Peak Value-At-Risk Estimation for Stochastic Differential Equations Using Occupation Measures

Jared Miller
Matteo Tacchi
Mario Sznaier
Ashkan Jasour
ThB22.6: IEEE CDC

Northeastern
University

Stochastic Process

Nonanticipative, indep.-increment set of prob. dists. $\left\{\mu_{t}\right\}$

Geometric Brownian motion (left), Merton jump diffusion (right)

Questions to ask

Given a state function $p(x)$ (e.g. height, voltage):
What is the maximum along stochastic trajectories of the:

- Mean of p ?
- Quantile statistics of p ?
- Conditional Value-at-Risk of p ?

Risk, safety analysis.

Examples of Generators

Generator \mathcal{L} of process $\forall v \in \operatorname{dom}(\mathcal{L})=\mathcal{C}$:

$$
\begin{equation*}
\mathcal{L}_{\tau} v=\lim _{\tau^{\prime} \rightarrow \tau}\left(\mathbb{E}\left[v\left(t+\tau^{\prime}, x\right) \mid \mu_{t+\tau^{\prime}}\right]-v(t, x)\right) / \tau^{\prime} \tag{1}
\end{equation*}
$$

Discrete-time Markov Process $(\mathcal{C}=C([0, T] \times X))$

$$
\begin{align*}
X_{t+\tau} & =F\left(t, X_{t}, \omega_{t}\right), \quad \omega_{t} \sim \xi(\text { sampled }) \tag{2}\\
\mathcal{L}_{\tau} v & =\left(\int_{\Omega} v(t+\tau, F(t, x, \omega)) d \xi(\omega)-v\right) / \tau \tag{3}
\end{align*}
$$

Examples of Generators (Continuous-time)

Generator \mathcal{L} of process $\forall v \in \operatorname{dom}(\mathcal{L})=\mathcal{C}$:

$$
\begin{equation*}
\mathcal{L}_{\tau} v=\lim _{\tau^{\prime} \rightarrow \tau}\left(\mathbb{E}\left[v\left(t+\tau^{\prime}, x\right) \mid \mu_{t+\tau^{\prime}}\right]-v(t, x)\right) / \tau^{\prime} \tag{4}
\end{equation*}
$$

Stochastic Differential Equation $\left(\mathcal{C}=C^{1,2}([0, T] \times X)\right)$

$$
\begin{align*}
d x & =f(t, x) d t+g(t, x) d W, \tag{5}\\
\mathcal{L}_{0} v & =\partial_{t} v+f \cdot \nabla_{x} v+g^{T}\left(\nabla_{x x}^{2} v\right) g / 2 \tag{6}
\end{align*}
$$

Others: Lévy processes, hybrid, switching, time-delay

Chance-Peak Problem

Distribution $p_{\#} \mu_{t}$ of $p(x(t))$ (pushforward)
What is the maximum risk R along the stochastic trajectory?

$$
\begin{align*}
P^{*}= & \sup _{t^{*} \in[0, T]} R\left(p_{\#} \mu_{t^{*}}\right) \tag{7a}\\
& x(t) \text { follows } \mathcal{L} \quad \forall t \in\left[0, t^{*}\right] \tag{7b}\\
& x(0) \sim \mu_{0}
\end{align*}
$$

(7c)

Maximal Value at Risk

Maximize ϵ-VaR among multiple distributions
$\max \operatorname{VaR}$

Value-at-Risk Example (Monte Carlo)

50,000 samples with $T=5, \Delta t=10^{-3}$

VaR of $p=-x_{2}$ along $d x=\left[\begin{array}{c}x_{2} \\ -x_{1}-x_{2}-\frac{1}{2} x_{1}^{3}\end{array}\right] d t+\left[\begin{array}{c}0 \\ 0.1\end{array}\right] d w$

