Peak Estimation for Uncertain and Switched Systems

Jared Miller¹, Didier Henrion^{2, 3}, Mario Sznaier¹, Milan Korda ^{2, 3}

Conference on Decision and Control, Dec 13-17, 2021

¹Northeastern University, Boston ²LAAS-CNRS Toulouse ³Czech Technical University, Prague

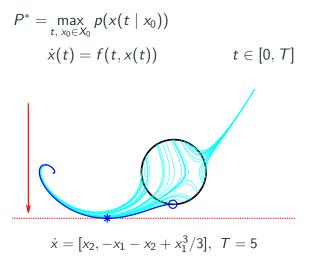
Occupation measures can be used for peak estimation

Formulate peak estimation problems with uncertain dynamics

Find convergent approximations to peak values

Peak Estimation Problem

Find maximum value of p(x) along trajectories



Maximum infection rate in an epidemic

Maximum altitude of an aircraft

Maximum voltage on a powerline

Maximum speed of a motor

Maximum height of a shock wave

Maximum concentration of a chemical reagent

Peak and Measure Background

Nonnegative Borel Measure $\mu : Set(X) \rightarrow \mathbb{R}_+$

- $\mu \in \mathcal{M}_+(X)$: space of measures on X
- $f \in C(X)$: continuous function on X

Duality pairing by Lebesgue integration:

$$\langle f(x), \mu \rangle = \int_X f(x) d\mu(x)$$

 $\mu(X) = \langle 1, \mu \rangle = 1$: Probability distribution

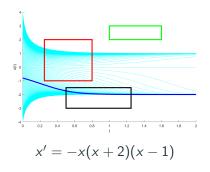
Occupation Measure

Time trajectories spend in set

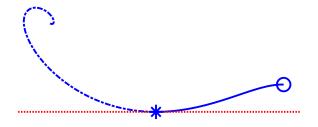
Test function $v(t,x) \in C([0, T] \times X)$

Single trajectory: $\langle v, \mu \rangle = \int_0^T v(t, x(t \mid x_0)) dt$

Averaged trajectory: $\langle v, \mu \rangle = \int_X \left(\int_0^T v(t, x) dt \right) d\mu_0(x)$



Connection to Measures



Measures: Initial μ_0 , Peak μ_p , Occupation μ For all functions $v(t, x) \in C([0, T] \times X)$

$$\begin{split} \mu_{0}^{*} : & \langle v(0,x), \mu_{0}^{*} \rangle = v(0,x_{0}^{*}) \\ \mu_{p}^{*} : & \langle v(t,x), \mu_{p}^{*} \rangle = v(t_{p}^{*},x_{p}^{*}) \\ \mu^{*} : & \langle v(t,x), \mu^{*} \rangle = \int_{0}^{t_{p}^{*}} v(t,x^{*}(t \mid x_{0}^{*})) dt \end{split}$$

Measures for Peak Estimation

Infinite dimensional linear program (Cho, Stockbridge, 2002)

$$p^* = \max \langle p(x), \mu_p
angle$$
 (1a)

$$\langle v(t,x), \mu_{\rho} \rangle = \langle v(0,x), \mu_{0} \rangle + \langle \mathcal{L}_{f} v(t,x), \mu \rangle \quad \forall v \quad (1b)$$

$$\langle 1, \mu_0 \rangle = 1$$
 (1c

$$\mu, \mu_{\rho} \in \mathcal{M}_{+}([0, T] \times X)$$
(1d)

$$\mu_0 \in \mathcal{M}_+(X_0) \tag{1e}$$

Test functions $v(t,x) \in C^1([0,T] \times X)$ Lie derivative $\mathcal{L}_f v = \partial_t v(t,x) + f(t,x) \cdot \nabla_x v(t,x)$ $(\mu_0^*, \mu_p^*, \mu^*)$ is feasible with $P^* = \langle p(x), \mu_p^* \rangle$ Truncate infinite-dimensional LP

- Discretized (gridded) finite LPs
- Markov Chain Martingale
- Moment-Sum-of-Squares Hierarchy

Moment-SOS: LMIs in increasing degree d,

$$p_d^* \ge p_{d+1}^* \ge \dots p^*, \qquad \qquad \lim_{d \to \infty} p_d^* = p^*$$

Uncertainty

System with Uncertainty Example

Time-Independent Uncertainty

Time-Dependent Uncertainty

$$\dot{x} = \begin{bmatrix} x_2 \\ -x_1\theta - x_2 + x_1^3/3 \end{bmatrix} \qquad \dot{x} = \begin{bmatrix} x_2 \\ -x_1w(t) - x_2 + x_1^3/3 \end{bmatrix}$$

 θ , $w(t) \in [0.5, 1.5], x_0 = [1; 0]$

Time-independent $heta \in \Theta$

Time-dependent $w(t) \in W, \ \forall t \in [0, T]$

$$P^* = \max_{t \in [0,T], x_0 \in X_0, \theta \in \Theta, w(t)} p(x(t \mid x_0, \theta, w(t)))$$
$$\dot{x}(t) = f(t, x(t), \theta, w(t)), \quad w(t) \in W \quad \forall t \in [0, T].$$

