Bounding the Distance of Closest Approach to Unsafe Sets with Occupation Measures

Jared Miller, Mario Sznaier December 8, 2022 IEEE CDC: Paper ThBT13.5

Safety Example

1

Safety Example

100 kph

Safety Example

Quantify safety of trajectories by distance to unsafe set

Create linear program to bound distance

Solve using Semidefinite Programming

Flow System Setting

 $\dot{x} = [x_2, -x_1 - x_2 + x_1^3/3] \qquad \forall t \in [0, 5]$

$$\begin{split} X_0 &= \{ x \mid (x_1 - 1.5)^2 + x_2 \leq 0.4^2 \} \\ X_u &= \{ x \mid x_1^2 + (x_2 + 0.7)^2 \leq 0.5^2, \\ \sqrt{2}/2(x_1 + x_2 - 0.7) \leq 0 \} \end{split}$$

Barrier Program (Safety)

Barrier function $B: X \to \mathbb{R}$ indicates safety

Metric space (X, c) satisfying $\forall x, y \in X$:

$$c(x, y) > 0$$
 $x \neq y$
 $c(x, x) = 0$
 $c(x, y) = c(y, x)$
 $c(x, y) \leq c(x, z) + c(z, y)$ $\forall z \in X$

Point-Unsafe Set distance: $c(x; X_u) = \min_{y \in X_u} c(x, y)$

Distance Estimation Problem (Nonconvex)

$$P^{*} = \min_{t, x_{0} \in X_{0}} c(x(t \mid x_{0}); X_{u})$$

$$\dot{x}(t) = f(t, x(t)) \quad \forall t \in [0, T], \ x(0) = x_{0}.$$

$$L_{2} \text{ bound of } 0.2831$$

Optimal Trajectories (Distance)

Optimal trajectories described by $(x_p^*, y^*, x_0^*, t_p^*)$:

- x_p^* location on trajectory of closest approach
- y^* location on unsafe set of closest approach
- x_0^* initial condition to produce x_p^*
- t_p^* time to reach x_p^* from x_0^*

Peak Estimation

Peak Estimation Background

Find minimum value of p(x) along trajectories

$$P^* = \min_{t, x_0 \in X_0} p(x(t \mid x_0))$$

$$\dot{x}(t) = f(t, x(t)) \quad \forall t \in [0, T], \quad x(0) = x_0.$$

Occupation Measure

Time trajectories spend in set

Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$

Connection to Measures

Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_{0}^{*} : & \langle v(0,x), \mu_{0}^{*} \rangle = v(0,x_{0}^{*}) \\ \mu_{p}^{*} : & \langle v(t,x), \mu_{p}^{*} \rangle = v(t_{p}^{*},x_{p}^{*}) \\ \mu^{*} : & \langle v(t,x), \mu^{*} \rangle = \int_{0}^{t_{p}^{*}} v(t,x^{*}(t \mid x_{0}^{*})) dt \end{split}$$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \min \langle p(x), \mu_p \rangle$$
 (1a)

$$\langle 1, \mu_0
angle = 1$$
 (1b)

$$\langle v(t,x), \mu_{p} \rangle = \langle v(0,x), \mu_{0} \rangle + \langle \mathcal{L}_{f} v(t,x), \mu \rangle \quad \forall v \quad (1c)$$

$$\mu, \mu_p \in \mathcal{M}_+([0, T] \times X) \tag{1d}$$

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{1e}$$

Test functions $v(t,x) \in C^1([0,T] \times X)$ Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$ $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle$

Peak Estimation Example Bounds

Converging bounds to min. $x_2 = -0.5734$ (moment-SOS) Box region X = [-2.5, 2.5], time $t \in [0, 5]$

Distance Program

Distance Estimation Problem (reprise)

$$P^{*} = \min_{t, x_{0} \in X_{0}} c(x(t \mid x_{0}); X_{u})$$

$$\dot{x}(t) = f(t, x(t)) \quad \forall t \in [0, T], \ x(0) = x_{0}.$$

$$L_{2} \text{ bound of } 0.2831$$

Specific form of problem

$$p(x) = c(x; X_u)$$

Moment-SOS hierarchy requires polynomial data Function $c(x; X_u)$ generally non-polynomial

$$\min_{y \in [-1,1]} \|x - y\|_2 = \begin{cases} 0 & x \in [-1,1] \\ |x - \operatorname{sign}(x)| & \text{else} \end{cases}$$

Distance in points \rightarrow Expectation of distance

$$egin{aligned} c(x,y) & & \langle c(x,y),\eta
angle \ x \in X &
ightarrow & \langle 1,\eta
angle = 1 \ y \in X_u & & \eta \in \mathcal{M}_+(X imes X_u) \end{aligned}$$

