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What is Data-Driven Control?

Design a controller for an unknown plant

Yref e u y
© ® Controller Plant

Ym

Sensor

Control system directly from data, no sysid required



Example of Data-Driven Control

Observed Data System Control (Nsys = 100)

Single controller stabilizes all data-consistent plants



Algorithms for Data-Driven Control

Virtual Reference Feedback Tuning (first methods)
Set-Membership (this talk)

e (Data-consistent plants) C (K-Stabilized plants)
o Certificates: Farkas, Interval, S-Lemma, SOS

Behavioral

e Parameterize and pick out best system trajectory (MPC)
e Willem's Fundamental Lemma (DeePC)

Koopman



Flow of Presentation

Describe input+measurement noise and its challenges
Solve using polynomial optimization (superstability)
Eliminate noise variables to improve tractability

Extend to other problems (stability models, ARX)



Noise Model and Difficulty



Error-in-Variable Noise Task

Noisy measurements D = {X;, 0;}_; of linear system

Xey1 = Axe + Bug

Data D corrupted by (L.-bounded):
Ax : state-measurement noise
Au : input noise
W  process noise

Find state-feedback u = Kx to stabilize all plants (A, B)
consistent with D



Error-in-Variable Relations

Noise processes Vt = 1..T

€x Z HAXtHoo €u Z ||Aut”oo Ew Z HWtHoo

Relations Vt =1..T —1
Xt_;’_]_ — AXt ‘I’ But + EWt

)?t = Xt + AXt-

ﬁt — Ut+AUt

(A, B, Ax, Au, w) unknown, E € R™€ known



Bilinear Trouble

(A, B, Ax, Au, w) all unknown
Total of n(n+ m)+ T(n+ m+ e) variables

)?t‘i-l — AXt+1 — A)?t — AAXt + But — BAUt - EWt
Multiplication between unknown AAXx;, also in BAu;

Stabilization task is immediately NP-hard

Even sysid is NP-hard



Consistency Set

Consistency set P(A, B, Ax) (with ¢, = ¢,, = 0)

' ||AXt||<>o S €x \V/t — 1T

Affine weight h° (residual) is defined by

h?:)A(t+1—A)?t—But Vt:].T—l

Assumption: enough data collected such that P compact



Stability for Plants

Set of plants consistent with D (with projection 7):

P(A, B) = m*5P(A, B, Ax)

Find K € R™*" such that (A + BK) is Schur Y(A, B) € P



Superstability




Superstablity Definition

Superstability (Blanchini and Sznaier 1997, Polyak 2001)

Ix|[w isa CLF: A+ BK]. <1

Poles of A+ BK in unit diamond {z | Re(z) 4+ Im(z) < 1}
If |A + BK | = 7, then [|x[loc < 419/7||x0]|oc

Constant K must superstabilize all consistent (A, B)
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Superstability Formulations

Linear constraints to impose superstability

Sign-based formulation, n2" linear constraints
Zse{—l,l}" si(A+ BK); <1 i

Equivalent Convex Lift, 2n? + n linear constraints

IM e R™"
— My < (A+ BK); < M; Vi,j

Process noise only: robust LP (Cheng, Sznaier, Lagoa, 2015)
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Full Program



Superstability Application

Superstability certificate M(A, B) : P — R"™"
2n? + n inequality expressions over P (margin § > 0)
Vi=1l.n:1-0-3>", My(A B)>0 (1a)
Vi=1.n, j=1.n: (1b)
M;i(A, B) = (Aj + 224 BieKis) = 0
M;(A, B) + (Aj + 3211 BieKyj) = 0
LP in (M(A, B), K) for each (A, B) € P (infinite dimensional)

Can choose M to be continuous in compact P
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Sum-of-Squares Method

Every ¢ € R satisfies ¢ > 0
Sufficient: g(x) € R[x] nonnegative if g(x) =Y, g7(x)
Exists v(x) € R[x]*, Gram matrix Z € S5 with g = v’ Zv

Sum-of-Squares (SOS) cone X [x]

X2yt — 6x%y? + 10x% + 2xy? + 4xy — 6x +4y* + 1
=(x +2y)* + (3x — 1 — xy?)?

Motzkin Counterexample (nonnegative but not SOS)
Xyt 4 Xty — 2y 1
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Sum-of-Squares Method (cont.)

