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Abstract— This paper presents a method to lower-bound
the distance of closest approach between points on an unsafe
set and points along system trajectories. Such a minimal
distance is a quantifiable and interpretable certificate of safety
of trajectories, as compared to prior art in barrier and density
methods which offers a binary indication of safety/unsafety.
The distance estimation problem is converted into a infinite-
dimensional linear program in occupation measures based
on existing work in peak estimation and optimal transport.
The moment-SOS hierarchy is used to obtain a sequence of
lower bounds obtained through solving semidefinite programs
in increasing size, and these lower bounds will converge to the
true minimal distance as the degree approaches infinity under
mild conditions (e.g. Lipschitz dynamics, compact sets).

I. INTRODUCTION

A trajectory x(t | x0) lying in the space X ⊆ Rn of
the dynamical system ẋ(t) = f(t, x(t)) starting from an
initial condition x0 ∈ X0 is safe with respect to the closed
unsafe set Xu if x(t | x0) ̸∈ Xu for all times t between
t = 0 and the time horizon t = T . The safety of trajectories
starting from X0 may be quantified by the distance of closest
approach given a distance function c(x, y) as,

P ∗ = min
t, x0,y

c(x(t | x0), y)

ẋ(t′) = f(t′, x), ∀t′ ∈ [0, T ]

t ∈ [0, T ], x0 ∈ X0, y ∈ Xu.

(1)

The task of distance estimation will refer to solving Problem
(1), and distance bounding will mean to find a lower bound
p∗ ≤ P ∗ that is as tight as possible. A direct solution to (1)
in terms of optimizing over (t, x0, y) is generically difficult
and non-convex. This paper will propose a reformulation
of (1) into a convex infinite-dimensional Linear Program
(LP) of nonnegative Borel measures based on the occupation
measure work in optimal control [1], [2], optimal transport
methods [3], [4], and peak estimation [5], [6]. The infinite-
dimensional LP will be truncated into a sequence of finite-
dimensional Semidefinite Programs (SDPs) in increasing
complexity through the moment-Sum of Squares (SOS)
hierarchy [7]. Prior work on verifying safety of trajectories
include barrier functions [8], [9] density functions [10],
forward-backward reachability [11], and interval analysis
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[12], [13], but these methods do not yield a measure of
proximity to the unsafe set. The work in [14] introduced the
concept of safety margins as a measurement of constraint
violation (computed through maximin peak estimation), but
safety margins are difficult to interpret and will scale as the
parameterization of the constraint set changes (even in the
same coordinate system). The distance of closest approach
is an intuitive geometric quantification of the safety of
trajectories.

Contributions of this paper include:
• An LP in measures to lower bound (1)
• A proof that bounds obtained from the moment-SOS

hierarchy will converge to P ∗ as the degree approaches
infinity under mild conditions

• An extension to performing distance estimation for
systems with dynamic uncertainty

This paper has the following structure: Section II will
cover preliminaries such as notation, the moment-SOS hier-
archy, and occupation measure methods for peak estimation
and safety analysis. Section III will present and discuss an
infinite-dimensional LP in occupation measures to perform
the distance estimation task along with its Linear Matrix
Inequality (LMI) truncation. Section IV will demonstrate
effectiveness of this LMI method on examples of distance
estimation. Section V will briefly highlight extensions to
the distance estimation framework. Section VI will conclude
the paper. An extended version of this paper (including
detailed proofs, correlative sparsity, and certifying distance
of shapes) is available at https://arxiv.org/abs/
2110.14047 [15].

II. PRELIMINARIES

A. Acronyms/Initialisms

LMI Linear Matrix Inequality
LP Linear Program
ODE Ordinary Differential Equation
PSD Positive Semidefinite
SDP Semidefinite Program
SOS Sum of Squares

B. Notation and Measure Theory

Let Rn be the n-dimensional Euclidean space and Nn be
the set of natural number multi-indices in n terms. The point-
set distance c(x, Y ) given a metric c and a set Y is defined as
miny∈Y c(x, y). The set Nn

≤d for fixed positive integral d is
the finite set of multi-indices α where

∑n
i=1 αi ≤ d. The set

of polynomials with real coefficients in indeterminates x is
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R[x], and a polynomial p(x) may be represented as p(x) =∑
α∈Nn pαx

α =
∑

α∈Nn pα
∏n

i=1 x
αi
i where a finite number

of the constant coefficients pα are nonzero. The degree of a
monomial is deg(xα) = |α| =

∑n
i=1 α, and the degree of a

polynomial is maxα∈Nn |α| such that pα ̸= 0. A matrix Q
is Positive Semidefinite (PSD) if its quadratic form satisfies
xTQx ⪰ 0,∀x ̸= 0, and this will be expressed by Q ⪰ 0.