Chance-Peak Measure Programs

Occupation measures

Avg. time trajectories spend in set

Test function $v(t, x) \in \mathcal{C}$

Averaged value:

$$
\langle v, \mu\rangle=\int_{0}^{T} \mathbb{E}_{x \sim \chi_{t}}[v(t, x)] d t
$$

Martingale Relation

$$
\begin{align*}
\forall v: \mathbb{E}\left[v(t+s, x) \mid X_{t+s}\right]= & \mathbb{E}\left[v(t, x) \mid X_{t}\right] \\
& +\int_{s^{\prime}=t}^{t+s} \mathbb{E}\left[\mathcal{L}_{0} v(t, x) \mid X_{s^{\prime}}\right] \tag{8}
\end{align*}
$$

Relation between measures $\left(\mu_{t}, \mu_{t+s}, \mu\right)$

$$
\begin{equation*}
\left\langle v(t+s, x), \mu_{t+s}\right\rangle=\left\langle v(t, x), \mu_{t}\right\rangle+\left\langle\mathcal{L}_{0} v\left(t^{\prime}, x\right), \mu\right\rangle \tag{9}
\end{equation*}
$$

Shorthand notation (adjoint)

$$
\begin{equation*}
\mu_{t+s}=\mu_{t}+\mathcal{L}_{0}^{\dagger} \mu \tag{10}
\end{equation*}
$$

Triple of (9) is supported on graph of \mathcal{L}_{0} (assuming compact + regularity), similar for [sum of \mathcal{L}_{τ}].

Mean Maximization

Infinite-dimensional Linear Program (Cho, Stockbridge, 2002)

$$
\begin{align*}
& p^{*}=\sup \left\langle p, \mu_{p}\right\rangle \tag{11a}\\
& \quad \mu_{p}=\delta_{0} \otimes \mu_{0}+\mathcal{L}_{f}^{\dagger} \mu \tag{11b}\\
& \quad \mu, \mu_{p} \in \mathcal{M}_{+}([0, T] \times X) \tag{11c}
\end{align*}
$$

Instance of Optimal Control Program (Lewis and Vinter, 1980)
(μ_{ρ}^{*}, μ^{*}) is feasible with $P^{*}=\left\langle p(x), \mu_{p}^{*}\right\rangle \leq p^{*}$
$P^{*}=p^{*}$ if compactness, regularity properties hold

Value-at-Risk Bounds

VaR is nonconvex, nonsubadditive
Concentration inequalities can upper-bound VaR

$$
\operatorname{Va} R_{\epsilon}(\xi) \leq \operatorname{stdev}(\xi) r+\operatorname{mean}(\xi)
$$

Name	r	Valid Condition
Cantelli	$\sqrt{1 /(\epsilon)-1}$	ξ probability distribution
VP	$\sqrt{4 /(9 \epsilon)-1}$	ξ unimodal, $\epsilon<1 / 6$

Conditional Value at Risk (CVaR) can also bound VaR

Concentration-Bounded Chance-Peak

Apply concentration inequalities to get upper bound $P_{r}^{*} \geq P^{*}$ Objective upper-bounds VaR w.r.t. time- t^{*} distribution $\mu_{\mathrm{t}^{*}}$

$$
\begin{align*}
P_{r}^{*}= & \sup _{t^{*} \in[0, T]} r \sqrt{\left\langle p^{2}, \mu_{t^{*}}\right\rangle-\left\langle p, \mu_{t^{*}}\right\rangle^{2}}+\left\langle p, \mu_{t^{*}}\right\rangle \tag{12a}\\
& x \text { follows } \mathcal{L} \tag{12b}\\
& x(0) \sim \mu_{0} \tag{12c}
\end{align*}
$$

SOCP in measures (3d SOC) for $p_{r}^{*} \geq P_{r}^{*}$
Same constraints as mean-maximization, different objective

