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Why?

Noisy data is collected from system observations

Control channels are limited by network structure

Choose u = Kx to regulate performance of system
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Core breakdown

Data-Driven Synthesize K directly from data, no sysid

Structured Require that K is in given a subspace

Robust Control Regulate worst-case H2 performance

of Linear Systems
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Flow of Presentation

Structured Control

Set-Membership Data-Driven Control

Merge them together!
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Structured Control



Structured Control

Problem: K constrained to a known subspace S

Example 1: sparse control

K :

• • 0 0

0 • • 0

0 0 • •

 (1)

Example 2: sharing control (1⊤u = 0)

∀x : 1⊤(Kx) = 0 =⇒ 1⊤K = 0 (2)
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Approaches for Structured Control

Structured control is generically NP-hard 1

Quadratic Invariance: property of graph, dynamic control 2

We will use a convex (but conservative) scheme3

1V. Blondel and J. N. Tsitsiklis, “NP-hardness of some linear control design

problems,” SIAM J. Control Optim., vol. 35, no. 6, pp. 2118– 2127, 1997
2L. Lessard and S. Lall, “Quadratic invariance is necessary and sufficient for

convexity,” in Proceedings of the 2011 American Control Conference, 2011, pp.

5360–5362.
3Ferrante, Francesco, Fabrizio Dabbene, and Chiara Ravazzi. ”On the design of

structured stabilizers for LTI systems.” IEEE Control Systems Letters 4.2 (2019):

289-294.
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Robust Design

H2 norm < γ under u = Kx if program is feasible4:

find
P,Q,R,L

[
P − EE⊤ AR + BL

(AR + BL)⊤ R + R⊤ − P

]
≻ 0 (3a)[

Q CR + DL

(CR + DL)⊤ R + R⊤ − P

]
≻ 0 (3b)

Tr(Q) ≤ γ2 (3c)

P ∈ Sn, Q ∈ Sq, R ∈ Rn×n, L ∈ Rm×n. (3d)

If feasible, then R is nonsingular with valid K = LR−1

4Thm. 5: De Oliveira, Maurıcio C., José C. Geromel, and Jacques Bernussou.

”Extended H2 and H∞ norm characterizations and controller parametrizations for

discrete-time systems.” International journal of control 75.9 (2002): 666-679.
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Structured Robust Design

We desire K = LR−1 ∈ S, but this is generally nonconvex

top block:

[
P − EE⊤ AR + BL

(AR + BL)⊤ R + R⊤ − P

]
≻ 0 (4)

Only R and L are sparsity constrained, P can be dense

Standard approach: L ∈ S, R is diagonal =⇒ K ∈ S
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Structured Control with Reduced Conservatism

R diagonal is too strict, can be loosened 5

Given basis {Sℓ}kℓ=1 for S with (S = span({Sℓ}))

Define representation S and convex set Υ(S) as

S :=
[
S1 S2 . . . Sk

]
(5)

Υ(S) := {Q ∈ Rn×n | ∃Λ ∈ Sk : S(Ik ⊗ Q) = S(Λ⊗ In)} (6)

Subspace-compatible controller

L ∈ S, R ∈ Υ(S), |R | ≠ 0 =⇒ LR−1 ∈ S (7)

5Ferrante, Francesco, Fabrizio Dabbene, and Chiara Ravazzi. ”On the design of

structured stabilizers for LTI systems.” IEEE Control Systems Letters 4.2 (2019):

289-294.
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Convex-Relaxed Structured Robust Design

H2 norm < γ for u = Kx with K ∈ S if program is feasible

find
P,Q,R,L

[
P − EE⊤ AR + BL

(AR + BL)⊤ R + R⊤ − P

]
≻ 0 (8a)[

Q CR + DL

(CR + DL)⊤ R + R⊤ − P

]
≻ 0 (8b)

Tr(Q) ≤ γ2 (8c)

P ∈ Sn, Q ∈ Sq, R ∈ Υ(S), L ∈ S. (8d)

If feasible, then R is nonsingular with valid K = LR−1 ∈ S

Still requires known plant (A,B)
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Structured Data-Driven Control



Algorithms for Direct Data-Driven Control

Virtual Reference Feedback Tuning (first methods)

Set-Membership (this talk)

• (Data-consistent plants) ⊆ (K -Stabilized plants)

• Certificates: Farkas, Interval, S-Lemma (QMI), SOS

Behavioral

• Description of all signal relations

• Parameterize and pick out best system trajectory (DeepC)

Others: Koopman, Gaussian Processes
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Data Collected

Data (x , u) collected as a T -length trajectory:

X− := [x(0) x(1) . . . x(T − 1)] ∈ Rn×T

U := [u(0) u(1) . . . u(T − 1)] ∈ Rm×T

X+ := [x(1) x(2) . . . x(T )] ∈ Rn×T

Unknown (but bounded) observation noise process w

W := [w(0) w(1) . . . w(T − 1)] ∈ Rn×T

(9)

Ground truth (A∗,B∗) obeys

X+ = A∗X− + B∗U+W (10)
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Noise Description

