## **Diameter Constrained Minimum Spanning Graphs**

Jared Miller<sup>1</sup> Daniel Brosch<sup>2</sup> Mario Sznaier<sup>1</sup>

<sup>1</sup>Northeastern University <sup>2</sup>Alpen-Adria-Universität Klagenfurt

| Problem                                                                                                                                                                                                                                                                                                    | Background                                                                                                                                                                                                                                                                                                        | Extensions                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Graph $\mathcal{G}(\mathcal{V},\mathcal{E})$ given                                                                                                                                                                                                                                                         | Bicriteria network design problem                                                                                                                                                                                                                                                                                 | Directed graphs                                                                                                                                                                                                   |
| Each $e \in \mathcal{E}$ has cost $c_e$ and distance $d_e$<br>Find minimal-cost subgraph $\mathcal{H} \subset \mathcal{G}$<br>under diameter budget $D_{\max}$<br>$C^* = \min_{\substack{x \in \{0,1\}^{ \mathcal{E} } \\ \dim(\mathcal{H}(x)) \leq D_{\max}}} \sum_{\substack{(1a) \\ (1b)}} c_e c_e x_e$ | Telecommunications: $c$ is cost to form<br>connection, $d$ is transmission time<br>Bicriteria problems are generically<br>non-polynomial-approximable<br>Prior work focuses on tree setting<br>with uniform distances ( $d_e = 1$ )<br>Uniform trees allow for efficient<br>precedence relations (lack of cycles) | <ul> <li>Steiner problem (low diameter only for selected vertices)</li> <li>Low-diameter communities</li> <li>Multicommodity flow</li> <li>Logical constraints on edge inclusions</li> <li>Warm starts</li> </ul> |
|                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |
| <b>Branch-and-Bound</b>                                                                                                                                                                                                                                                                                    | Example: Complete Graph                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |
| Represent diameter as $D_{\max}$ -bounded-<br>flow between every pair of vertices $(i, j)$ given edge weights $x$                                                                                                                                                                                          | Spanning Tree: Cost 34, Diam 5                                                                                                                                                                                                                                                                                    | Complete graph with $ V  = 9,  E  = 36$                                                                                                                                                                           |

Equivalent MILP to (1) is  $C^* =$ 

 $\min_{x \in \{0,1\}^{|\mathcal{E}|}} \sum_{(k,\ell) \in \mathcal{E}} c_{k\ell} x_{k\ell}$ 

(2a)

$$\begin{aligned} \mathcal{V}(i,j) \in \mathcal{V} \times \mathcal{V}, \ i < j: \qquad (2b) \\ \sum_{\substack{(k,\ell) \in \mathcal{E} \\ (k,\ell) \in \mathcal{E}}} d_{k\ell} f_{k\ell}^{ij} \leq D_{\max} \qquad (2c) \\ f_{k\ell}^{ij} \leq x_{k\ell}, \ (k,\ell) \in \mathcal{E} \qquad (2d) \\ f_{k\ell}^{ij} = -f_{\ell k}^{ij} \qquad (2e) \\ \sum_{\substack{\ell \in \mathcal{V}}} f_{k\ell}^{ij} = \begin{cases} 1 \quad k \in \{i,j\} \\ 0 \quad \text{else}, \quad \forall k \in \mathcal{V} \end{cases} \end{aligned}$$

Total of  $|\mathcal{E}|$  binary variables (x),  $|\mathcal{E}||\mathcal{V}|(|\mathcal{V}|-1)/2$  linear variables  $(f_{k\ell}^{ij})$ 



Random costs  $c_e \in 1..30$ 

Uniform  $d_e = 1$ 

Spanning Graph: Cost 61, Diam 3

