Bounding distances to unsafe sets

Jared Miller, Mario Sznaier Apr 14, 2022 MFO: Conic Linear Optimization for Computer-Assisted Proofs

Quantify safety of trajectories by distance to unsafe set

Relax distance using optimal transport theory

Develop occupation measure programs to bound distance

Flow System Setting

 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3] \qquad \forall t \in [0, 5]$

$$\begin{split} X_0 &= \{ x \mid (x_1 - 1.5)^2 + x_2 \leq 0.4^2 \} \\ X_u &= \{ x \mid x_1^2 + (x_2 + 0.7)^2 \leq 0.5^2, \\ \sqrt{2}/2(x_1 + x_2 - 0.7) \leq 0 \} \end{split}$$

Metric space (X, c) satisfying $\forall x, y \in X$:

$$c(x, y) > 0$$
 $x \neq y$
 $c(x, x) = 0$
 $c(x, y) = c(y, x)$
 $c(x, y) \leq c(x, z) + c(z, y)$ $\forall z \in X$

Point-Unsafe Set distance: $c(x; X_u) = \min_{y \in X_u} c(x, y)$

Distance Estimation Problem

L₂ bound of 0.2831

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^* x_0^*, t_p^*)$:

- x_p^* location on trajectory of closest approach
- y^* location on unsafe set of closest approach
- x_0^* initial condition to produce x_p^*
- t_p^* time to reach x_p^* from x_0^*

Safety Background

Barrier Program

Barrier function $B: X \to \mathbb{R}$ indicates safety

Half-circle Contours

Safety Margin

Unsafe set $X_{\mu} = \{x \mid p_i(x) \ge 0 \ \forall i = 1 \dots N_{\mu}\}$ Safety margin $p^* = \max \min_i p_i(x)$ along trajectories If $p^* < 0$, no trajectories enter X_{μ} (safe)

safe: $p^* \le -0.2831$

Safety Margin Scaling

Scale factor in constraints

 $q \leq 1 - x_1^2 - x_2^2$

$$q \leq \mathbf{s}(-x_1 - x_2)$$

-2

-1.5

-1

-0.5

2

Distance vs. Safety Margin

Peak Estimation

Peak Estimation Background

Find maximum value of p(x) along trajectories

Occupation Measure

Time trajectories spend in set

Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$

Connection to Measures

Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_{0}^{*} : & \langle v(0,x), \mu_{0}^{*} \rangle = v(0,x_{0}^{*}) \\ \mu_{p}^{*} : & \langle v(t,x), \mu_{p}^{*} \rangle = v(t_{p}^{*},x_{p}^{*}) \\ \mu^{*} : & \langle v(t,x), \mu^{*} \rangle = \int_{0}^{t_{p}^{*}} v(t,x^{*}(t \mid x_{0}^{*})) dt \end{split}$$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \max \langle p(x), \mu_p
angle$$
 (1a)

$$\langle v(t,x), \mu_{\rho} \rangle = \langle v(0,x), \mu_{0} \rangle + \langle \mathcal{L}_{f} v(t,x), \mu \rangle \quad \forall v \quad (1b)$$

$$\langle 1, \mu_0 \rangle = 1 \tag{1c}$$

$$\mu, \mu_{\rho} \in \mathcal{M}_{+}([0, T] \times X) \tag{1d}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{1e}$$

Test functions $v(t,x) \in C^1([0,T] \times X)$ Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$ $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Distance Program

Distance Estimation Problem (reprise)

L₂ bound of 0.2831

Distance in points \rightarrow Earth-Mover distance

$$\begin{array}{ll} c(x,y) & \langle c(x,y),\eta\rangle \\ x \in X & \to & \langle 1,\eta\rangle = 1 \\ y \in X_u & \eta \in \mathcal{M}_+(X \times X_u) \end{array}$$

Joint (Wasserstein) probability measure η

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\mu_0^*: \qquad \delta_{x=x_0^*} \\ \mu_p^*: \qquad \delta_{t=t_p^*} \otimes \delta_{x=x_p^*} \\ \eta^*: \qquad \delta_{x=x_p^*} \otimes \delta_{y=y^*}$$

Occupation Measure $\forall v(t, x) \in C([0, T] \times X)$

$$\mu^*$$
: $\langle v(t,x), \mu \rangle = \int_0^{t_\rho^*} v(t,x^*(t \mid x_0^*)) dt$