Putinar Positivestellensatz (Psatz) nonnegativity certificate
over set K = {x | gi(x) >0, hj(x) = 0}:

q(x) = 0o(x) + 22, 0i(x)&i(x) + 22; ¢i(x)hi(x)
Jdoo(x) € X[x], oi(x) € X[x], ¢; € R[X]

Psatz at degree 2d is an SDP, monomial basis: s = ("Zd)

Archimedean: IR > 0 where R — ||x||3 has Psatz over K
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Computational Complexity (Full)

Restrict Mj;(A, B) to a polynomial of degree 2d

Each infinite-dimensional linear constraint becomes an SOS
constraint (Psatz) in (A, B, Ax): L[P]

Each Psatz has a PSD Gram matrix of size (""" 7)+9)

(n=2,m=2,T =15,d =2) : size 780
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Alternatives




Motivation and Size Comparison

Use Ax-affine structure of P to eliminate Ax

Maximal size of Gram (PSD) matrices

Size Full Alternatives
n(n+m d n(n+m)+d
Super | ("rtmi k) (nmEd)

When (n=2,m=2T =15,d = 2):
Full = 780, Altern. = 45
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Robust Counterpart Method (eliminating noise)

Linear inequality involving Ax
q(A,B)>0 V(A B,Ax)€P
Polytope-constrained noise Ax
Ax € P ={Ax| GAx < h, CAx = f}

All (g, G, h, C, ) are functions of (A, B) P

Robust Counterpart without Ax (equivalent)

IC>0,pu|g>h"C+FfTp, 0=G"¢C+CTp.
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Theorem of Alternatives

Superstability condition g: Full program in (A, B, Ax)

q(A,B) >0 V(A B,Ax) € P
Alternatives program in (A, B) with no conservatism
find  (37(A B) 2 0, p.7-1(A, B)

q >3 e+ C) + 2 nl b V(A B)

G -G = AT

CJTF — (7 = —p71

G =G = AT e — i Vte2.T—1
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Polynomial Alternatives Certificate

Choose ¢* SOS, 11 polynomial when P compact
Express SOS Alternatives certificate as q(A, B) € Z[P]
Find degree-2d polynomial matrix I\/I,-j(A, B) with
Vi=1l.n:1-0->",M;(AB)¢€ Y[ P]
Vi=1l.n, j=1.n:
M;(A, B) — (A; + >0 BiKyj) € Z*[P]
M;(A, B) + (Aj + >0 BiKy) € T*[P]

¢*, p: same multiplicity as SOS Psatz multipliers over P
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Further notes about complexity

In practice d = 1 suffices for Alternatives while d =2 is

required for Full

With (n = 2, m = ]., dalt = ]., dfuﬂ = 2)
Maximum size PSD matrices

Gram ( p (vector)
Alternatives 7 7 7
Full (T=4) 120 15 120
Full (T=6) 190 19 190
Ful (T=8) 276 23 276
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All Noise




All Noise Consistency Set

Consistency set P(A, B, Ax, Au, w):

Xt+1:AXt+BUt+EWt Vt:].T—l
)?t:Xt_'_AXt’ ﬁtzut—i—AUt vt:].T_].
ex 2 ||Axt|loo, €y > ||AUt]|os €w = ||We]le VE=1..T

Set of consistent plants,

P (A, B) = n*BPY(A B, Ax, Au, w)
(Ax, Au, w) together not much more complex than Ax alone
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All Noise Size

Use Alternatives to eliminate (Ax, Au, w)

Maximal size of Gram (PSD) matrices

Size Full Alternatives
n(n+m)+T(n+m d n+m)+d
Super ( (n+m)+ ((1+ +e)+ ) (n( +d) )

When (n=2,m=2,T =15,d =2,e=1):
Full = 3570, Alternatives = 45
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Other Stabilization Methods




Extended Superstability

Weights v > 0 matrix Y = diag(v) (Polyak 2004)
CLF [|x./v]|oo if [Y(A+BK)Y o <1
Find v e RZ,, S € R™" M : P — R™" with Y(A, B) € P:

> My < v Viel.n
— My < Ajvi + > 41 BiSig < M Vi,j€l.n

Return K = SY 1, has 2n? + n Psatz constraints
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Positive Stabilization

Positive System: keeps RZ, invariant under u € RZ,
Weights v > 0 matrix Y = diag(v) (Ait Rami 2008)
Dual Linear Copositive Lyapunov Function max;(x;/v;)

Find v € RZ,, S € R™" with V(A, B) € P:

v — (AY + BS)1 € R?,,
AY + BS € RYg"

Return K = SY 1, has n® + n Psatz constraints
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Quadratic Stabilization

Quadratic Lyapunov function x" Yx for Y € S”
o+

Y (A+ BK)Y
* Y

Y AY 4+ BS
* Y

Q(A,B) =

2n
S

Recover controller K = SY !

Find constant (Y, K) to stabilize all (A, B) € P
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Polynomial Matrix Inequalities

SOS method (scalar): g(x) >0
Extend to matrices Q(x) € S5,
SOS matrix: Q(x) = R(x)"R(x) € £°[x] for matrix R(x)

n+d)

Gram matrix (PSD) constraint of size (",

Scherer Psatz: nonnegativity over constraint sets
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Quadratic Stabilization Program

Quadratic Full: Size 2n("(”+ij)+d)

Y AY +BS

. v € 2"[Pl<zd (2)

Can eliminate Ax, form Alternatives with size 2n(”(”+(',")+d)

Alternatives could add conservatism

Extend to worst-case-H,-optimal control
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Single-Input Single-Output




ARX model

Autoregressive Model with Exogenous Input (ARX)
Ye = — Zfil aiYe—i+ Z?il biug_;
Data D = (4, y) and no state x,

i0=u+ Au, |Aulloo < €,
y=y+Ahy, [Ay[lee < €

Find controller u to stabilize (a, b) consistent with D
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Superstability for ARX