The set of continuous functions on a space X is C(X),
and its subset of functions with continuous k-th derivatives
is Ck(X). The subcone of nonnegative continuous functions
C+(X) is dual to the set of nonnegative Borel measures
M+(X) supported on X . An inner product ⟨f+, µ⟩ =∫
X
f+(x)dµ(x) is defined by Lebesgue integration for f+ ∈

C+(X), µ ∈ M+(X), and this inner product is generalized
to a duality pairing ⟨f, µ⟩ =

∫
X
f(x)dµ(x) between f ∈

C(X), µ ∈ M+(X). The mass of a measure is ⟨1, µ⟩, and
a probability measure has mass 1. The indicator function
IA(x) of a set A ⊆ X has value 0 when x ̸∈ A and value
1 when x ∈ A, and the measure of A is µ(A) = ⟨IA(x), µ⟩.
The support of µ is the set of x′ ∈ X where every open
neighborhood N(x′) has µ(N(x′)) > 0. A rank-r atomic
measure is supported at r distinct points, and these support
points are called atoms. The Dirac delta δx′ with pairing
⟨f, δx′⟩ = f(x′) is a rank-1 atomic probability measure
supported only at x′.

The unique product measure µ⊗ ν ∈ M+(X × Y ) given
µ ∈ M+(X), ν ∈ M+(Y ) satisfies ∀A ∈ X, B ∈ Y :
(µ⊗ν)(A×B) = µ(A)ν(B). The projection map πx : X×
Y → X performs π((x, y)) = x. The marginalization opera-
tor πx

# yields the x-marginal of a measure η ∈ M+(X×Y )
as ⟨w(x), η(x, y)⟩ = ⟨w(x), πx

#η(x)⟩, ∀w(x) ∈ C(X). All
linear operators L : X → Y have unique adjoint operators
L† : Y ∗ → X∗ such that ⟨Lf, µ⟩ = ⟨f,L†µ⟩, ∀f ∈
C(X), µ ∈ M+(X).

C. Moment-SOS Hierarchy

Refer to [7] for more detail about all aspects reviewed
in this subsection. An LP in a measure µ ∈ M+(X) is a
convex optimization in terms of a cost p(x) ∈ C(X), a set
of constraint functions aj(x) ∈ C(X), and answer values bj
for j = 1, . . . , Jmax of the form:

p∗ = sup
µ∈M+(X)

⟨p, µ⟩ (2a)

⟨aj(x), µ⟩ = bj ∀j = 1, . . . , Jmax. (2b)

The α-moment of µ ∈ M+(X) is the inner product mα =
⟨xα, µ⟩ for a multi-index α ∈ Nn. A measure µ is bounded
if all of its moments mα are bounded for |α| < ∞. Sufficient
conditions for µ to be bounded are that ⟨1, µ⟩ is finite and
the set X is compact.

Assume for the remainder of this section that (p, aj) are
polynomials and that the set X is a basic semialgebraic set
X = {x ∈ Rn | gk(x) ≥ 0 ∀k = 1, . . . , Nc}, which
is a set formed by the intersection of a finite number of
polynomial inequality constraints where the degree of each
gk(x) is bounded. Let m = {mα}α∈N be an infinite moment
sequence. Define M[Xm] = diag(M[m], {M[gkm]}Nc

k=1)

as a block-diagonal matrix comprising the moment matrix
M[m] and localizing matrices M[gkm],

M[m]α,β = mα+β M[gkm]α,β =
∑

γ∈Nn gkγmα+β+γ .

