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Main Ideas

Quantify safety of trajectories by distance to unsafe set

Create linear program to bound distance

Solve using Semidefinite Programming
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Flow System Setting

ẋ = [x2,−x1 − x2 + x31/3] ∀t ∈ [0, 5]

X0 = {x | (x1 − 1.5)2 + x2 ≤ 0.42}
Xu = {x | x21 + (x2 + 0.7)2 ≤ 0.52,

√
2/2(x1 + x2 − 0.7) ≤ 0}
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Barrier Program (Safety)

Barrier function B : X → R indicates safety

B(x) ≤ 0 ∀x ∈ Xu

B(x) > 0 ∀x ∈ X0

f (x) · ∂B
∂x

(x) ≥ 0 ∀x ∈ X
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Distance Function

Metric space (X , c) satisfying ∀x , y ∈ X :

c(x , y) > 0 x ̸= y

c(x , x) = 0

c(x , y) = c(y , x)

c(x , y) ≤ c(x , z) + c(z , y) ∀z ∈ X

Point-Unsafe Set distance: c(x ;Xu) = miny∈Xu c(x , y)
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Distance Estimation Problem (Nonconvex)

P∗ = min
t, x0∈X0

c(x(t | x0);Xu)

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

L2 bound of 0.2831 8



Optimal Trajectories (Distance)

Optimal trajectories described by (x∗p , y ∗, x∗0 , t∗p):

x∗p location on trajectory of closest approach

y ∗ location on unsafe set of closest approach

x∗0 initial condition to produce x∗p
t∗p time to reach x∗p from x∗0
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Peak Estimation



Peak Estimation Background

Find minimum value of p(x) along trajectories

P∗ = min
t, x0∈X0

p(x(t | x0))

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

p(x) = x2, ẋ = [x2,−x1 − x2 + x31/3]
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Occupation Measure

Time trajectories spend in set

Test function

v(t, x) ∈ C ([0,T ]× X )

Single trajectory:

⟨v , µ⟩ =
∫ T

0
v(t, x(t | x0))dt

Averaged trajectory: ⟨v , µ⟩ =∫
X

(∫ T

0
v(t, x)dt

)
dµ0(x)

x ′ = −x(x + 2)(x − 1)
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Connection to Measures

Measures: Initial µ0, Peak µp, Occupation µ

For all functions v(t, x) ∈ C ([0,T ]× X )

µ∗
0 : ⟨v(0, x), µ∗

0⟩ = v(0, x∗0 )

µ∗
p : ⟨v(t, x), µ∗

p⟩ = v(t∗p , x
∗
p )

µ∗ : ⟨v(t, x), µ∗⟩ =
∫ t∗p
0

v(t, x∗(t | x∗0 ))dt
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Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

p∗ = min ⟨p(x), µp⟩ (1a)

⟨1, µ0⟩ = 1 (1b)

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ ∀v (1c)

µ, µp ∈ M+([0,T ]× X ) (1d)

µ0 ∈ M+(X0) (1e)

Test functions v(t, x) ∈ C 1([0,T ]× X )

Lie derivative Lf v = ∂tv(t, x) + f (t, x) · ∇xv(t, x)

(µ∗
0, µ

∗
p, µ

∗) is feasible with P∗ = ⟨p(x), µ∗
p⟩
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Peak Estimation Example Bounds

Converging bounds to min. x2 = −0.5734 (moment-SOS)

Box region X = [−2.5, 2.5], time t ∈ [0, 5]
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Distance Program



Distance Estimation Problem (reprise)

P∗ = min
t, x0∈X0

c(x(t | x0);Xu)

ẋ(t) = f (t, x(t)) ∀t ∈ [0,T ], x(0) = x0.

