order for
the supremal S to be nonpositive. An equivalent statement
to the nonnegativity constraint in (14) is that,

∃ ζ±1:T (A,B) ≥ 0, µ1:T−1(A,B) : (18a)

Q(A,B; ζ±, µ) ≤ 0 ∀(A,B) ∈ P (18b)

ζ+1 − ζ−1 = ATµ1 (18c)

ζ+t − ζ−t = ATµt − µt−1 ∀t ∈ 2..T − 1 (18d)

ζ+T − ζ−T = −µT−1. (18e)

Remark 4: The multipliers (ζ±, µ) have continuous selec-
tions in the compact P by similar arguments to Lemma 3.1.

B. Alternatives for Superstabilization

A new assumption is required to provide convergence
guarantees in the SOS hierarchy associated with (18),

Assumption 2 (Archimedean): An Archimedean set
Π(A,B) ⊇ P is a-priori known.

Remark 5: A set Π may arise from prior knowledge about
plant behavior and its reasonable limits.

The WSOS formulation of the Alternatives certificate (18)
for a single constraint (14) at degree d is an SDP with
decision variables (ζ±, µ) as described in Algorithm 2. The
notation Σaltern

≤2d [P] will refer to the cone of functions q(A,B)
with certificates given by (19) at degree d.

Remark 6: Constraints (19d)-(19e) are a set of linear
inequality constraints in the coefficients of (ζ±, µ) with
respect to indeterminates (A,B).

Remark 7: The multipliers ζ± may be degree 2d, since
they are no longer Psatz multipliers in (8) against constraints
ϵ ± ∆xit. The multipliers µ have degree 2d − 1 to ensure
that the product ATµt in (19d)-(19e) has degree 2d.

Algorithm 3 for Alternatives-based superstabilization re-
places each of the 2n2 + n Putinar Psatz (8) calls in (13c)-
(13d) with the Alternatives Psatz (19) in (20c)-(20d).

Remark 8: Assumption 2 is necessary to assure conver-
gence of certificate (20) as the degree d increases to the
finite recovery value (with M independent of ∆x). Dropping

Algorithm 2: Alternatives Psatz (Σaltern
≤2d [A,B])

Input: d, q(A,B),Π,D, ϵ
Output: ζ, µ (or Infeasibility)
Solve (or find infeasibility certificate):

ζ±(A,B) ∈ (Σ[Π]≤2d)
n×T (19a)

µ(A,B) ∈ (R[A,B]≤2d−1)
n×(T−1) (19b)

−Q(A,B; ζ±, µ) ∈ Σ[Π]≤2d (from (16)) (19c)

ζ+1 − ζ−1 = ATµ1 (19d)

ζ+t − ζ−t = ATµt − µt−1 ∀t ∈ 2..T − 1 (19e)

ζ+T − ζ−T = −µT−1. (19f)

Algorithm 3: Alternatives Superstability Program
Input: d, δ, D, ϵ, Π
Output: K, M (or Infeasibility)
Solve (or find infeasibility certificate):

K ∈ Rn×m (20a)

M ∈ (R[A,B])n×n
≤2d (20b)

qrowi ∈ Σaltern
≤2d [A,B] ∀i ∈ 1..n (20c)

q±ij ∈ Σaltern
≤2d [A,B] ∀i, j ∈ 1..n (20d)

Assumption 2 may lead to valid superstabilizing K with
certificates, but such programs do not possess a convergence
guarantee as d increases.

V. COMPUTATIONAL COMPLEXITY

This section will quantify the decrease in computational
complexity obtained when using the Alternatives program as
compared to the Full method. From (12), we have 2n2 + n
scalar polynomials q(A,B,∆x) ∈ Σ[x]2d in pF = n(n+m+
T ) variables (A,B,∆x), where the size of each polynomials
is computed from (8). The notation s(·) stands for the size
of vector Rs(·)×1 and m(·) stands for the size of matrix
Rm(·)×m(·):

Full q σ0 σi µj

# polys. 1 1 2nT 2n(T − 1)

size s
(pF+2d

2d

)
m
(pF+d

d

)
m
(pF+d−1

d−1

)
s
(pF+2d−2

2d−2

)
TABLE I: Size of Full method

Similarly from (14) and (8) we get the size of Alternatives
method with pA = n(n+m) variables (A,B). :

Alternatives q σ0 σi µj

# polys. 1 1 2nT 2n(T − 1)

size s
(pA+2d

2d

)
m
(pA+d

d

)
m
(pA+d

d

)
s
(pA+2d−1

2d−1

)
TABLE II: Size of Alternatives method

Two major sources of complexity reduction are:
(a) in the Alternatives method, the number of variables p



does not depend on the number of samples T .
(b) We would like to use the smallest d such that the
algorithm is feasible. Experimental results shows that Full
method only works with d ≥ 2 while the Alternatives method
works with d ≥ 1.

