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Stochastic Process

Nonanticipative, indep.-increment set of prob. dists. {µt}
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SDE (continuous)
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Levy Process (jumps)

Geometric Brownian motion (left), Merton jump diffusion (right)
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Questions to ask

Given a state function p(x) (e.g. height, voltage):

What is the maximum along stochastic trajectories of the:

• Mean of p?

• Quantile statistics of p?

• Conditional Value-at-Risk of p?

Risk, safety analysis.
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Examples of Generators

Generator L of process ∀v ∈ dom(L) = C:

Lτv = lim
τ ′→τ

(E[v(t + τ ′, x) | µt+τ ′]− v(t, x)) /τ ′ (1)

Discrete-time Markov Process (C = C ([0,T ]× X ))

Xt+τ = F (t,Xt , ωt), ωt ∼ ξ (sampled) (2)

Lτv =

(∫
Ω

v (t + τ, F (t, x , ω)) dξ(ω)− v

)
/τ (3)
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Examples of Generators (Continuous-time)

Generator L of process ∀v ∈ dom(L) = C:

Lτv = lim
τ ′→τ

(E[v(t + τ ′, x) | µt+τ ′]− v(t, x)) /τ ′ (4)

Stochastic Differential Equation (C = C 1,2([0,T ]× X ))

dx = f (t, x)dt + g(t, x)dW , (5)

L0v = ∂tv + f · ∇xv + gT (∇2
xxv)g/2 (6)

Others: Lévy processes, hybrid, switching, time-delay
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Chance-Peak Problem

Distribution p#µt of p(x(t)) (pushforward)

What is the maximum risk R along the stochastic trajectory?

P∗ = sup
t∗∈[0,T ]

R(p#µt∗) (7a)

x(t) follows L ∀t ∈ [0, t∗] (7b)

x(0) ∼ µ0 (7c)
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Maximal Value at Risk

Maximize ϵ-VaR among multiple distributions

Red + Black areas = 10% probability
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Value-at-Risk Example (Monte Carlo)

50,000 samples with T = 5, ∆t = 10−3

VaR of p = −x2 along dx =

[
x2

−x1 − x2 − 1
2x

3
1

]
dt +

[
0

0.1

]
dw
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Chance-Peak Measure Programs



Occupation measures

Avg. time trajectories spend in set

Test function v(t, x) ∈ C

Averaged value:

⟨v , µ⟩ =
∫ T

0
Ex∼Xt [v(t, x)]dt
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Martingale Relation

∀v : E[v(t + s, x) | Xt+s ] = E[v(t, x) | Xt ]

+

∫ t+s

s′=t

E[L0v(t, x) | Xs′] (8)

Relation between measures (µt , µt+s , µ)

⟨v(t + s, x), µt+s⟩ = ⟨v(t, x), µt⟩+ ⟨L0v(t
′, x), µ⟩

(9)

Shorthand notation (adjoint)

µt+s = µt + L†
0µ (10)

Triple of (9) is supported on graph of L0 (assuming compact

+ regularity), similar for [sum of Lτ ].
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Mean Maximization

Infinite-dimensional Linear Program (Cho, Stockbridge, 2002)

p∗ = sup ⟨p, µp⟩ (11a)

µp = δ0 ⊗ µ0 + L†
f µ (11b)

µ, µp ∈ M+([0,T ]× X ) (11c)

Instance of Optimal Control Program (Lewis and Vinter, 1980)

(µ∗
p, µ

∗) is feasible with P∗ = ⟨p(x), µ∗
p⟩ ≤ p∗

P∗ = p∗ if compactness, regularity properties hold
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Value-at-Risk Bounds

VaR is nonconvex, nonsubadditive

Concentration inequalities can upper-bound VaR

VaRϵ(ξ) ≤ stdev(ξ)r +mean(ξ)

Name r Valid Condition

Cantelli
√

1/(ϵ)− 1 ξ probability distribution

VP
√
4/(9ϵ)− 1 ξ unimodal, ϵ < 1/6

Conditional Value at Risk (CVaR) can also bound VaR
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Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound P∗
r ≥ P∗

Objective upper-bounds VaR w.r.t. time-t∗ distribution µt∗

P∗
r = sup

t∗∈[0,T ]

r
√

⟨p2, µt∗⟩ − ⟨p, µt∗⟩2 + ⟨p, µt∗⟩ (12a)

x follows L (12b)

x(0) ∼ µ0 (12c)

SOCP in measures (3d SOC) for p∗r ≥ P∗
r

Same constraints as mean-maximization, different objective
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Conditional Value-at-Risk

CVAR: Average quantity above the Value-at-Risk

CVaRϵ(ξ(ω)) = (1/ϵ)
∫
ω≥VaRϵ(ξ)

ωdξ(ω)