There exists some measure µ ∈ M+(X) (called a repre-
senting measure associated with m) that agrees with mo-
ment sequence as mα = ⟨xα, µ⟩ if the set X satisfies an
Archimedean condition and when Md[Xm] is PSD [16].
Appending a redundant ball constraint R2 − ∥x∥2 ≥ 0 for
sufficiently large R to the inequality description of a compact
X will ensure that X satisfies this Archimedean property.
The degree-d truncation of a moment matrix Md[m] for a
positive integer d is a finite dimensional matrix with size(
n+d
d

)
including moments only up to order 2d. The degree-d

LMI relaxation of the LP (2) is,

p∗d = max
m

∑
α pαyα (3a)

Md(Xm) ⪰ 0 (3b)∑
α ajαmα = bj ∀j = 1, . . . ,m. (3c)

The sequence of upper bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗

will converge as limd→∞ p∗d = p∗ if X is Archimedean.
Given that the per-iteration complexity of an Interior Point
SDP solver in with a M affine constraints involving PSD
matrix constraint of size N is O(N3M +N2M2) [17] and
the moment-SOS hierarchy results in N =

(
n+d
d

)
(with

M scaling in a polynomial manner based on (n, d)), the
computational cost of calculating p∗d from (3a) will therefore
increase rapidly as both n and d grow.

D. Occupation Measures for Peak Estimation

The Ordinary Differential Equation (ODE) peak estimation
problem finds the maximum value of a function p(x) along
system trajectories,

P ∗ = max
t∈[0,T ], x0∈X0

p(x(t | x0)), ẋ(t′) = f(t′, x(t′)). (4)

Optimizing trajectories of (4) may be represented by
(x∗

0, t
∗
p, x

∗
p) that satisfies P ∗ = p(x∗

p) = p(x(t∗p | x∗
0)).

Figure 1 performs a peak estimation problem in times t ∈
[0, 5] for the Flow system from [8],

ẋ =

[
x2

−x1 − x2 +
1
3x

3
1

]
. (5)

Trajectories starting from X0 = {x | (x1−1.5)2+x2 ≤ 0.42}
in the black circle are drawn in cyan. The minimal vertical
coordinate minx2 is P ∗ = −0.5734, and its optimal trajec-
tory in dark blue takes place in x∗

0 ≈ (1.4889,−0.3998)
(blue circle), x∗

p ≈ (0.6767,−0.5734)) and time t∗p ≈
1.6627.

ODE peak estimation may be solved through a primal-
dual pair of LPs. The measure LP in (10) involves an
occupation measure µ ∈ M+([0, T ]×X), an initial measure
µ0 ∈ M+(X0), a peak measure µp ∈ M+([0, T ]×X). The
occupation measure µ(A×B) for A ⊆ [0, T ], B ⊆ X given



Fig. 1: Minimizing x2 on the Flow system (5)

a measure µ0 over initial conditions and a stopping time
t∗ ∈ [0, T ] is,

µ(A×B) =

∫
[0,t∗]×X0

IA×B ((t, x(t | x0))) dt dµ0(x0).

(6)
Definition (6) may be interpreted that µ(A × B) is the
average amount of time a trajectory with initial condition
drawn according µ0 spends in the box A × B. The Lie
derivative along acODE dynamics ẋ = f(t, x) of a function
v ∈ C1([0, T ]×X) is,

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x). (7)

The measures (µ0, µp, µ) are connected by Liouville’s
Equation, Liouville’s equation expresses the constraint that
µ0 is connected to µp by trajectories with dynamics f for
all test functions v ∈ C1([0, T ]×X),

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lfv(t, x), µ⟩ (8)

µp = δ0 ⊗ µ0 + L†
fµ, (9)

in which (9) is equivalent to (8) holding for all v. The
measure LP for peak estimation from [5] is,

p∗ = max ⟨p(x), µp⟩ (10a)

µp = δ0 ⊗ µ0 + L†
fµ (10b)

⟨1, µ0⟩ = 1 (10c)
µ, µp ∈ M+([0, T ]×X) (10d)
µ0 ∈ M+(X0), (10e)

and its dual in terms of variables (v, γ) is,

d∗ = min
v(t,x),γ

γ (11a)