Conditional Value-at-Risk

CVAR: Average quantity above the Value-at-Risk

$$
\operatorname{CVa}_{\epsilon}(\xi(\omega))=(1 / \epsilon) \int_{\omega \geq \operatorname{VaR}_{\epsilon}(\xi)} \omega d \xi(\omega)
$$

Uniform distributions with same VaR, different CVaR (70\%)

CVaR Linear Program

Measure LP to compute CVaR (with $\frac{d \psi}{d \xi} \leq \frac{1}{\epsilon}$)

$$
\begin{align*}
C \operatorname{VaR} R_{\epsilon}(\nu)= & \sup _{\psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})} \operatorname{mean}(\text { psi) } \tag{13a}\\
& \epsilon \psi+\hat{\psi}=\nu \\
& \langle 1, \psi\rangle=1 \tag{13b}
\end{align*}
$$

CVaR Chance-Peak

Highest CVaR along SDE trajectories

$$
\begin{align*}
P_{c}^{*}= & \sup _{t^{*} \in[0, T]} C V a R_{\epsilon}\left(p_{\#} \mu_{t^{*}}\right) \tag{14a}\\
& x \text { follows } \mathcal{L} \tag{14b}\\
& x(0) \sim \mu_{0} \tag{14c}
\end{align*}
$$

Almost the same as VaR chance-peak, with $P_{c}^{*} \geq P^{*}$

CVaR Measure program

Add CVaR objective, constraints to chance-peak

$$
\begin{align*}
p_{c}^{*}= & \sup \quad \operatorname{mean}(\psi) \tag{15a}\\
& \mu_{\tau}=\delta_{0} \otimes \mu_{0}+\mathcal{L}^{\dagger} \mu \tag{15b}\\
& \langle 1, \psi\rangle=1 \tag{15c}\\
& \epsilon \psi+\hat{\psi}=p_{\#} \mu_{\tau} \tag{15d}\\
& \mu, \mu_{\tau} \in \mathcal{M}_{+}([0, T] \times X) \tag{15e}\\
& \psi, \hat{\psi} \in \mathcal{M}_{+}(\mathbb{R})
\end{align*}
$$

(15f)

Upper-bound $p_{c}^{*} \geq P_{c}^{*} \geq P^{*}$, LP in measures

Comparison of bounds

$P_{r}^{*}=p_{r}^{*}$ and $P_{c}^{*}=p_{c}^{*}$ if

1. \mathcal{L} has unique solutions (e.g. SDE: Lipchitz, Growth)
2. $[0, T] \times X$ compact
3. $p(x)$ is continuous
$P_{\text {Cantelli }}^{*} \geq P_{c}^{*}$ always, but ($P_{c}^{*}, P_{\mathrm{VP}}^{*}$) incomparable (so far)
Empirically, degree- k moment LMIs satisfy $p_{\text {Cantelli,k }}^{*} \geq p_{c, k}^{*}$

Chance-Peak Examples

Two-State

Stochastic Flow (Prajna, Rantzer) with $T=5, p(x)=-x_{2}$

$$
d x=\left[\begin{array}{c}
x_{2} \\
-x_{1}-x_{2}-\frac{1}{2} x_{1}^{3}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
0.1
\end{array}\right] d w
$$

Stochastic Flow System

$d=6$ (dash-dot $=50 \%$, dotted-black $=85 \%$ CVAR, solid $=85 \%$ VP $)$

Three-State

Stochasic Twist system with $T=5, p(x)=x_{3}$

$$
d x=\left[\begin{array}{l}
-2.5 x_{1}+x_{2}-0.5 x_{3}+2 x_{1}^{3}+2 x_{3}^{3} \\
-x_{1}+1.5 x_{2}+0.5 x_{3}-2 x_{2}^{3}-2 x_{3}^{3} \\
1.5 x_{1}+2.5 x_{2}-2 x_{3}-2 x_{1}^{3}-2 x_{2}^{3}
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
0 \\
0.1
\end{array}\right] d w
$$