Noise sequence w bounded inside matrix ellipsoid 6:[
I

W⊤

][
Φ11 Φ12

Φ⊤
12 Φ22

][
I

W⊤

]⊤

⪰ 0. (11)

for Φ ∈ Sn+T with Φ11 ∈ Sn
+ and −Φ22 ∈ ST

++

Process noise bound ∀t : ∥w(t)∥2 ≤ ϵ (overapproximation)

Φ =

[
T ϵIn 0

0 −IT

]
. (12)

6Van Waarde, Henk J., et al. ”Quadratic matrix inequalities with applications to

data-based control.” SIAM Journal on Control and Optimization 61.4 (2023):

2251-2281.
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Data-Consistency Set

Data-bound-characterizing matrix Ψ

Ψ :=

I X+

0 −X−

0 −U


⊤

Φ

I X+

0 −X−

0 −U

 . (13)

Set of data-consistent plants (A,B):

ΣD =

(A,B)

∣∣∣∣∣
 I

A⊤

B⊤


⊤

Ψ

 I

A⊤

B⊤

 ⪰ 0

 . (14)
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Control Consistency Set

Equivalent statements: [
P − EE⊤ AR + BL

(AR + BL)⊤ R + R⊤ − P

]
≻ 0 I

A⊤

B⊤


⊤P − EE⊤ 0

0 −

[
R

L

]
(R + R⊤ − P)−1

[
R

L

]⊤


 I

A⊤

B⊤

 ≻ 0

Must be enforced ∀(A,B) ∈ ΣD with common (P ,R , L)
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Control over Common Set

Matrix S-Lemma7: exist constants α ≥ 0, β > 0 such that:P−EE⊤−βI 0

0 −

[
R

L

]
(R + R⊤ − P)−1

[
R

L

]⊤

− αΨ ⪰ 0.

Nonconservative (over 1 quadratic constraint)

7Van Waarde, Henk J., M. Kanat Camlibel, and Mehran Mesbahi. ”From noisy data

to feedback controllers: Nonconservative design via a matrix S-lemma.” IEEE

Transactions on Automatic Control 67.1 (2020): 162-175.
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Control over Common Set

Expand by Schur Complement
P−EE⊤−βI 0 0 0

0 0 0 R
0 0 0 L
0 R⊤ L⊤ R + R⊤−P

−α

[
Ψ 0
0 0

]
≻ 0

Now is an LMI (convex expression) in (R , L,P)
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Data-Driven Structured Control

inf
P,R,L,α,β,γ

γ subject to:
P−EE⊤−βI 0 0 0

0 0 0 R
0 0 0 L
0 R⊤ L⊤ R + R⊤−P

−α

[
Ψ 0
0 0

]
⪰0 (15a)

[
Q CR + DL

(CR + DL)⊤ R + R⊤ − P

]
⪰ 0 (15b)

Tr(Q) ≤ γ2 (15c)

α ≥ 0, β > 0, γ ≥ 0 (15d)

P ∈ Sn, Q ∈ Sq, R ∈ Υ(S), L ∈ S (15e)
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Examples



Three-State Two-Input System

Ground truth of

A∗ =

−0.4095 0.4036 −0.0874

0.5154 −0.0815 0.1069

1.6715 0.7718 −0.3376

 (16)

B∗ =

 0 0

−0.6359 −0.1098

−0.0325 2.2795


H2-suboptimal control with

C =

[
I3

02×3

]
, D =

[
03×2

I2

]
, E = I3. (17)
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Sparse Control Task

Controller structure:

K ∈

[
• • 0

0 • •

]
Υ(S) :

R11 R12 0

0 R22 0

0 R32 R33

 (18)

Control tasks:

1. Unstructured (dense, comparison)

2. P = R diagonal, L ∈ S
3. P dense, R diagonal, L ∈ S
4. P dense, R ∈ Υ(S), L ∈ S (our scheme)
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Comparison (increased noise bound)

Closed-loop H2 upper-bounds v.s. ϵ with T = 20

Design (A∗,B∗) ϵ = 0.05 ϵ = 0.1 ϵ = 0.15

1 (Unstructured) 2.1537 2.3448 3.0939 4.5757

2 (P = R diag.) 3.5658 4.6619 7.4193 Infeasible

3 (R diag.) 3.0089 3.5997 4.9506 9.1999

4 (R ∈ Υ(S)) 2.9794 3.5495 4.6806 8.9710
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Comparison (increased time horizon)

Closed-loop H2 upper-bounds v.s. T with ϵ = 0.1

Design (A∗,B∗) T = 6 T = 10 T = 20

1 (Unstructured) 2.1537 2.9911 2.8156 3.0939

2 (P = R diag.) 3.5658 6.3386 7.0963 7.4193

3 (R diag.) 3.0089 4.5545 4.5044 4.9506

4 (R ∈ Υ(S)) 2.9794 4.4036 4.4323 4.6806

Non-monotonicity due to overapproximation
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Take-aways



Conclusion

Structured H2 regulation based on data

Convex Υ(S) description of S constraint

Matrix S-Lemma for robust certification

Extensions: LPV synthesis, determining optimal structures
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Thanks!
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