Joint probability measure η Inspired by Optimal Transport

Measures from Optimal Trajectories

Form measures from each $(x_p^*, x_0^*, t_p^*, y^*)$

Atomic Measures (rank-1)

$$\mu_0^*: \qquad \delta_{x=x_0^*} \\ \mu_p^*: \qquad \delta_{t=t_p^*} \otimes \delta_{x=x_p^*} \\ \eta^*: \qquad \delta_{x=x_p^*} \otimes \delta_{y=y^*}$$

Occupation Measure $\forall v(t, x) \in C([0, T] \times X)$

$$\mu^*$$
: $\langle v(t,x), \mu \rangle = \int_0^{t_\rho^*} v(t,x^*(t \mid x_0^*)) dt$

Infinite Dimensional Linear Program (Convergent)

$$p^* = \min \langle c(x, y), \eta \rangle$$
 (2a)

$$\langle 1, \mu_0 \rangle = 1$$
 (2b)

$$\langle v(t,x), \mu_p \rangle = \langle v(0,x), \mu_0 \rangle + \langle \mathcal{L}_f v(t,x), \mu \rangle \quad \forall v \quad (2c)$$

$$\langle w(x), \eta(x, y) \rangle = \langle w(x), \mu_{P}(t, x) \rangle$$
 $\forall w$ (2d)

$$\eta \in \mathcal{M}_+(X \times X_u) \tag{2e}$$

$$\mu_{\rho}, \ \mu \in \mathcal{M}_{+}([0, T] \times X)$$
(2f)

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{2g}$$

Prob. Measures: $\langle 1, \mu_0 \rangle = \langle 1, \mu_{\it p} \rangle = \langle 1, \eta \rangle = 1$

Use moment-SOS hierarchy (Archimedean assumption) Degree *d*, dynamics degree $\tilde{d} = d + \lceil \deg(f)/2 \rceil - 1$ Bounds: $p_d^* \le p_{d+1}^* \le \ldots \le p^* = P^*$

Measure
$$\mu_0(x)$$
 $\mu_p(t,x)$ $\mu(t,x)$ $\eta(x,y)$
PSD Size $\binom{n+d}{d}$ $\binom{1+n+d}{d}$ $\binom{1+n+\tilde{d}}{\tilde{d}}$ $\binom{2n+d}{d}$

Timing scales approximately as $max((1 + n)^{6\tilde{d}}, (2n)^{6d})$

Approximation and Recovery

Attempt recovery if LMI solution has low rank

Moment matrices for (μ_0, μ_p, η) are rank-1

Related to optima extraction in polynomial optimization

L₂ bound of 0.2831

Moon L2 Contours

Inside one circle, outside another

Distance Example (Flow Moon)

Collision if X_u was a half-circle

Distance Example (Flow Moon)

 L_2 bound of 0.1592

Distance Example (Twist)

'Twist' System,
$$T = 5$$

$$\dot{x}_i = A_{ij}x_j - B_{ij}(4x_j^3 - 3x_j)/2$$

$$A = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}$$

$$B = \begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

 L_2 bound of 0.0425

Distance Variations

Distance Uncertainty

Time dependent (bounded) uncertainty $w(t) \in W \ \forall t \in [0, T]$ Dynamics $\dot{x}(t) = f(t, x(t), w(t))$

Young measure $\mu(t, x, w)$, Liouville term $\langle \mathcal{L}_f v(t, x, w), \mu \rangle$

 L_2 bound of 0.1691, $w(t) \in [-1, 1]$

Shapes along Trajectories

Orientation $\omega(t) \in \Omega$, shape S

Body to global coordinate transformation A:

 $A: S \times \Omega \to X$ $(s, \omega) \mapsto A(s; \omega)$

Angular Velocity = 0 rad/sec

Angular Velocity = 1 rad/sec

Figure 1: Shape translating and (possibly) rotating

Set-Set Distance Problem

Set-Set distance between $A(S; \omega(t))$ and X_u given t

$$P^* = \min_{\substack{t, \omega_0 \in \Omega_0, s \in S}} c(x(t); X_u)$$
$$x(t) = A(s; \omega(t \mid \omega_0)) \quad \forall t \in [0, T]$$
$$\dot{\omega}(t) = f(t, \omega) \qquad \forall t \in [0, T], \qquad \omega(0) = \omega_0$$

L₂ bound of 0.1465

Motivated Distance Estimation problem

Solved problem using occupation measures, SDP

Approximate recovery if moment matrices are low-rank

Extend to uncertain, set-set scenarios

- CDC Organising Committee
- Didier Henrion, POP group at LAAS-CNRS
- Chateaubriand Fellowship of the Office for Science Technology of the Embassy of France in the United States.
- National Science Foundation (NSF)
- Air Force Office of Scientific Research (AFOSR)

Thank you for your attention

arxiv:2110.14047

http://github.com/jarmill/distance