Stochastic Twist System

$$
d=6(\text { translucent }=50 \%, \text { gray }=85 \% \text { CVAR, solid }=85 \% \text { VP })
$$

Two-State Switching

Switching subsystems at $T=5, p(x)=-x_{2}$

$$
d x=\left\{\left[\begin{array}{c}
-2.5 x_{1}-2 x_{2} \\
-0.5 x_{1}-x_{2}
\end{array}\right],\left[\begin{array}{c}
-x_{1}-2 x_{2} \\
2.5 x_{1}-x_{2}
\end{array}\right]\right\} d t+\left[\begin{array}{c}
0 \\
0.25 x_{2}
\end{array}\right] d w
$$

Stochastic Switched System

$d=6$ (dash-dot $=50 \%$, dotted-black $=85 \%$ CVAR, solid $=85 \%$ VP $)$

Two-State Discrete-Time

Parameter λ sampled from $\lambda[t] \in \mathcal{N}(0,1)$

$$
x_{+}=\left[\begin{array}{c}
-0.3 x_{1}+0.8 x_{2}+x_{1} x_{2} \lambda / 4 \\
-0.9 x_{1}--0.1 x_{2}-0.2 x_{1}^{2}+\lambda / 40
\end{array}\right]
$$

Stochastic Discrete-Time System

$$
d=6 \text { (dash-dot=50\%, black-dotted=85\% CVaR) }
$$

Take-aways

Conclusion

Posed the chance-peak problem for wide class of \mathcal{L}

Solved using infinite-dimensional SOCPs, LPs in measures

Certified outer-approximations of risk

Acknowledgements

Roy Smith, Automatic Control Lab (IfA)
POP group at LAAS-CNRS
NCCR Automation
Air Force Office for Scientific Research
National Science Foundation

Thanks!

Questions?

SOS Expectation-Peak

$$
\begin{align*}
d_{\mathbb{E}}^{*}= & \min \quad \int_{X} v(0, x) d \mu_{0}(x) \tag{16a}\\
& -\mathcal{L} v(t, x) \in \Sigma[[0, T] \times X] \tag{16b}\\
& v(t, x)-p(x) \in \Sigma[[0, T] \times X] \\
& v \in \mathbb{R}[t, x] .
\end{align*}
$$

SOS Concentration-Peak

$$
\begin{align*}
& d_{r}^{*}= \text { inf } \quad u_{1}+2 u_{3}+\int_{x_{0}} v\left(0, x_{0}\right) d \mu_{0}\left(x_{0}\right) \tag{17a}\\
&-\mathcal{L} v(t, x) \in \Sigma[[0, T] \times X] \tag{17b}\\
& v(t, x)+u_{1} p^{2}(x)-2 u_{2} p(x)-p(x) \tag{17c}\\
& \in \Sigma[[0, T] \times X] \\
&\left(\left[u_{1}+u_{3},-(r / 2), u_{2}\right], u_{3}\right) \in \mathbb{L}^{3} \tag{17d}\\
& u \in \mathbb{R}^{3}, v \in \mathcal{C}([0, T] \times X) .
\end{align*}
$$

SOS CVaR-Peak

$$
\begin{align*}
d_{c}^{*}= & \min \quad u+\int_{X} v(0, x) d \mu_{0}(x) \tag{18a}\\
& -\mathcal{L} v(t, x) \in \Sigma[[0, T] \times X] \tag{18b}\\
& v(t, x)-w(p(x)) \in \Sigma[[0, T] \times X] \tag{18c}\\
& u+\epsilon w(q)-q \in \Sigma\left[p_{\min }, p_{\max }\right] \\
& w(q) \in \Sigma\left[p_{\min }, p_{\max }\right] \\
& u \in \mathbb{R}, v \in \mathbb{R}[t, x] . \tag{18f}
\end{align*}
$$

(18d)
(18e)