γ ≥ v(0, x) ∀x ∈ X0 (11b)
Lfv(t, x) ≤ 0 ∀(t, x) ∈ [0, T ]×X (11c)
v(t, x) ≥ p(x) ∀(t, x) ∈ [0, T ]×X. (11d)

Programs (10) and (11) satisfy strong duality with p∗ = d∗

under mild conditions, and the bound p∗ ≥ P ∗ from (4) and
(10) will be tight when [0, T ] × X is a compact set [1],
[5]. The moment-SOS hierarchy has been employed to find
a convergent sequence of upper bounds to program (10) [6].
Near-optimal trajectories may be localized through sublevel
sets [6] approximately recovered if the obtained moment
matrices obey rank conditions [14].

III. DISTANCE PROGRAM

A trajectory that achieves a minimal distance of closest
approach to Xu (is an optimal solution to Program (1)) can
be represented by a tuple (x∗

p, y
∗ x∗

0, t
∗
p) as defined in Table

I below.

TABLE I: Representation of distance-minimizing trajectory

x∗
p point of closest approach on trajectory

y∗ point of closest approach on unsafe set
x∗
0 initial condition generating x∗

p
t∗p time needed to travel from x∗

0 to x∗
p

The relationship between these quantities for an optimal
trajectory of (1) is:

P ∗ = c(x∗
p;Xu) = c(x∗

p, y
∗) = c(x(t∗p | x∗

0), y
∗). (12)

Figure 2 plots a the result of an L2 distance estimation
problem between the Flow system (5) and the half-circle
unsafe set Xu = {x ∈ R2 | x2

1 + (x2 + 0.7)2 ≤
0.52,

√
2/2(x1 + x2 − 0.7) ≤ 0}. This distance of closest

L2 approach is 0.2831. The red curve marks the level set of
all points that are this optimal distance away from Xu. The
optimizing trajectory starts at x∗

0 ≈ (1.489,−0.3998) (blue
circle) and reaches a minimal distance at time t∗ ≈ 0.6180 at
the point x∗

p ≈ (0,−0.2997) (blue star). The corresponding
closest point on Xu is y∗ ≈ (−0.2002,−0.4998) (blue
square).

Fig. 2: Flow system trajectories remain at least an L2 bound
of 0.2831 away from Xu

A. Assumptions

The assumptions placed on distance program (1) are,
A1 T is finite and the set X is compact
A2 The dynamics function f(t, x) is Lipschitz
A3 The cost c(x, y) is a member of C0(X ×Xu).
A4 Any trajectory with x(t | x0) ̸∈ X for x0 ∈ X0 ⊂

X, t ∈ [0, T ] also satisfies x(t′ | x0) ̸∈ X ∀t′ ∈ [t, T ]
(non-return)

B. Measure Program

Theorem 3.1: The following infinite-dimensional LP in
measure variables (µ0, µp, µ, η) will lower bound Program



(1) under assumptions A1-A4,

p∗ = inf ⟨c(x, y), η⟩ (13a)
πx
#η = πx

#µp (13b)

µp = δ0 ⊗ µ0 + L†
fµ (13c)

⟨1, µ0⟩ = 1 (13d)
η ∈ M+(X ×Xu) (13e)
µp, µ ∈ M+([0, T ]×X) (13f)
µ0 ∈ M+(X0). (13g)

Proof: Assume that (x∗
p, y

∗, x∗
0, t

∗
p) is a representation

of an optimal trajectory satisfying relation (12). Rank-one
atomic probability measures µ∗

0 = δx=x∗
0
, µ∗

p = δt=t∗p
⊗

δx=x∗
p
, and η∗ = δx=x∗

p
⊗δy=y∗ may be constructed from this

trajectory. An occupation measure µ∗ which is the unique
measure satisfying ⟨v(t, x), µ∗⟩ =

