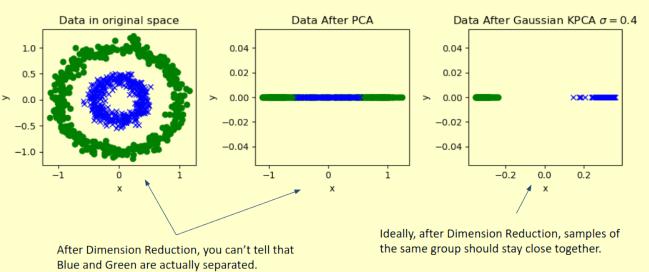
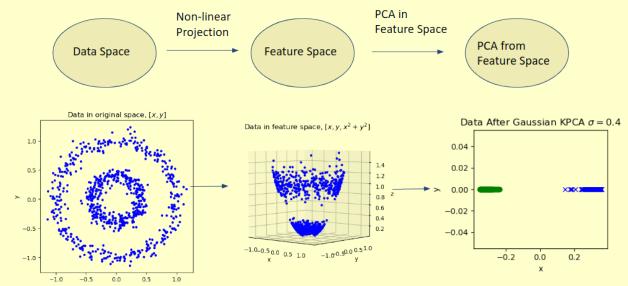

Northeastern University

Solving Interpretable Kernel Dimension Reduction Chieh Wu, Jared Miller, Yale Chang, Mario Sznaier, Jennifer G. Dy **Dept .of Electrical and Computer Engineering, Northeastern University**



Principal Component Analysis (PCA) is the most commonly used Dimension Reduction (DR) technique. It is also an **interpretable** way to reduce the dimension.

We know exactly how the new features relate to the original features.



But PCA cannot capture **nonlinear Relationships**.

Note : This requires us to also capture non-linear relationships!!!

KPCA captures nonlinear Relationships but not interpretable.

KPCA is very powerful, but

Problem 1: It does not use labels to guide the dimension reduction. Problem 2: Since KPCA is PCA in the feature space, it's not

obvious what they mean.

Here is the Gaussian Kernel feature map:

 $\phi(x) = e^{-x^2/2\sigma^2} \left[1, \sqrt{\frac{1}{1!\sigma^2}} x, \sqrt{\frac{1}{2!\sigma^4}} x^2, \sqrt{\frac{1}{3!\sigma^6}} x^3, \dots \right]^T$ Not too obvious what running PCA on these features mean.

Interpretable Kernel Dimension Reduction (IKDR) solves both problems..

How IKDR produce interpretable results.