Infinite Dimensional Linear Program (Convergent)

$$p^* = \min \langle c(x, y), \eta \rangle$$

$$\langle w(x), \eta(x, y) \rangle = \langle w(x), \mu_p(t, x) \rangle \qquad \forall w$$

$$\langle v(t, x), \mu_p \rangle = \langle v(0, x), \mu_0 \rangle + \langle \mathcal{L}_f v(t, x), \mu \rangle \qquad \forall v$$

$$\langle 1, \mu_0 \rangle = 1$$

$$\eta \in \mathcal{M}_+(X \times X_u)$$

$$\mu_p, \ \mu \in \mathcal{M}_+([0, T] \times X)$$

$$\mu_0 \in \mathcal{M}_+(X_0)$$

Prob. Measures: $\langle 1, \mu_0 \rangle = \langle 1, \mu_p \rangle = \langle 1, \eta \rangle = 1$

Use moment-SOS hierarchy (Archimedean assumption) Bounds: $p_d^* \le p_{d+1}^* \le \ldots \le p^* = P^*$

Attempt recovery if LMI solution has low rank

Moment matrices for (μ_0, μ_p, η) are rank-1

Related to optima extraction in polynomial optimization

Moon L2 Contours

Inside one circle, outside another

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Distance Example (Twist)

'Twist' System,
$$T = 5$$

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)/2$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

 $L_{\rm 2}$ bound of 0.0425

Distance Variations

Uncertainty in dynamics

Lifted distances (with absolute values)

Sparsity

Set-Set distances for shape safety

Distance Uncertainty

Time dependent uncertainty $w(t) \in W \ \forall t \in [0, T]$ Dynamics $\dot{x}(t) = f(t, x(t), w(t))$

Young measure $\mu(t, x, w)$, Liouville term $\langle \mathcal{L}_{f(t,x,w)v(t,x)}, \mu \rangle$

L₂ bound of 0.1691

Lifted Distance

$$\|x - y\|_1 \qquad \min \sum_i q_i \\ -q_i \le \langle x_i - y_i, \eta \rangle \le q_i \qquad \forall i$$

$$\|x - y\|_3^3 \qquad \min \sum_i q_i \\ -q_i \le \langle (x_i - y_i)^3, \eta \rangle \le q_i \quad \forall i$$

Half-Circle L1 Contours

28

Lifted Distance (L1) Example

 L_1 bound of 0.4003

Sparsity

Separable
$$c(x, y) = \sum_i c_i(x_i, y_i)$$

Use correlative sparsity with measures and cliques

$$\eta_k: \quad I_k = (x_k: x_n, y_1: y_k) \qquad \forall k = 1, \dots, n$$

Sparse decomposition of η :

$$\min \sum_{i} \langle c_i(x_i, y_i), \eta_i \rangle \qquad \eta^1 \in \mathcal{M}_+(X \times \mathbb{R})$$

$$\pi^{l_k \cap l_{k+1}}_{\#} \eta_k = \pi^{l_k \cap l_{k+1}}_{\#} \eta_{k+1} \qquad \eta^k \in \mathcal{M}_+(\mathbb{R}^{n+1})$$

$$\pi^x_{\#} \mu^p = \pi^x_{\#} \eta_1 \qquad \eta^n \in \mathcal{M}_+(\mathbb{R} \times X_u)$$

Shapes along Trajectories

Orientation $\omega(t) \in \Omega$, shape S

Body to global coordinate transformation A:

$$A: S \times \Omega \to X \qquad (s, \omega) \mapsto A(s; \omega)$$

Angular Velocity = 0 rad/sec

Angular Velocity = 1 rad/sec

Set-Set Distance Problem

Set-Set distance between $A(\cdot; \omega) \circ S$ and X_u given ω

$$P^* = \min_{\substack{t, \,\omega_0 \in \Omega_0, \, s \in S}} c(x(t); X_u)$$
$$x(t) = A(s; \, \omega(t \mid \omega_0)) \quad \forall t \in [0, \, T]$$
$$\dot{\omega}(t) = f(t, \omega) \qquad \forall t \in [0, \, T]$$

 L_2 bound of 0.1465

Set-Set Program (Measures)