∫ t∗p
0

v(t, x∗(t | x∗
0))dt for

all v(t, x) ∈ C([0, T ] ×X) may also be formed. The mea-
sures (µ∗

0, µ
∗
p, µ

∗, η∗) are a feasible solution to constraints
(13b)-(13g) with an objective ⟨c, η∗⟩ = c(x∗

p, y
∗) = P ∗. It

follows that p∗ is a lower bound on the feasible P ∗.
Lemma 3.2: When A1-A4 are satisfied, all measures will

have finite mass.
Proof: Constraint (13d) clamps ⟨1, µ0⟩ = 1, which

imposes through constraint (13c) with v(t, x) = 1 that
⟨1, µp⟩ = ⟨1, µ0⟩ = 1. Similarly, constraint (13c) (v(t, x) =
1) requires ⟨1, η⟩ = ⟨1, µp⟩ = 1 with w(x) = 1. Lastly, µ
will have bounded mass ⟨1, µ⟩ = ⟨t, µp⟩ < T by constraint
(13c) with v(t, x) = t.

C. Function Program

A Lagrangian L associated with problem (13) possesses
dual variables v(t, x) ∈ C([0, T ]×X), w(x) ∈ C(X), γ ∈ R
corresponding to constraints (13b)-(13d),

L = ⟨c(x, y), η⟩+ ⟨v(t, x), δ0 ⊗ µ0 + L†
fµ− µp⟩ (14)

+ ⟨w(x), πx
#µp − πx

#η⟩+ γ(1− ⟨1, µ0⟩).

The dual program as obtained by taking a saddle point of
the Lagrangian (14),

d∗ = sup
γ,v,w

inf µ0, µp, µ, ηL (15a)

= sup
γ∈R

γ (15b)

v(0, x) ≥ γ ∀x ∈ X0 (15c)
c(x, y) ≥ w(x) ∀(x, y) ∈ X ×Xu (15d)
w(x) ≥ v(t, x) ∀(t, x) ∈ [0, T ]×X (15e)
Lfv(t, x) ≥ 0 ∀(t, x) ∈ [0, T ]×X (15f)
w ∈ C(X) (15g)

v ∈ C1([0, T ]×X). (15h)

Theorem 3.3: Problems (13) and (15) are dual to each
other, and satisfy strong duality with p∗ = d∗ when assump-
tions A1-A4 hold. Additionally, the infimum is attained.

Proof: A proof of strong duality and attainment is given
in Appendix A the extended version of this paper [15] based
on arguments from Theorem 2.6 of [18].

Theorem 3.4: The solution d∗ from (15) is equal to P ∗

from (1) if assumptions A1-A4 are satisfied.
Proof: This equality will be demonstrated by proving

that P ∗ − δ ≤ d∗ ≤ P ∗ for every δ > 0, with d∗. Strong
duality (Theorem 3.3) imposes that p∗ = d∗ with p∗ ≤ P ∗

(Theorem 3.1). This implies that d∗ ≤ P ∗.
To address the lower bound P ∗ − δ ≤ d∗, a feasible tuple

(γ, v, w) for problem (15) must be generated with value γ =
P ∗ − δ. By assumption A3, w may be chosen as the C0

function c(x;Xu). A v may be constructed using Appendix
D of [6], in which a function W ∈ C1([0, T ]×X) may be
found satisfying the following equations (D.2 and D.3 from
citefantuzzi2020bounding with a minimization objective)

LfW (t, x) ≥ −δ/(5T ) ∀(t, x) ∈ [0, T ]×X (16a)
w(x) ≥ W (t, x)− (2/5)δ ∀(t, x) ∈ [0, T ]×X (16b)
W (0, x) ≥ γ ∀x ∈ X0 (16c)
γ ≥ P ∗ − (2/5)δ. (16d)

v may be chosen using W as,

v(t, x) = W (t, x)− (2/5)δ − δ/(5T )(T − t). (17)

The functon W is constructing using the trajectory flow map
for dynamics f (Lemma D.2 of [6]), producing a valid tuple
(γ, v, w) for (15) with γ = P ∗−δ and proving that P ∗−δ ≤
d∗ ≤ P ∗.

Remark 1: A chain of lower bounds may be found
v(t, x) ≤ w(x) ≤ c(x;Xu) holding ∀(t, x) ∈ [0, T ] × X
for all ∀(t, x) ∈ [0, T ]×X .

