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What is IKDR? Where is IKDR used? Why Is IKDR Difficult? Our Solution : The Iterative Spectral Method (ISM)

Supervised Dimension Reduction for Classification Optimizing W is highly non-convex and the

solution must intersect the Stiefel Manifold

Principal Component Analysis (PCA) is the most commonly
used Dimension Reduction (DR) technique. It is also an

Examples of Approximations of ®s

We identified a special family of kernels (The ISM family) with the

following properties:
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Table 1: Equations for the approximate

Using Multiple Expert Sources
®s for the common kernels.

max Tr(Y'LwY) + uTr(KxwHKyH)

Definition 1. Given 8 = a(x;,x;)! WW*b(x;, ;) with a(x;,x;) and b(x;,x;) as functions of
x; and x j, any twice differentiable kernel that can be written in terms of f(3) while retaining its
symmetric positive semi-definite property is an ISM kernel belonging to the ISM family with an
associated ® matrix defined as

But PCA cannot capture nonlinear Relationships.
Examples of of ds

Data in original space Data After PCA Data After Gaussian KPCA 0=0.4

1 1
— = — = T L T L
Zz: z:: D> KXWD 2 W W = I: Y'Y =1 wT (2 = % Zri’jf('ﬁmi’j' (6) Kernel ® Equations
~ 000 | Cxm—— > 000 | = po— Alternative Clustering via Dimension Reduction TTI&}}{ F-i,jﬁ - " - Linear d=XTTX

0024 002 - T ._ K HK H T ' K HK H W ,]-J where A@_ = b(’l? T )Q(sz TJ) + (l(ﬂ"’ Tj)b(’lﬁ'u Tj) SqUEII'Ed d = XTZ:FX

max  Tr(KywHKy H) — pTr(Kxw HEKy H) Polynomial | ® = X7UX , ¥ =T06Kxw
, , ‘ . . . WY . Ll_rrTl{Ir _ oy o . - y ) olynomia = , XW,p—1

- T r - T r P ’ S.t Theorem 3. For any kernel within the ISM family, a ® independent of W can be approximated with . T
. - / - S t WTW _ I YTY _ I Gﬂ“SSlan “I) == _X ,C‘LII"X 0 lI', = F C\' K_XW"
V ' ) ¢ ~ sign(V4£(0 Z T; A - (7) Multiquadratic | ® = XTLyX , 0 =T 0 K

Existing Solutions
Dimension Growth
Optimization Via Stiefel Manifold.
Optimization Via Grassmann Manifold.
Stochastic Gradient Descent.

Ideally, after Dimension Reduction, samples of
the same group should stay close together.

Publications that used IKDR

After Dimension Reduction, you can’t tell that
Blue and Green are actually separated.

Table 2: Equations for ®s for the

The ISM Algorithm: common kernels.

- Barshan, Elnaz, et al. "Supervised principal component analysis: Visualization,
classification and regression on subspaces and submanifolds."
Pattern Recognition 44.7 (2011): 1357-1371.

- Masaeli, Mahdokht, Jennifer G. Dy, and Glenn M. Fung. "From transformation-based
dimensionality reduction to feature selection." Proceedings of the 27th International

Note : This requires us to also capture
non-linear relationships!!!

Algorithm 1 ISM Algorithm
Input : Data X, kernel, Subspace Dimension ¢
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on XW Constraint.

Table 5: Run-time and objective performance are recorded across several kernels within the [SM
family. It confirms the usage of ® or linear combination of @ in place of kernels.
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