Add new 'shape' measure $\mu_{\rm s}$

 $p^* = \min \langle c(x, y), \eta \rangle$ $\langle \mathbf{v}(t, \mathbf{x}), \mu_{\mathbf{p}} \rangle = \langle \mathbf{v}(0, \mathbf{x}), \mu_{0} \rangle + \langle \mathcal{L}_{f} \mathbf{v}(t, \mathbf{x}), \mu \rangle$ $\forall v$ $\langle w(x), \eta(x, y) \rangle = \langle w(A(s; \omega)), \mu_s(s, \omega) \rangle$ ∀w $\langle z(\omega), \mu_{p}(t,\omega) \rangle = \langle z(\omega), \mu_{s} \rangle$ $\forall \mathbf{z}$ $\langle 1, \mu_0 \rangle = 1$ $\eta \in \mathcal{M}_+(X \times X_{\mu})$ $\mu_{s} \in \mathcal{M}_{+}(\Omega \times S)$ $\mu_p, \ \mu \in \mathcal{M}_+([0, T] \times \Omega)$ $\mu_0 \in \mathcal{M}_+(\Omega_0)$

Distance Estimation with occupation measures

Approximate recovery if moment matrices are low-rank

Extend to uncertain, lifted, set-set scenarios

- Distance-Maximizing Control
- Further Sparsity
- Efficient Computation
- Other nonnegativity cones and proofs

- Didier Henrion, BrainPOP group at LAAS-CNRS
- MFO and organizing committee
- Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.
- National Science Foundation
- Air Force Office of Scientific Research

Thank you for your attention

arxiv:2110.14047

http://github.com/jarmill/distance

Graduating May 2023, looking for postdocs

Bonus Material and Ideas

Distance Program (Functions)

Auxiliary v(t, x), point-set proxy $w(x) \le c(x; X_u)$:

$$d^* = \max_{\gamma \in \mathbb{R}} \gamma$$

$$v(0, x) \ge \gamma \qquad \forall x \in X_0$$

$$w(x) \ge v(t, x) \qquad \forall (t, x) \in [0, T] \times X$$

$$c(x, y) \ge w(x) \qquad \forall (x, y) \in X \times X_u$$

$$\mathcal{L}_f v(t, x) \ge 0 \qquad \forall (t, x) \in [0, T] \times X$$

$$v \in C^1([0, T] \times X)$$

$$w \in C(X)$$

Chain $\forall (t, x, y) \in [0, T] \times X \times X_u$: $c(x, y) \ge w(x) \ge v(t, x)$

Lifted Distance Program (Measure)

New terms for lifted distance

$$p^{*} = \min \sum_{i} q_{i}$$

$$\mu_{p} = \delta_{0} \otimes \mu_{0} + \mathcal{L}_{f}^{\dagger} \mu$$

$$\pi_{\#}^{*} \eta = \pi_{\#}^{*} \mu_{p}$$

$$\langle 1, \mu_{0} \rangle = 1$$

$$- q_{i} \leq \langle c_{ij}(x, y), \eta \rangle \leq q_{i} \qquad \forall i, j$$

$$\eta \in \mathcal{M}_{+}(X \times X_{u})$$

$$\mu_{p}, \ \mu \in \mathcal{M}_{+}([0, T] \times X)$$

$$\mu_{0} \in \mathcal{M}_{+}(X_{0})$$

Same process as maximin peak

Lifted Distance Program (Function)

New terms β_i^{\pm} on costs $d^* = \max_{\gamma \in \mathbb{R}} \quad \gamma$ $v(0,x) > \gamma$ $\forall x \in X_0$ w(x) > v(t,x) $\forall (t, x) \in [0, T] \times X$ $\sum_{i,j} (\beta_{ij}^+ - \beta_{ij}) c_{ij}(x, y) \ge w(x) \quad \forall (x, y) \in X \times X_u$ $\mathcal{L}_{f}v(t,x) > 0$ $\forall (t, x) \in [0, T] \times X$ $1^T(\beta_i^+ + \beta_i^-) = 1, \ \beta_i^\pm \in \mathbb{R}^{n_i}$ ∀i $v \in C^1([0, T] \times X)$ $w \in C(X)$

Set-Set Program (Function)

d

Set-Set distance proxy $z(\omega) \leq \max_{s \in S} c(A(s; \omega); X_u)$:

$$\begin{aligned} ^* &= \max_{\gamma \in \mathbb{R}} \quad \gamma \\ v(0,\omega) \geq \gamma \\ c(x,y) \geq w(x) \\ w(A(s;\omega)) \geq z(\omega) \\ z(\omega) \geq v(t,\omega) \\ \mathcal{L}_f v(t,\omega) \geq 0 \\ v \in C^1([0,T] \times X) \\ w \in C(X), \ z \in C(\Omega) \end{aligned}$$

 $\forall x \in \Omega_0$ $\forall (x, y) \in X \times X_u$ $\forall (s, \omega) \in S \times \Omega$ $\forall (t, \omega) \in [0, T] \times \Omega$ $\forall (t, \omega) \in [0, T] \times \Omega$