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Noisy data is collected from system observations

Control channels are limited by network structure
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flocking of animals traffic networks circuits & grids

Choose u = Kx to regulate performance of system



Core breakdown

Data-Driven Synthesize K directly from data, no sysid
Structured Require that K is in given a subspace
Robust Control Regulate worst-case H, performance

of Linear Systems



Flow of Presentation

Structured Control
Set-Membership Data-Driven Control

Merge them together!



Structured Control



Structured Control

Problem: K constrained to a known subspace S

Example 1: sparse control
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Example 2: sharing control (17 u = 0)

Vx:1T(Kx)=0 = 1'K=0 (2)



Approaches for Structured Control

Structured control is generically NP-hard *
Quadratic Invariance: property of graph, dynamic control 2

We will use a convex (but conservative) scheme®

1V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design
problems,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2118- 2127, 1997

2. Lessard and S. Lall, “Quadratic invariance is necessary and sufficient for
convexity,” in Proceedings of the 2011 American Control Conference, 2011, pp.
5360-5362.

3Ferrante, Francesco, Fabrizio Dabbene, and Chiara Ravazzi. " On the design of
structured stabilizers for LTI systems.” IEEE Control Systems Letters 4.2 (2019):
289-294.



Robust Design

H, norm < ~ under u = Kx if program is feasible*:

. [ P_EET AR+ BL |
P,(IDrTR,L (AR + BL)T R+ RT _p ( a)
e CR+DL |
=0 3b
(CR+DL)" R+RT—-P (3b)
Tr(Q) <72 (3¢)

PesS", QeS?, ReER™" LeR™"  (3d)

If feasible, then R is nonsingular with valid K = LR™!
4Thm. 5: De Oliveira, Mauricio C., José C. Geromel, and Jacques Bernussou.
"Extended H> and Ho norm characterizations and controller parametrizations for
discrete-time systems.” International journal of control 75.9 (2002): 666-679.




Structured Robust Design

We desire K = LR™! € S, but this is generally nonconvex

P—EET AR+ BL

top block:
PPN AR+ BL)T R+RT—P

Only R and L are sparsity constrained, P can be dense

Standard approach: L € S, R is diagonal — K € S



Structured Control with Reduced Conservatism

R diagonal is too strict, can be loosened °
Given basis {S;}£_; for S with (S = span({5,}))
Define representation S and convex set T(S) as
s=5 S ... s (5)
T(S) ={QeR™|3NeS :S(Lk®Q)=S(A®1,)} (6)

Subspace-compatible controller

LeS, ReT(S), [RI#0 = LR €S (7)

5Ferrante, Francesco, Fabrizio Dabbene, and Chiara Ravazzi. " On the design of
structured stabilizers for LTI systems.” IEEE Control Systems Letters 4.2 (2019):
289-294.




Convex-Relaxed Structured Robust Design

H, norm < ~ for u = Kx with K € S if program is feasible

P_EET AR+ BL
find =0 8
PR (AR+BL)" R+R"-P (8a)

Q CR + DL
(CR+DL)" R+R —p| 70 (8
Tr(Q) <+ (8¢c)

PeS" QeSS ReT(S), LeS. (8d)

If feasible, then R is nonsingular with valid K = LR"1 € S

Still requires known plant (A, B)



Structured Data-Driven Control




Algorithms for Direct Data-Driven Control

Virtual Reference Feedback Tuning (first methods)
Set-Membership (this talk)

e (Data-consistent plants) C (K-Stabilized plants)
e Certificates: Farkas, Interval, S-Lemma (QMI), SOS

Behavioral

e Description of all signal relations

e Parameterize and pick out best system trajectory (DeepC)

Others: Koopman, Gaussian Processes
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Data Collected

Data (x, u) collected as a T-length trajectory:

X_ = [x(0) x(1) ... x(T-1)] eR™T
U = [u0) u(l) ... uo(T-1)] eR™T
X, = [x(1) x(2) ... x(T)] e R™T

Unknown (but bounded) observation noise process w

W = [w(0) w(l) ... w(T-1)] eR"™T

Ground truth (A, B,) obeys

X, =AX_+BU+W (10)
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Noise Description

