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Dimension Reduction

A lot of Features

Samples

Dimension
Reduction

Fewer Features 
used to 
represent the 
same data

Advantage of Dimension 
Reduction

1. Smaller size
2. Easier to handle
3. Faster to process
4. Smaller memory storage
5. Remove unimportant info

The Key is to 
1. Remove unimportant data
2. Keep important data



Principal Component Analysis (PCA)

PCA is by far the most popular 
Dimension Reduction technique, 
and it is interpretable !!!

We know exactly how the new features relate to the original features.

For example : 

Here, we know exactly how the 
new features relate to the old 
features. 



Principal Component Analysis (PCA)

But PCA only captures Linear Relationships!!!!

After Dimension Reduction, you can’t tell that 
Blue and Green are actually separated. 

Ideally, after Dimension Reduction, samples of 
the same group should stay close together.

Note : This requires us to also capture 
non-linear relationships!!!



However, we know from the kernel community, if you first project the data into a higher 
dimensional feature space, non-linear relationships can become linearly separable.

Data Space Feature Space PCA from 
Feature Space

Non-linear
Projection

This is called the Kernel PCA, or KPCA.

PCA in 
Feature Space



KPCA is very powerful, but …….

Problem 1: You cannot use labels to guide the dimension reduction

Problem 2: Since KPCA is PCA in the feature space, it's not obvious what they mean.

Here is the Gaussian Kernel feature map: 

Not too obvious what running PCA on these features mean. 

Interpretable Kernel Dimension Reduction solves both problems...



KPCA

Interpretable KDR

Φ(X) W
Finds the W matrix in 
Feature Space
that keeps the most 
information.

Φ(XW) 
Finds the W matrix in original data 
space that keeps the most 
information in the Feature Space.

HSIC is a general objective for capturing 
non-linear dependence to achieve IKDR.

HSIC(X,Y)  measures the non-linear 
dependence between X and Y in
Feature Space.

Although this make the solution 
interpretable, it is very difficult to 
solve. 



A generic IKDR problem :

Using a Gaussian Kernel :

Unfortunately, IKDR is very difficult to solve !!

This is a highly non-linear, 
non-convex shape where 
the solution must intersect 
with a hypersphere.



Solve Via SGD :
- Slow
- stuck at saddle point
- Easy to implement
- Not good results

There are many existing ways to solve this !!!

Optimization Via Stiefel Manifold:
- slow
- stuck at saddle point
- Difficult to implement
- Decent results

Dimension Growth:
- very slow
- Difficult to implement
- stuck at saddle point
- poor results

We propose the Iterative Spectral Method (ISM) :
- very fast
- doesn’t get stuck at saddle point (not gradient based)
- Easy to implement
- Very good results



We discovered a solution for the IKDR problem  for a family of kernels.

The family of kernels is called the ISM Family.

We discovered that if a kernel 
is within the ISM Family, then 
the kernel has an associated 
Scaled Covariance Matrix Φ.

Just like PCA, the optimal solution W is the most 
dominant eigenvectors of Φ. 



Here are some examples of kernels in the family and 
how the Scaled Covariance Matrix can be computed.

Sometimes the Scaled Covariance Matrix is a function of W 
itself. For these cases, we use the 2nd order Taylor Expansion
to approximate the Scaled Covariance Matrix. 



Here, notice that none of the Φ are functions of W.

Approximated Φ with Taylor 
Expansion.



By approximating Φ, we can initialize W and use this W to compute 
the next Φ.  We can repeat this process until W converges.

This is the ISM algorithm.  

We simply repeat this until W converges.



Although ISM look simple, the analysis required to guarantee its 
effectiveness was not simple !!!

Thm 1 :  
Guarantees that the dominant eigenvector of Φ satisfies 1st and 2nd order 

conditions.

Thm 2 : 
Guarantees that ISM algorithm converges to a subsequence.

Proposition 1 :
Any linear combination of ISM kernels is still a ISM kernel.

Thm 3 : 
A ISM kernels can always obtain a Φₒ that’s independent of W

Corollary 1 :
The Φ matrix of a conic combination of kernels  
is equal to 



ISM solves many different IKDR problems. 



ISM can also be used for Alternative Clustering...
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