D. LMI Program

The moment-SOS hierarchy may be used to approximate
program (13) from below in the case where f(t, x) and
c(t, x) are polynomial and the sets (X0, X,Xu) each are
basic semialgebraic and Archimedean. Assume that these
sets may be described by a finite number of bounded-degree
polynomial inequality constraints,

X0 = {x ∈ Rn | g0k(x) ≥ 0, ∀k = 1, . . . , N0}
X = {x ∈ Rn | gXk (x) ≥ 0, ∀k = 1, . . . , NX}
Xu = {x ∈ Rn | gUk (x) ≥ 0, ∀k = 1, . . . , NU}.

The polynomials g0k(x), g
X
k (x), gUk (x) have bounded de-

grees d0k, dk, d
U
k respectively.

The Kronecker delta tensor δij has a value of δij = 1
when i = j and δij = 0 when i ̸= j. Passing a test function
v(t, x) = xαtβ for multi-index powers α ∈ Nn, β ∈ N into
the Liouville equation (13c) yields the relation,

⟨xα, µ0⟩δβ0 + ⟨Lf (x
αtβ), µ⟩ − ⟨xαtβ , µp⟩ = 0. (18)

Let (m0,mp,m,mη) be a sequence of moments of the
measures (µ0, µp, µ, η). The operation Liouαβ(m0,mp,m)
may be understood as the induced relation in moment se-
quences inspired by (18). Define the dynamics degree d̃ as
d̃ = d−1+⌈deg(f)/2⌉. The application of the moment-SOS



hierarchy on the measure program (13) yields the following
LMI in each degree d,

p∗d =min
∑

α,γ cαγm
η
αγ . (19a)

mη
α0 = mp

α0 ∀α ∈ Nn
≤2d (19b)

Liouαβ(m0,mp,m) = 0 ∀(α, β) ∈ Nn+1
≤2d (19c)

m0
0 = 1 (19d)

Md(X0m
0) ⪰ 0 (19e)

Md(([0, T ]×X)mp) ⪰ 0 (19f)
Md̃(([0, T ]×X)m) ⪰ 0 (19g)
Md((X ×Xu)m

η) ⪰ 0. (19h)

Theorem 3.5: The sequence of lower bounds of program
(19) will converge to (1) as limd→∞ p∗d = p∗ = d∗ under as-
sumptions A1-A4 and if (X0, X,Xu) are each Archimedean.

Proof: This result holds through the use of Lemma 3.2,
the Archimedean assumption, and Corollary 8 of [19].

Table II lists the sizes of the moment matrices (PSD matrix
constraints) that appear in the LMI (19). The largest PSD
constraint is Md[m

η] ≥ 0 with matrix size
(
2n+d

d

)
, except

in cases where the dynamics f have a very high polynomial
degree. Computational complexity of the LMI problem (19)
therefore rises in a polynomial manner as n increases for
each fixed degree d.

TABLE II: Dimension of Moment Matrices in (19)

Moment Md(m
0) Md(m

p) Md̃(m) Md(m
η)

Size
(n+d

d

) (1+n+d
d

) (1+n+d̃

d̃

) (2n+d
d

)

IV. NUMERICAL EXAMPLES

Code to generate examples is available at https://
github.com/jarmill/distance. Dependencies in-
clude Gloptipoly [20], YALMIP [21], and Mosek [22].
All examples will feature an L2 distance objective unless
indiciated otherwise. The returned bounds are the estimated
L2 norms, which are the square roots of the LMI outputs.

A. Flow Moon

The Flow example in Figure 2 features a convex set Xu.
The unsafe set in Figure 3 is non-convex Moon-shaped set,
which is formed by the region inside the circle centered at
(0.4,−0.4) with radius 0.8 and outside the circle centered
at (0.6596, 0.3989) with radius 1.16.

L2 distance bounds for degrees 1 : 5 are L1:5
2 =

[1.487×10−4, 2.433×10−4, 0.1501, 0.1592, 0.1592]. Figure
3 pictures the degree 5 LMI bound. A near-optimal trajec-
tory of x∗

0 ≈ (1.489,−0.3998), x∗
p ≈ (1.113,−0.4956),

y∗ ≈ (1.161,−0.6472) and t∗p ≈ 0.1727 was recovered
because the moment matrices M5(m

0), M5(m
p),M5(m

η)
were rank-1 up to numerical accuracy.