on XW

Definite Matrix

$$\max_{W} HSIC(XW, Y) \quad s.$$

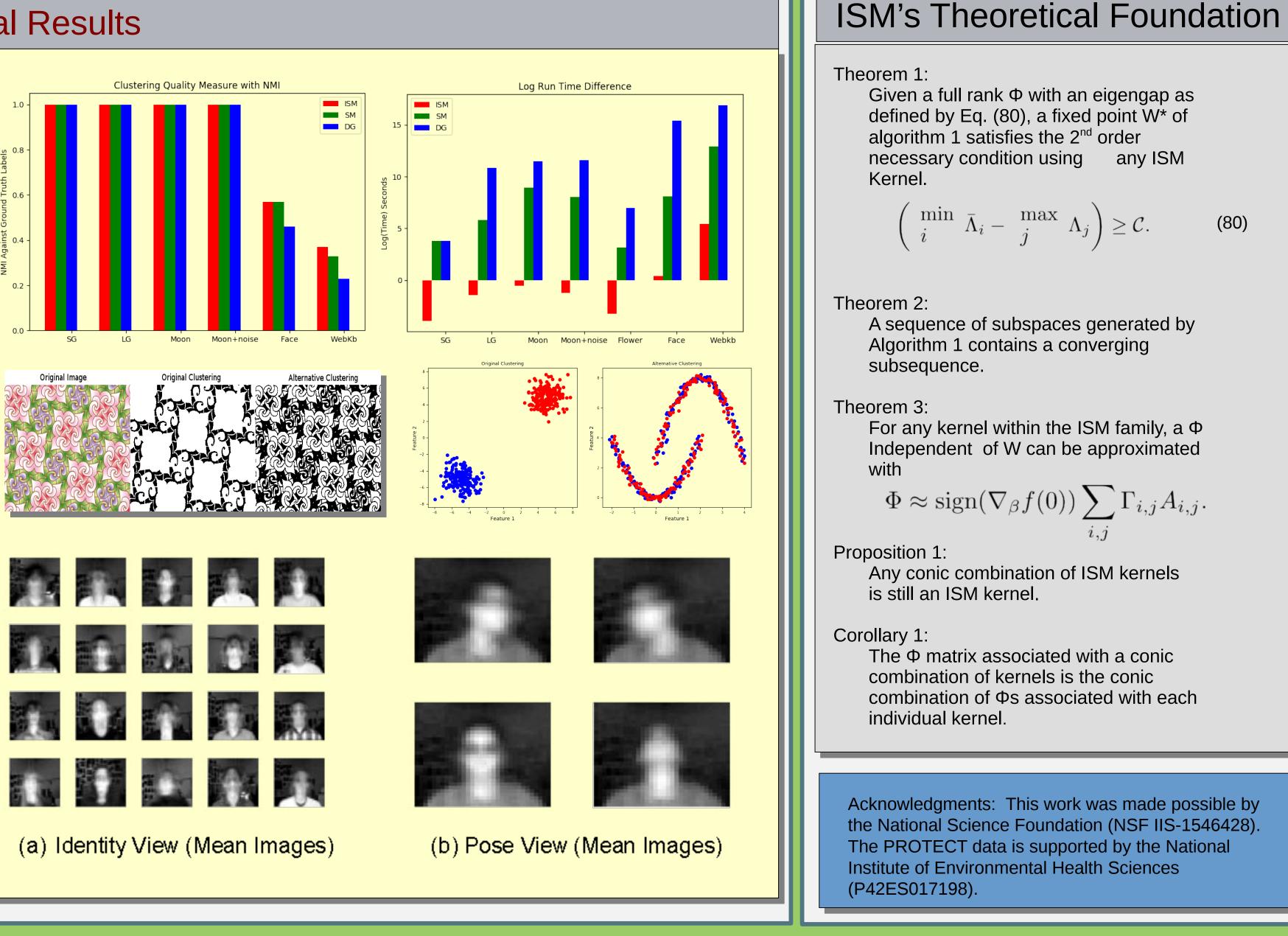
$$\max_{WY} HSIC(XW, Y) \quad \text{s.t}$$

$$\max_{W,Y} \operatorname{Tr}(Y^T \mathcal{L}_W Y) + \mu \operatorname{Tr}(Y^T \mathcal{L}_W Y)$$

$$\max_{W,Y} \operatorname{Tr}(K_{XW}HK_YH) - s t \quad W^TW = I \quad Y^TY = I$$

