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Frequency-domain sysid is nonconvex
Can be cast as sum-of-rationals problem

Get global bounds on suboptimality using moment-SOS



The Sysid Problem



System Identification Problem

Want to recover true SISO model (a, b) € R?"

. _ Bzb) _ YRabezf
G(Z, a,b) - 1+A(Z, O) - 1+ 22:1 a/?Z,fg

But we only have noisy data D = {(wy, Gf), f=1..N¢}

Gf = Go(ejwf) + Ui

Optimize to minimize residuals {n¢}



Sysid Estimator

Least squares estimator for 6 = (a, b) given weights {Ws}:

0* := argmin Jp(0)

feK
i , 2

Ip(0) = ‘Wf(Gf— G(e"T; 9))‘
f=1

W user-defined weights

K c R? compact feasibility set

Challenge:  global optimization over stable rational models!




Prior work

- Classical methods: mainly local search techniques
+ several heuristic initialization methods
[Soderstrom & P. Stoica 1989], [Ljung 1999], [Pentilon &
Schoukens 2012], ...

- Numerical linear algebra method
e.g. [Agudelo et al. 2021], [Lagauw et al. 2023], ...

- Method based on the Moments-SOS hierarchy;
e.g. [Rodrigues et al. 2019], [Rodrigues et al. 2020], [Vuillemin
2014]



Main contributions of this work:

- Use sum-of-rational structure

- infinite-dimensional LP, solved by hierarchy of finite SDPs.
- convergence in objective with increasing degree

- stability enforced using Polynomial Matrix Inequality (PMI)
- Global optimally certified a-posteriori: (rank)



Sum-of-Rationals Reformulation



Sum-of-Rational Formulation: cost function

The SysID problem:  P* = min Jp(0)
ek

Ng

To(8) = 3 [Wi(G5 - G(e;9))
f=1
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Sum-of-Rational Formulation: cost function

The SysID problem:  P* = min Jp(0)

peK
Ny : 2 B(z; b)

TIn(0) = ‘Wf(Gf— G(e"7; 9))‘ Sl = 2 +Akz- a)
= '

Expand out each frequency data-point:
__B(e7;b)
1+ A(e™4r; a)
Gi(1 + A(e*r; a)) — B(e™; b))
1+ A(e™%r; a)

Wi{(Gs — G(7;)) = Wy (Gf

Wr

/N




Sum-of-Rational Formulation: cost function

Define polynomials py, gs for each datapoint f

p6) ’Wf (Gf(1 + A(e7r; a)) — B(e I, b))(2
: ‘2

ar() 1+ A(ei; a)

pr(#) and gs(a) quadratic polynomials in # and a respectively.

Ny

2 N
Z ‘Wf(Gf_ G(€;9))| = min Z ps(0)
=1

f=1




Sum-of-Rational Formulation: feasibility set

Constraint term K = Kqg N S;

- Ko: prior information on (a, b) range

- Ss: Enforce that (a, b) is a stable model



Sum-of-Rational Formulation: feasibility set

Constraint term K = Kqg N S;
- Ko: prior information on (a, b) range
- Ss: Enforce that (a, b) is a stable model
Ss={0 R : =(a) =4I} Polynomial Matrix Inequality
with Hermite matrix =(a) := ©(a)'@(a) — 6(a)"é(a),

T o oa ... an  QGp—1  An—2
0 1 a, ... . 0 an an_1 ... nxn
©@=10o o 1 ..., ©a@=l0o o a ..| €R

[Barnet 1983], [Henrion & Lasserre 2006]



Wrapping up the formulation

N
: Pr(6)

Jp = min —
beK = ar(0)

Objective from data D, weights W

Constraint set K from prior info, stability

.. how to solve it



Bounds for Global Optimization




Transformation of Optimization

Original continuous optimization problem

F* = inf f(x)

xeC
same objective as infinite-dimensional LP
f*=sup~y
vER
fx)—y>0 vx e C

Hard problem: certification of nonnegativity over C
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Ways to Discretize