Fig. 3: L2 bound of 0.1592

B. Twist

The three-state Twist dynamical system has parameter
matrices A and B,

ẋi(t) =
∑

j Aijxj −Bij(4x
3
j − 3xj)/2, (20)

A =

−1 1 1
−1 0 −1
0 1 −2

 B =

−1 0 −1
0 1 1
1 1 0

 . (21)

Trajectories in Figure 4 begin in the gray sphere X0 = {x |
(x1+0.5)2+x2

2+x2
3 ≤ 0.22 and run until time T = 5. The

unsafe set is the red half-sphere Xu = {x | (x1 − 0.25)2 +
x2
2+x2

3 ≤ 0.22, x3 ≤ 0}. The red shell surrounding Xu are
distance contours found through the degree-5 relaxation of
LMI program (19). The L2 distance in Figure 4a has bounds
L1:5
2 = [0, 0, 0.0336, 0.0425, 0.0427], and the L4 distance in

Figure 4b yields bounds L2:5
4 = [0, 0.0298, 0.0408, 0.0413].

(a) L2 bound of 0.0427 (b) L4 bound of 0.0411

Fig. 4: Twist system trajectories and degree-5 distance bound
sublevel sets (20)

V. EXTENSION TO DYNAMIC UNCERTAINTY

ODE Peak estimation problems were extended to systems
with uncertainty in [23], and this section will demonstrate
how distance estimation problems may be solved for systems
with uncertainty. Let h : [0, T ] → H be a Borel measurable

https://github.com/jarmill/distance
https://github.com/jarmill/distance


uncertainty process that may vary arbitrarily quickly in
time taking on values in a compact range H ⊂ RNh . A
distance estimation problem involving dynamics with a time-
dependent uncertainty process h(t),

P ∗ = min
t, x0, y, h

c(x(t | x0, h(t)), y)

ẋ(t′) = f(t′, x, h(t′)) ∀t′ ∈ [0, T ]

h(t′) ∈ H ∀t′ ∈ [0, T ]

t ∈ [0, T ], x0 ∈ X0, y ∈ Xu.

(22)

The optimal trajectory (x∗
0, x

∗
p, t

∗
p, y

∗, h∗(t)) achieving a
distance of P ∗ in problem (22) has a unique occupation
measure representation µh ∈ M+([0, T ]×X ×H) of,

µh : ⟨v̄(t, x, h), µh⟩ =
∫ t∗p
0

v̄(t, x(t | x∗
0, h∗(t)), h∗(t))dt,

valid for all v̄(t, x, h) ∈ C([0, T ] × X × H). A controlled
Liouville equation to replace (13c) ∀v ∈ C1([0, T ]×X) is,

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf(t,x,h)v(t, x), µh⟩. (23)

An example of this uncertainty approach is in performing
distance estimation on the following corrupted flow system
with h(t) ∈ [−0.25, 0.25] ∀t ∈ [0, T ],

ẋ =

[
x2

(−1 + h)x1 − x2 +
1
3x

3
1

]
. (24)

The first five L2 distance bounds from the LMI relaxation are
L1:5
2 = [5.125×10−5, 1.487×10−4, 0.1609, 0.1688, 0.1691].

Figure 5 visualizes sampled trajectories along with a L5
2 =

0.1691 distance contour.

Fig. 5: Flow (24) with time-dependent uncertainty has an
L2 bound of 0.1691

VI. CONCLUSION

An infinite-dimensional LP in measures was developed to
lower bound the distance of closest approach between points
along trajectories and points on the unsafe set. The optimal
value of this LP is arbitrarily close to the true minimal
distance under assumptions A1-A5, and the moment-SOS
hierarchy will additionally converge as the degree d → ∞
under a polynomial (and Archimedean) setting. Distance es-
timation changes the cost structure of the occupation measure

peak estimation problem, and can therefore be integrated
with complementary methods to treat dynamical uncertainty.
Future work involves exploiting problem structure to reduce
the cost of solving LMI relaxations and creating an optimal
control scheme to maximize the distance of closest approach.
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