Original model with vectors (a, b)

Ye = — 2721 ajyt—i + 2721 bius_;.
Transfer Function with one-step-behind operator Au; = u;_1

i b\ B

6N = L+ Y aN 1+ AN

Superstability definition, linear constraints

lafly <1
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Dynamic Compensation

B(N)/(1+A(N)

Compensator C(\)

Closed-loop system

)= SN B+ AW))
“ 1+ GA)C(N) (14 AW+ AN) + B(B(N)

Superstable: coefficients of G, denominator have L; norm < 1

Fixed C superstabilizes all (A, B) € P (from D)
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ARX Program Sizes

Set P originally contains (a, b, Au, Ay)

Eliminate (Au, Ay) in alternatives

Maximal size of Gram (PSD) matrices (N = N, + Np)

Size Full Alternatives
2N+ T—1+d N+d
Super ( d ) ( d )

No conservatism in Alternatives
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Examples




Example 1

Ground-truth system n=3, m=2,T =40

0.6852 0.0274 0.5587 0.4170 0.3023
A= [0.2045 0.6705 0.1404|, B = [0.7203 0.1468
0.8781 0.4173 0.1981 0.0001 0.0923

Noise parameters ¢, = 0.05,¢, =0, ¢, =0

Solve v* = min,er v : [|[A+ BK||oo < 7y for all (A,B) € P
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Example 1: Complexity

Data horizon T = 6,

d +#scalar variables
Full 2 3.4 x 107
Altern. 1 67776

Altern recovers ground truth v* = 0.7259 when ¢, =0
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Example 1: Results

With T =40

vae = 0.8880 Alternatives with d = 1 (worst-case)
’y:lp = 0.7749 Alternatives controller applied to ground truth
Yiwe = 0.7259  Ground truth
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Example 2: (Monte Carlo, Superstabilization)

Ground truth system (e, €, = 0)

. 0.6863 0.3968 5 0.4170 0.0001
~ 10.3456 1.0388]’ ~10.7203 0.3023

S = percentage of success in 50 trials

Svs. e with T =38 Svs. T with e, =0.14

€x | 0.05]0.08 | 0.11 | 0.14 T |8 |10 |12 |14
S| 100 | 84 | 57 | 39 S 13960 75|86
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Example 3: (Monte Carlo, Stabilization)

(Extended) Super, Positive, and Quadratic Stability

Success vs. €, with T =8 Success vs. T with ¢, = 0.14

e |0.05]0.08|0.11|0.14 T 8 |10 12|14
ESS | 100 | 88 69 40 ESS | 40 | 61 | 78 | 89
SS | 100 | 84 57 39 SS |39 |60 | 75|86
PS 94 61 19 3 PS | 3 |20|42]|56
QS | 100 | 100 | 90 79 QS |79 86|95 |99
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Example 4: (Monte Carlo, H2 Performance)

Median H, performance in 100 trials (PMI)

Hy-norm vs. €, with T =8

€ 0.05|0.08 0.11 | 0.14
Yoerp | 1.97 | 2.07 | 2.18 | 2.15
Yo,worst | 2.30 | 2.73 | 3.23 | 4.31

Hy-norm vs. T with e, = 0.14

T 8 10 12 14
Yoelp | 2.07 | 1.96 | 1.94 | 1.93
Vo,worst | 2.73 | 2.42 | 2.23 | 2.20
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Example 5: (ARX Superstabilization)

Ground truth system (e, €, = 0)

Yt = Ut—2 — (0-5}’#1 — 121y, > — 0-605%—3)

Fixed-order control n, = 4,n, =3 with e, =€, = ¢

v v.s. e with T =80 v v.s. T with e =0.02

e | 0.02]0.04 | 0.06 | 0.08 T 120 (40 |60 |80
v 1025|049 | 0.73 | 0.98 v | 0441031 ]0.27 | 0.25
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Take-aways




Conclusion

Stabilization in the Error-in-variables setting
Formulate SOS certificates over consistency set
Alternatives to simplify computational complexity

Conservatism only introduced in Quadratic Stability

39



Thank you for your attention




Bonus Content




Set Membership: Process Noise Alone

Superstability with only L..-bounded process noise (not EIV)

Polytope of data-consistent plants Py(A, B):
P, =(AB): ||Xs1 — A% — Blt||oo <€, VE=1.T -1
Superstable-plants polytope P,(A, B) given constant (M, K)

P,=(AB): —-M<A+BK<M

Control via LP (Cheng, Sznaier, Lagoa 2015)
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Sparse but Conservative Tightening

Equality constraints 0 = —Ax;,1 + AAx; + h?
Define row groups C; = (A; 1.0, Bi1m)

Each equality constraint in (/, t) only involves one group

Sparse multipliers ¢;£(C) > 0, wi(C)
Max. Gram matrix size (”+’;’+d) rather than ("(N+gv)+d)

Has never worked on our experiments though
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