Infinite-dimensional LP must be discretized for computation

More complexity: more accurate solutions

Method | Increasing Complexity
Gridding (MDP) | # Grid Points
Basis Functions (ADP) | # Functions
Random Sampling | # Samples
Sum-of-Squares | Polynomial Degree
Neural Nets (FOSSIL) | Width and Depth
Your Favorite Method | Some Accuracy Parameter

Runtime usually exponential in dimension, complexity

n



Sum-of-Squares Tightening

Truncation when f, C have polynomial structure

£ = inf ()

xeC

finite-degree d truncation

fa=supy, f(xX)—v € Z[C<xq
v€ER

Quadratic Module formed by constraint description

C={x|gr(x) >0VR€0..N¢c}, go(x) =1

2[q = {p €R[[p= chgk(X)ok(X), deg(orgr) < 2d, oy € Z[X]}
k=0
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Sum-of-Rationals Tightening

SOS only admissible for polynomial structure.
Options for sum-of-rational optimization:

- Add new states

- Clear to common denominators
- Epigraph approach [Jibetean, de Klerk 2003]

- Absolute-Continuity/Sandwich [Bugarin, Henrion, Lasserre 2016]

13



Sandwich approach

Sum-of-rationals optimization
P* = mi

e

express as nonnegativity

p-(0
:maxw,zqigei—sz Vo € K
=1

Assume all g¢(#) > 0 over K (et not a true pole)
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Sandwich approach

Introduce new functions ¢ € R[6]:

Substitute ¢ into objective
Ny
, 0)—v>0VOeK
maxy ; G(0) =7 >

Now can truncate into degree-< 2d SOS
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Recovery of Global Optima

SOS program is dual to LMI in moments

N
=i ;Lyf(pf(@)
Yo =1 SDP(d)

L, (6%5(0)) = Vo, Vo € NY
My(Ky) = 0, Mg (Ky) =0 Vf

Read off candidate solutions from order-1 moments of

Global optima if My(Ky), My_,(Ky) satisfy rank conditions



Computational Complexity and Convergence

Scaling linear in Ny and exponential in d (for fixed n)

Measure Matrix Size (Ky) Size (Ks)  Mult.
o MO] (90 a1
2 1 2
v MgnlKY] (G5 (YY) N

Can exploit symmetry, term sparsity to reduce cost further

Convergence Result:

- when K = Ko, Py < P;,, foralld

- when K = K, P 1 P



Numerical Examples




Numerical Examples

Data sets: MATLAB / julia
. (- Dr o
o= m> , = thooes Bl

N(o,o.32), f=1,1 Eﬁﬁ%ﬁl‘

CN(0,0.3%), otherwsie
= ETFE with periodic input & transient effects ignored.

True systems with Vf: Wy =1

. . _ 2z7'—7z-3
Case 1 Go(2) = om0 B =065

- Case 2: 14 randomly generated Schur-stable
second-order systems



Numerical Example 1

Stability is enforced: Ks = {]|0]lco <2} N Sj0-4

SDP(1) n4sid oe fmincon(n4sid) tfest
0.3173 03368 0.3224 0.3173 0.3173

Method
Jp(07)

0* is extracted from the moment matrix My[y*]
6, =[-0.18 — 0.134 —0.637 2 0 —1
6* =[-0.1415 —0.2016 —0.6707 1.978 0.0835 — 1.109]T

]T

0.3173 = Jp(0*) > P* > P} = 0.3173 ¢

Gw) — G
i
7 x
x

= P*=P3
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Numerical Example 2

Stability NOT enforced: K= {]l0]|cc <2} <1.6

- In all cases d = 3 is used.

- almost all systems have global optimality certificate
- no solution is extracted for System 5

0 T 1T T T 1
fmincon(0)
02 fmincon(n4sid)
—£] oe
.04+ ——® moment-SOS (lower bound)
= O Optimal
<
s -0.6
=
Z-08
2
Ak
a2} o
8 e
14 I I I I I I ,
0 2 4 6 8 10 12 14

System Index
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Take-aways




Conclusions

An approach for frequency-domain identification of
parameteric models

* tractable SDP + a certificate of global optimally

* stability enforced using Hermite criterion (PMI)
Future work includes:

* application to real systems (e.g. battery health)

* homogenization and improved conditioning

* comparisons with Sparse-POP , and similar methods.
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