Noise sequence w bounded inside matrix ellipsoid °:

/ ®11 P1o /
> 0. 11
W' o, byl |WT (11)

for ® € S"tT with dq; € S'_:_ and —®y, € S_L_

Process noise bound Vt : ||w(t)||» < e (overapproximation)

Tel, 0

o=
0 —Ir

(12)

6Van Waarde, Henk J., et al. " Quadratic matrix inequalities with applications to
data-based control.” SIAM Journal on Control and Optimization 61.4 (2023):
2251-2281.
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Data-Consistency Set

Data-bound-characterizing matrix W

rox. 1 1ox
V=0 —x_| o]0 —x_|. (13)
0 U 0 U

Set of data-consistent plants (A, B):

-
/ /

Sr={(AB)||AT| w|AT|=0}. (19
BT BT
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Control Consistency Set

Equivalent statements:

P—EET AR + BL

=0
(AR+BL)" R+R"-P
;1 [P—EET 0 |
.
AT R R ATl =0
o T _ -1
Ao [eeenl] | |5

Must be enforced V(A, B) € p with common (P, R, L)
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Control over Common Set

Matrix S-Lemma’: exist constants o > 0, 3 > 0 such that:

P—EET—BI 0
R Rl —av o

0 - R+ RT — P)!
L (R L

Nonconservative (over 1 quadratic constraint)

"Van Waarde, Henk J., M. Kanat Camlibel, and Mehran Mesbahi. " From noisy data
to feedback controllers: Nonconservative design via a matrix S-lemma.” IEEE
Transactions on Automatic Control 67.1 (2020): 162-175.
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Control over Common Set

Expand by Schur Complement

P-EET-5/0 0 0
0 00 R | \'{0} 0
0 0 0 I O‘[oo

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 R" LT'R+R"—P

Now is an LMI (convex expression) in (R, L, P)
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Data-Driven Structured Control

P,R,IEZ,B,W v subject to:
P—EET—B/0 0: 0
0 0 00 R wo}
ffffffffff 0o 00 L )= o
0 R" LTIR+R"—P
Q o R (15b)
(CR+DL)" R+RT—P
Tr(Q) <42 (15¢)
a>0,>0~v>0 (15d)
PeS", QeSS ReT(S), LeS (15e)
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Examples




Three-State Two-Input System

Ground truth of

[—0.4005 0.4036 —0.0874
A, = | 05154 —0.0815 0.1069 (16)
| 16715 0.7718  —0.3376
[0 0
B, = |—0.6359 —0.1098
|—0.0325  2.2795

H>-suboptimal control with

h
C = , D=
[02><3]

03“] , E=k (17
b
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Sparse Control Task

Controller structure:

e o 0 R].l R12 0
e o
0 R32 R33

Control tasks:

1. Unstructured (dense, comparison)

2. P= R diagonal, L€ S

3. P dense, R diagonal, L € S

4. P dense, R € T(S), L& S (our scheme)
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Comparison (increased noise bound)

Closed-loop H> upper-bounds v.s. € with T = 20

Design (A,B.) €¢=005 €=01 e=0.15
1 (Unstructured) | 2.1537  2.3448 3.0939  4.5757
2 (P=Rdiag.) | 3.5658 4.6619 7.4193 Infeasible
3 (R diag.) 3.0089  3.5997 4.9506  9.1999
4(ReT(S) | 29794 3.5495 4.6806 8.9710
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Comparison (increased time horizon)

Closed-loop H» upper-bounds v.s. T with ¢ = 0.1

Design (A,,B.)) T=6 T=10 T=20
1 (Unstructured) | 2.1537 2.9911 2.8156 3.0939
2 (P=Rdiag.) | 3.5658 6.3386 7.0963 7.4193
3 (R diag.) 3.0080 4.5545 45044  4.9506
4(ReT(S)) | 29794 4.4036 4.4323 4.6806

Non-monotonicity due to overapproximation
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Take-aways




Conclusion

Structured H, regulation based on data
Convex T(S) description of S constraint
Matrix S-Lemma for robust certification

Extensions: LPV synthesis, determining optimal structures
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Thanks!
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