Remark 9: The multipliers µ against consistency con-
straints (3) have degree 2d − 2 in Full (bilinearity A∆x)
but have degree 2d−1 in Alternatives (affine in (A,B) after
eliminating ∆x).
TABLE III shows the size (not multiplicites) of the variables
with fixed n = 2,m = 1, dfull = 2, daltern = 1 and
increased T .

q σ0 σi µj

Alternatives 28 7 7 7
Full (T = 4) 3060 120 15 120
Full (T = 6) 7315 190 19 190
Full (T = 8) 14950 276 23 276

TABLE III: Size of variables

VI. NUMERICAL EXAMPLES

MATLAB (2021a) code to generate the examples below is
publicly available at https://github.com/jarmill/
error_in_variables. Dependencies include Mosek
[22] and YALMIP [23].

A. Model-Based and Data-Driven Comparison

The model-based approach, (i.e. with A,B known) is
formulated as the following program:

min
λ∈[0,1), K

λ : ||A+BK||∞ < λ. (21)

Here λ is a scalar variable representing the convergence rate.
By minimizing λ, we obtain the fastest closed-loop system.
Consider the following unstable discrete-time model:

A =

0.6852 0.0274 0.5587
0.2045 0.6705 0.1404
0.8781 0.4173 0.1981

 , B =

0.4170 0.3023
0.7203 0.1468
0.0001 0.0923


(22)

We excite the system with uniformly distributed input and
measurement noise with bound ||u||∞ = 1, ||∆xt||∞ = ϵ.
The initial state is x1 = [1, 0, 0]. A trajectory of T samples,
i.e. {x̂t, ut}Tt=1 is collected for design. Solving (21) with
known A,B from (22) leads to λtrue = 0.7259. We treat
this as a benchmark and compare this with λ obtained with
the data-driven approach. To avoid the computational burden,
we choose the lowest order for all examples, i.e. dfull = 2
and daltern = 1. We drop Assumption 2 as noted in Remark
8 for the Alternatives program.
For a horizon T = 6 and ϵ = 0 (clean data), the Full method
introduces approximately 3.4×107 variables which is beyond
the current capabilities of Mosek. On the other hand, the
Alternatives method only has 67776 scalar variables (3 orders
of magnitude smaller than the Full). Solving it leads to λ =
0.7259 = λtrue which indicates that there is no conservatism
in our data-driven method for clean data. Now we consider
the noisy case with ϵ = 0.05. Applying the algorithm with

T = 40 leads to λ = 0.8880. Note that this λ corresponds to
the worse-case convergence rate, i.e. the largest convergence
rate for all plants in the consistency set. The true closed-loop
convergence rate is obtained by computing the norm of the
closed-loop system, which is, λclp = ||A+BK||∞ = 0.7749.
It is worth noting that λtrue ≤ λclp ≤ λ.

B. Monte Carlo Simulations

To test the reliability of the proposed method, we collected
100 trajectories with different level of noise and applied the
Alternatives method to the following system:

A =

[
0.6863 0.3968
0.3456 1.0388

]
, B =

[
0.4170 0.0001
0.7203 0.3023

]
(23)

TABLE IV displays the number of successful designs (S) for
a fixed horizon of T = 8.

ϵ 0.05 0.08 0.11 0.14
S 100 84 57 39

TABLE IV: S as a function of ϵ with T = 8

Increasing the noise level expands the consistency set,
which in turn renders the problem of finding a single
superstabilizing controller more difficult. Collecting more
data with the same noise bound ϵ = 0.14 reduces the size of
the consistency set, as illustrated in TABLE V.