Uniform distributions with same VaR, different CVaR (70%)
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CVaR Linear Program

Measure LP to compute CVaR (with dψ
dξ

≤ 1
ϵ
)

CVaRϵ(ν) = sup
ψ,ψ̂∈M+(R)

mean(psi) (13a)

ϵψ + ψ̂ = ν (13b)

⟨1, ψ⟩ = 1 (13c)

VaR = 1.2816, CVaR= 1.7550, ϵψ ≤ ξ
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CVaR Chance-Peak

Highest CVaR along SDE trajectories

P∗
c = sup

t∗∈[0,T ]

CVaRϵ(p#µt∗) (14a)

x follows L (14b)

x(0) ∼ µ0 (14c)

Almost the same as VaR chance-peak, with P∗
c ≥ P∗
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CVaR Measure program

Add CVaR objective, constraints to chance-peak

p∗c = sup mean(ψ) (15a)

µτ = δ0 ⊗ µ0 + L†µ (15b)

⟨1, ψ⟩ = 1 (15c)

ϵψ + ψ̂ = p#µτ (15d)

µ, µτ ∈ M+([0,T ]× X ) (15e)

ψ, ψ̂ ∈ M+(R) (15f)

Upper-bound p∗c ≥ P∗
c ≥ P∗, LP in measures
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Comparison of bounds

P∗
r = p∗r and P∗

c = p∗c if

1. L has unique solutions (e.g. SDE: Lipchitz, Growth)

2. [0,T ]× X compact

3. p(x) is continuous

P∗
Cantelli ≥ P∗

c always, but (P∗
c , P

∗
VP) incomparable (so far)

Empirically, degree-k moment LMIs satisfy p∗Cantelli,k ≥ p∗c,k
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Chance-Peak Examples



Two-State

Stochastic Flow (Prajna, Rantzer) with T = 5, p(x) = −x2

dx =

[
x2

−x1 − x2 − 1
2
x31

]
dt +

[
0

0.1

]
dw

d = 6 (dash-dot=50%, dotted-black=85% CVAR, solid=85% VP) 18



Three-State

Stochasic Twist system with T = 5, p(x) = x3

dx =

−2.5x1 + x2 − 0.5x3 + 2x31 + 2x33
−x1 + 1.5x2 + 0.5x3 − 2x32 − 2x33
1.5x1 + 2.5x2 − 2x3 − 2x31 − 2x32

 dt +

 0

0

0.1

 dw

d = 6 (translucent=50%, gray=85% CVAR, solid=85% VP) 19



Two-State Switching

Switching subsystems at T = 5, p(x) = −x2

dx =

{[
−2.5x1 − 2x2
−0.5x1 − x2

]
,

[
−x1 − 2x2
2.5x1 − x2

]}
dt +

[
0

0.25x2

]
dw

d = 6 (dash-dot=50%, dotted-black=85% CVAR, solid=85% VP) 20



Two-State Discrete-Time

Parameter λ sampled from λ[t] ∈ N (0, 1)

x+ =

[
−0.3x1 + 0.8x2 + x1x2λ/4

−0.9x1 −−0.1x2 − 0.2x21 + λ/40

]
.

d = 6 (dash-dot=50%, black-dotted=85% CVaR) 21



Take-aways



Conclusion

Posed the chance-peak problem for wide class of L

Solved using infinite-dimensional SOCPs, LPs in measures

Certified outer-approximations of risk
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Thanks!

Questions?
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SOS Expectation-Peak

d∗
E =min

∫
X

v(0, x) dµ0(x) (16a)

− Lv(t, x) ∈ Σ[[0,T ]× X ] (16b)

v(t, x)− p(x) ∈ Σ[[0,T ]× X ] (16c)

v ∈ R[t, x ]. (16d)
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SOS Concentration-Peak

d∗
r = inf u1 + 2u3 +

∫
X0

v(0, x0)dµ0(x0) (17a)

− Lv(t, x) ∈ Σ[[0,T ]× X ] (17b)

v(t, x) + u1 p
2(x)− 2 u2 p(x)− p(x) (17c)

∈ Σ[[0,T ]× X ]

([u1 + u3,−(r/2), u2], u3) ∈ L3 (17d)

u ∈ R3, v ∈ C([0,T ]× X ).
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SOS CVaR-Peak

d∗
c =min u +

∫
X

v(0, x) dµ0(x) (18a)

− Lv(t, x) ∈ Σ[[0,T ]× X ] (18b)

v(t, x)− w(p(x)) ∈ Σ[[0,T ]× X ] (18c)

u + ϵw(q)− q ∈ Σ[pmin, pmax ] (18d)

w(q) ∈ Σ[pmin, pmax ] (18e)

u ∈ R, v ∈ R[t, x ]. (18f)
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