Where is IKDR used?	Why is IKDR Difficult?	Ou
Supervised Dimension Reduction for Classification $\max_{W} HSIC(XW,Y) \text{s.t} W^{T}W = I$ Unsupervised Dimension Reduction for Clustering $\max_{W,Y} HSIC(XW,Y) \text{s.t} W^{T}W = I$ Semi-supervised Dimension Reduction for Clustering Using Multiple Expert Sources $\max_{W,Y} Tr(Y^{T}\mathcal{L}_{W}Y) + \mu Tr(K_{XW}HK_{\hat{Y}}H)$ s.t $\mathcal{L}_{W} = D^{-\frac{1}{2}}K_{XW}D^{-\frac{1}{2}}W^{T}W = I, Y^{T}Y = I$ Alternative Clustering via Dimension Reduction $\max_{W,Y} Tr(K_{XW}HK_{Y}H) - \mu Tr(K_{XW}HK_{\hat{Y}}H)$ s.t $\mathcal{L}_{W} = D^{-\frac{1}{2}}K_{XW}D^{-\frac{1}{2}}W^{T}W = I, Y^{T}Y = I$ Alternative Clustering via Dimension Reduction $\max_{W,Y} Tr(K_{XW}HK_{Y}H) - \mu Tr(K_{XW}HK_{\hat{Y}}H)$ s.t $W^{T}W = I, Y^{T}Y = I$ Publications that used IKDR = Barshan, Elnaz, et al. "Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds." Pattern Recognition 447 (2011): 1357-1371. = Masaeli, Mahdokht, Jennifer G. Dy, and Glem M. Fung. "From transformation-based dimensionality reduction to feature selection." Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010. = Niu, Donglin, Jennifer G. Dy, and Michael I. Jordan. "Multiple non-redundant spectral clustering view." Proceedings of the Fourteenth International Conference on Antificial Intelligence and Statistics. 2011. = Wu, Chieh, et al. "Iterative spectral method for alternative clustering." Proceedings of the 27th International Conference on Antificial Intelligence and Statistics. 2012. = Wu, Chieh, et al. "Iterative spectral method for alternative clustering." International Conference on Antificial Intelligence and Statistics. 2013. = Wu, Chieh, et al. "Iterative spectral method for alternative clustering." International Conference on Antificial Intelligence and Statistics. 2014. = Wu, Chieh, et al. "Iterative spectral method for alternative clustering." International Conference on Antificial Intelligence and Statistics. 2015. = Wu, Chieh, et al. "Iterative spectral method for alternative clustering." Int	Optimizing W is highly non-convex and the solution must intersect the Stiefel Manifold $\int_{0}^{n} \int_{0}^{n} \int_{0}^$	We identified a special following properties:1. Each kernel within the 2. The most dominant 3. The conic combinate 4. The conic combinate conic combinate 5. If Φ is a function of to formal Definition 1. Given $\beta = a(x_i, x_i and x_j, any twice differentialsymmetric positive semi-definiteassociated \Phi matrix defined aswhere A_{i,j} = b(x_i, x_j)a(x_i, x_j)Theorem 3. For any kernel withinGImput : Data X, kernel,Output : Projected sub-Initialization : InitializSet W_0 to V_{max} of \Phi_0.while A_i - A_{i-1} _2/ Compute \Phi using TSet W_k to V_{max} of \Phiend$