T 8 10 12 14
S 39 60 75 86

TABLE V: S as a function of T with ϵ = 0.14

C. Partial Information

It is easy to incorporate partial information in the proposed
framework. Instead of treating all entries of A,B as unknown
variables, we can assume that q entries of (A,B) are
known. There are now n(n+m)− q free variables defining
the consistency set, producing a smaller Gram matrix of(
n(n+m)−q+d

d

)
as compared to

(
n(n+m)+d

d

)
and ensuring that

it is easier to find a superstabilizing K both theoretically and
computationally. For instance, if we assume that the second
column of A is known and apply the alternative method with
T = 8, ϵ = 0.14, we get S = 94 as compared to S = 39 in
the last column of TABLE IV.

VII. EXTENSIONS

This section sketches out various extensions to the pre-
sented nonnegativity-based superstabilization framework.

A. Varying Noise Sets

The constraint description for P̄ in equation (9) involves
a noise bound of ∥∆xt∥ ≤ ϵ for each t = 1..T . Time-
dependent noise constraints may be developed by defining
sets Ft such that ∆xt ∈ Ft. Algorithm 1 for Full stabi-
lization will function when each Ft is BSA in ∆x. The
Alternatives psatz in Alg. 2 and its program in Alg. 3 may
be adapted when Ft are polytopes.

https://github.com/jarmill/error_in_variables
https://github.com/jarmill/error_in_variables


B. Input Noise
The data D in this paper assumed bounded measurement

noise in the state x (∆x) and perfect knowledge of the input
u. Let ∥∆xt∥∞ ≤ ϵx and ∥∆ut∥∞ ≤ ϵu be measurement
noise processes for the state and the input. Data D = (x̂t, ût)
is now collected under the relation,

x̂t = xt +∆xt ût = ut +∆ut. (24)

Relation (3) with added input noise is,

x̂t+1 −∆xt+1 = A(x̂t −∆xt) +B(ût −∆ut). (25)

The consistency sets P̄ and P may be defined with respect
to the zero locus of relation (25). The full program with
input noise will have n(n + m) + T (n + m) variables.
The Alternatives program (14) will involve multipliers ζ±x
over ∆x and ψ±

u over ∆u. The term Q with input noise is
Q(A,B; ζ±, ψ±, µ) = Q(A,B; ζ±, µ) +

∑T
t=1 ϵ1

T (ψ+
t +

ψ−
t ), and the new constraints when eliminating ∆u are

ψ+
t − ψ−

t = BTµt, ∀t = 1..T .

C. Process and Measurement Noise
Assume that the measurement and process noise have ℓ∞

norm bounds of ∥∆xt∥∞ ≤ ϵx and ∥wt∥∞ ≤ ϵp. The
consistency set of plants and measurement noise P̄ϵx,ϵw is,

(A,B,∆x) ∈ Rn×n × Rn×m × Rn×T : (26)

∥−∆xt+1 +A∆xt + h0t∥∞ ≤ ϵp ∀t = 1..T − 1

∥∆xt∥∞ ≤ ϵ ∀t = 1..T

Each of the 2n2 + n nonnegativity expressions in (12) may
be posed over the BSA set P̄ϵx,ϵw in (26) by the Putinar
Psatz in (8). The full program with process and measurement
noise still has n(n + m + T ), but there are 2n(T − 1)
additional inequality constraints arising from the process
noise. The Alternatives method would no longer have µ
multipliers against consistency equality constraints, instead
the ϵp inequality constraints would have multipliers ξ±.
Each instance of µ in constraints (19d)-(19f) is replaced by
ξ+ − ξ−, and the multiplier term Q+ q(A,B) is now,

ϵ1T
(∑T

t=1(ζ
+
t + ζ−t ) + (

∑T−1
t=1 ξ+t + ξ−t )

)
. (27)

VIII. CONCLUSION

This work presented a convergent WSOS program (Full)
to perform superstabilization of EIV models. To the best of
our knowledge, this is the first paper to address the EIV
stabilization scenario. A theorem of alternatives was then
applied to produce an equivalent problem (Alternatives) with
substantially reduced complexity. This was accomplished by
using duality to eliminate the noise variables. Efficacy of this
method was demonstrated on example systems.

Future work includes expanding the set of stable con-
trollers beyond superstability, producing worst-case-LQR
optimal controllers K with respect to all consistent plants
in P , and designing output feedback controllers in the
measurement noise setting.
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