L2 bound of 0.2831 15



Connection to Peak Estimation

Specific form of problem

p(x) = c(x ;Xu)

Moment-SOS hierarchy requires polynomial data

Function c(x ;Xu) generally non-polynomial

min
y∈[−1,1]

∥x − y∥2 =

0 x ∈ [−1, 1]

|x − sign(x)| else
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Distance Relaxation

Distance in points → Expectation of distance

c(x , y)

x ∈ X

y ∈ Xu

→
⟨c(x , y), η⟩
⟨1, η⟩ = 1

η ∈ M+(X × Xu)

Joint probability measure η

Inspired by Optimal Transport
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Measures from Optimal Trajectories

Form measures from each (x∗p , x∗0 , t∗p , y ∗)

Atomic Measures (rank-1)

µ∗
0 : δx=x∗0

µ∗
p : δt=t∗p ⊗ δx=x∗p

η∗ : δx=x∗p ⊗ δy=y∗

Occupation Measure ∀v(t, x) ∈ C ([0,T ]× X )

µ∗ : ⟨v(t, x), µ⟩ =
∫ t∗p
0

v(t, x∗(t | x∗0 ))dt

18



Distance Program (Measures)

Infinite Dimensional Linear Program (Convergent)

p∗ = min ⟨c(x , y), η⟩ (2a)

⟨1, µ0⟩ = 1 (2b)

⟨v(t, x), µp⟩ = ⟨v(0, x), µ0⟩+ ⟨Lf v(t, x), µ⟩ ∀v (2c)

⟨w(x), η(x , y)⟩ = ⟨w(x), µp(t, x)⟩ ∀w (2d)

η ∈ M+(X × Xu) (2e)

µp, µ ∈ M+([0,T ]× X ) (2f)

µ0 ∈ M+(X0) (2g)

Prob. Measures: ⟨1, µ0⟩ = ⟨1, µp⟩ = ⟨1, η⟩ = 1
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Computational Complexity

Use moment-SOS hierarchy (Archimedean assumption)

Degree d , dynamics degree d̃ = d + ⌈deg(f )/2⌉ − 1

Bounds: p∗d ≤ p∗d+1 ≤ . . . ≤ p∗ = P∗

Measure µ0(x) µp(t, x) µ(t, x) η(x , y)

PSD Size
(
n+d
d

) (
1+n+d

d

) (
1+n+d̃

d̃

) (
2n+d
d

)
Timing scales approximately as max((1 + n)6d̃ , (2n)6d)
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Approximation and Recovery

Attempt recovery if LMI solution has low rank

Moment matrices for (µ0, µp, η) are rank-1

Related to optima extraction in polynomial optimization

L2 bound of 0.2831
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Moon L2 Contours

Inside one circle, outside another
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Distance Example (Flow Moon)

Collision if Xu was a half-circle
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Distance Example (Flow Moon)

L2 bound of 0.1592
24



Distance Example (Twist)

‘Twist’ System, T = 5

ẋi = Aijxj − Bij(4x
3
j − 3xj)/2

A =

−1 1 1

−1 0 −1

0 1 −2



B =

−1 0 −1

0 1 1

1 1 0


L2 bound of 0.0425 25



Distance Variations



Distance Uncertainty

Time dependent (bounded) uncertainty w(t) ∈ W ∀t ∈ [0,T ]

Dynamics ẋ(t) = f (t, x(t),w(t))

Young measure µ(t, x ,w), Liouville term ⟨Lf v(t, x ,w), µ⟩

L2 bound of 0.1691, w(t) ∈ [−1, 1]
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Shapes along Trajectories

Orientation ω(t) ∈ Ω, shape S

Body to global coordinate transformation A:

A : S × Ω → X (s, ω) 7→ A(s;ω)

Figure 1: Shape translating and (possibly) rotating

27



Set-Set Distance Problem

Set-Set distance between A(S ;ω(t)) and Xu given t

P∗ = min
t, ω0∈Ω0, s∈S

c(x(t);Xu)

x(t) = A(s; ω(t | ω0)) ∀t ∈ [0,T ]

ω̇(t) = f (t, ω) ∀t ∈ [0,T ], ω(0) = ω0

L2 bound of 0.1465
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Take-aways



Conclusion

Motivated Distance Estimation problem

Solved problem using occupation measures, SDP

Approximate recovery if moment matrices are low-rank

Extend to uncertain, set-set scenarios
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