St	upervised	Gaussian				polynomial			
		ISM	DG	SM	GM	ISM	DG	SM	GM
8	Time	$0.02s\pm0.01s$	$7.9s \pm 2.9s$	$1.7s \pm 0.7s$	$16.8m \pm 3.4s$	$0.02s\pm0.0s$	$13.2s \pm 6.2s$	$14.77s \pm 0.6s$	$16.82m \pm 3.6$
Wine	Cost	$\textbf{-1311}\pm \textbf{26}$	-1201 ± 25	-1310 ± 26	-1307 ± 25	-114608 ± 1752	-112440 ± 1719	-111339 ± 1652	-108892 ± 15
	Accuracy	$95.0\%\pm5\%$	$93.2\% \pm 5.5\%$	$95\%\pm4.2\%$	$95\%\pm6\%$	$97.2\% \pm 3.7\%$	$93.8\% \pm 3.9\%$	$96.6\% \pm 3.7\%$	$96.6\% \pm 2.7$
눲	Time	$0.08s \pm 0.0s$	$4.5m \pm 103s$	$17s \pm 12s$	$17.8m \pm 80s$	$0.13s \pm 0.0s$	$4m \pm 1.2m$	$3.3m \pm 3s$	$17.5m \pm 1.1$
Cancer	Cost	$\textbf{-32249} \pm \textbf{338}$	-30302 ± 2297	-31996 ± 499	-30998 ± 560	-1894 ± 47	-1882 ± 47	-1737 ± 84	-1690 ± 10
Ĵ	Accuracy	$97.3\% \pm 0.3\%$	97.3%± 0.3%	$97.3\% \pm 0.2\%$	$97.4\%\pm0.4\%$	$97.4\%\pm0.3\%$	$97.3\% \pm 0.3\%$	$97.4\% \pm 0.3\%$	$97.3\% \pm 0.3$
	Time	$0.99s \pm 0.1s$	$1.92d \pm 11h$	$10s \pm 5s$	$22.7m \pm 18s$	$0.7s \pm 0.03s$	$2.1d \pm 13.9h$	$5.0m \pm 5.7s$	21.5m ± 9.8
Face	Cost	-3754 ± 31	-3431 ± 32	-3749 ± 33	-771 ± 28	$\textbf{-82407} \pm \textbf{1670}$	-78845 ± 1503	-37907 ± 15958	-3257 ± 51
	Accuracy	$100\%\pm0\%$	$100\%\pm0\%$	$100\% \pm 0\%$	$99.2\% \pm 0.2\%$	$100\%\pm0\%$	$100\% \pm 0\%$	$100\% \pm 0\%$	99.8% ± 0.2
	Time	$13.8s\pm2.3s$	> 3d	$2.5m \pm 1.0s$	> 3d	$12.1s \pm 1.4s$	> 3d	$2.1m \pm 3s$	> 3d
	Cost	$\textbf{-639} \pm \textbf{2.3}$	N/A	-621 ± 5.1	N/A	-639 \pm 2	N/A	-620 ± 5.1	N/A
Ζ	Accuracy	$99\%\pm0\%$	N/A	$98.5\% \pm 0.4\%$	N/A	$99\%\pm0\%$	N/A	$99\%\pm0\%$	N/A
Unsupervised									
<i>с</i> э.	Time	0.01s	9.9s	0.6s	16.7m	0.02s	14.4s	2.9s	33.5m
Wine	Cost	-27.4	-25.2	-27.3	-27.3	-1600	-1582	-1598	-1496
	NMI	0.86	0.86	0.86	0.86	0.84	0.84	0.84	0.83
늺	Time	0.57s	4.3m	3.9s	44m	0.5s	8.0m	8.8m	41m
Cancer	Cost	-243	-133	-146	-142	-15804	-14094	-15749	-11985
Ő	NMI	0.8	0.79	0.8	0.79	0.79	0.80	0.79	0.80
<i>.</i>	Time	0.3s	1.3d	5.3s	55.9m	1.0s	> 3d	22m	1.6d
Face	Cost	-169.3	-167.7	-168.9	-37	-368	NA	-348	-321
	NMI	0.94	0.95	0.93	0.89	0.94	N/A	0.89	0.89
H	Time	1.8h	> 3d	1.3d	> 3d	8.3m	> 3d	0.9d	> 3d
MNIST	Cost	-2105	N/A	-2001	N/A	-51358	N/A	-51129	N/A
N	NMI	0.47	N/A	0.46	N/A	0.32	N/A	0.32	N/A


lower objective cost.

		Supervised				Unsupervised			
		Linear	Squared	Multiquad	G+P		Linear	Squared	Multiquad
ne	Time	$0.003s\pm0s$	$0.01s \pm 0s$	$0.02s \pm 0.01s$	$0.007s \pm 0s$	Time	0.02s	0.04s	0.06s
Wine	Accuracy	$97.2\% \pm 2.8\%$	$96.6\% \pm 3.7\%$	$97.2\% \pm 3.7\%$	$98.3\% \pm 2.6\%$	NMI	0.85	0.85	0.88
Cancer	Time	$0.02s\pm0.002s$	$0.09s \pm 0.02s$	$0.15s \pm 0.01s$	$0.06s \pm 0.004s$	Time	0.23s	0.5s	0.56s
Car	Accuracy	$97.2\% \pm 0.3\%$	$97.3\% \pm 0.04\%$	$97.4\%\pm 0.003\%$	$97.4\% \pm 0.003\%$	NMI	0.80	0.79	0.84
Face	Time	$0.2s\pm0.2s$	$0.3s \pm 0.2s$	$0.3s \pm 0.2s$	$0.5s \pm 0.03s$	Time	0.68s	0.92s	3.7s
Fa	Accuracy	$97.3\% \pm 0.3\%$	$97.1\% \pm 0.4\%$	$97.3\% \pm 0.4\%$	$100\%\pm0\%$	NMI	0.93	0.95	0.92
MNIST	Time	$6.4s \pm 0.4s$	$17.4s \pm 0.4s$	10.6m ± 1.9m	$17.6s \pm 2.5s$	Time	3.1m	4.7m	52m
MIN	Accuracy	$99.1\%\pm0.1\%$	$99.3\%\pm0.2\%$	$99.1\% \pm 0.1\%$	99.3 $\%\pm0.2\%$	NMI	0.54	0.54	0.54

Table 5: Run-time and objective performance are recorded across several kernels within the ISM family. It confirms the usage of Φ or linear combination of Φ in place of kernels.

Experimental Resul	ts
---------------------------	----

objectives. ISM is significantly faster compared to other optimization techniques while achieving

ur Solution : The Iterative Spectral Method (ISM)

cial family of kernels (The ISM family) with the

in the family has an associated scaled covariance matrix Φ . ant eigenvectors of Φ is the solution to Eq. (1).

nation of ISM kernels is still in the ISM family.

ation of Φ s is the associated scaled covariance matrix for the tion of kernels.

of W, then Φ can be approximated using the 2nd order Taylor series

the ISM family:

 $(x_i, x_j)^T W W^T b(x_i, x_j)$ with $a(x_i, x_j)$ and $b(x_i, x_j)$ as functions of iable kernel that can be written in terms of $f(\beta)$ while retaining its ite property is an ISM kernel belonging to the ISM family with an

$$\Phi = \frac{1}{2} \sum_{i,j} \Gamma_{i,j} f'(\beta) A_{i,j}.$$
(6)

 $(x_j)^T + a(x_i, x_j)b(x_i, x_j)^T.$

thin the ISM family, a Φ independent of W can be approximated with

$$\Phi \approx \operatorname{sign}(\nabla_{\beta} f(0)) \sum_{i,j} \Gamma_{i,j} A_{i,j}.$$
(

Algorithm nel, Subspace Dimension q ubspace W

lize Φ_0 using Table 1.

$$||\Lambda_i||_2 < \delta \mathbf{d}$$

Table 2
 $\delta \Phi$

Examples of Approximations of Φs

Kernel	Approximation of Φ s
Linear	$\Phi_0 = X^T \Gamma X$
Squared	$\Phi_0 = X^T \mathcal{L}_{\Gamma} X$
Polynomial	$\Phi_0 = X^T \Gamma X$
Gaussian	$\Phi_0 = -X^T \mathcal{L}_{\Gamma} X$
Multiquadratic	$\Phi_0 = X^T \mathcal{L}_{\Gamma} X$

Table 1: Equations for the approximate Φ s for the common kernels.

Examples of of Φs

Kernel	Φ Equations
Linear	$\Phi = X^T \Gamma X$
Squared	$\Phi = X^T \mathcal{L}_{\Gamma} X$
Polynomial	$\Phi = X^T \Psi X , \Psi = \Gamma \odot K_{XW,p-1}$
Gaussian	$\Phi = -X^T \mathcal{L}_{\Psi} X, \Psi = \Gamma \odot K_{XW}$
Multiquadratic	$\Phi = -X^T \mathcal{L}_{\Psi} X, \Psi = \Gamma \odot K_{XW}$ $\Phi = X^T \mathcal{L}_{\Psi} X, \Psi = \Gamma \odot K_{XW}^{(-1)}$

Table 2: Equations for Φ s for the common kernels.

How K(x,x') become $f(\beta)$:

Kernel Name	f(eta)	$a(x_i, x_j)$	$b(x_i, x_j)$	
Linear	β	x_i	x_j	
Squared	β	$x_i - x_j$	$x_i - x_j$	
Polynomial	$(\beta + c)^p$	x_i	x_j	
Gaussian	$e^{\frac{-\beta}{2\sigma^2}}$	$x_i - x_j$	$x_i - x_j$	
Multiquadratic	$\sqrt{\beta + c^2}$	$x_i - x_j$	$x_i - x_j$	
Table 3: Converting common kernels to $f(\beta)$.				