Uncertain Peak Measure Program

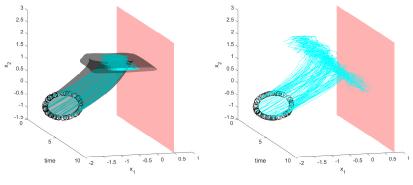
Based on optimal control LP of Lewis, Vinter (1980)

$$p^{*} = \max \langle p(x), \mu_{p} \rangle$$
$$\langle v(t, x, \theta), \mu_{p} \rangle = \langle v(0, x, \theta), \mu_{0} \rangle + \langle \mathcal{L}_{f} v(t, x, \theta), \mu \rangle \quad \forall v$$
$$\langle 1, \mu_{0} \rangle = 1$$
$$\mu \in \mathcal{M}_{+}([0, T] \times X \times \Theta \times W)$$
$$\mu_{p} \in \mathcal{M}_{+}([0, T] \times X \times \Theta)$$
$$\mu_{0} \in \mathcal{M}_{+}(X_{0} \times \Theta)$$

 $P^* = p^*$ when f Lipschitz, $[0, T] \times X \times \Theta \times W$ compact

Continuous-Time Example

Maximize x_1 at order 4 with $w(t) \in [-0.2, 0.2]$



 $\theta = 0$

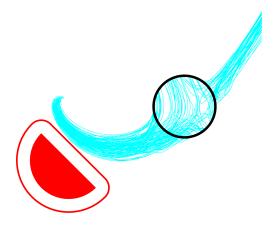
 $\theta \in [-0.5, 0.5]$

$$\dot{x}(t) = \begin{bmatrix} -0.5x_1 - (0.5 + w(t))x_2 + 0.5\\ -0.5x_2 + 1 + \theta \end{bmatrix}$$
12

Distance Uncertainty

Time dependent uncertainty $w(t) \in W \ \forall t \in [0, T]$

Uncertainty changes Liouville, Distance changes cost



 L_2 bound of 0.1691

Switching

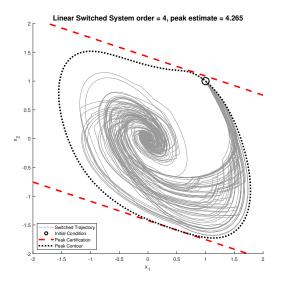
Closed cover $\bigcup_{k=1}^{N_s} X^k = X$ Dynamics $\dot{x} = f_k(t, x)$ admissible in set X^k

Per-subsystem occupation measures $\mu \in \mathcal{M}_+([0, T] \times X_k)$,

$$\mu = \sum_{k} \mu_{k}$$
$$\langle \mathcal{L}_{f} \mathbf{v}(t, \mathbf{x}), \mu \rangle = \sum_{k} \langle \mathcal{L}_{f_{k}} \mathbf{v}(t, \mathbf{x}), \mu_{k} \rangle$$

Switched LTI Impulse Response

Impulse response, switching between 2 linear systems



Discrete-Time Dynamics

Discrete-Time System

Transition dynamics $x_{t+1} = f(x_t), \quad \forall t = 0, \dots, T-1$

Liouville equation

$$\langle \mathbf{v}(\mathbf{x}), \mu_{\mathbf{p}} \rangle = \langle \mathbf{v}(\mathbf{x}), \mu_{\mathbf{0}} \rangle + \langle \mathbf{v}(f(\mathbf{x})) - \mathbf{v}(\mathbf{x}), \mu \rangle \qquad \forall \mathbf{v}$$

Liouville with uncertainty $x_{t+1} = f(x_t, \theta, w_t)$

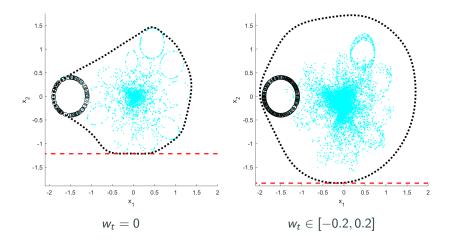
$$\langle \mathbf{v}(\mathbf{x}, \mathbf{\theta}), \mu_{\mathbf{p}} \rangle = \langle \mathbf{v}(\mathbf{x}, \mathbf{\theta}), \mu_{\mathbf{0}} \rangle + \langle \mathbf{v}(f(\mathbf{x}, \mathbf{\theta}, \mathbf{w})) - \mathbf{v}(\mathbf{x}), \mu \rangle \quad \forall \mathbf{v}$$

Finite terminal time constraint

$$T \ge \langle 1, \mu \rangle$$

Discrete-Time Example

Discrete dynamics with switching and time-dependent uncertainty



Conclusion

Extended peak estimation to problems with uncertainty

Time-independent, time-dependent, and switching processes

Continuous-time and discrete-time dynamics

National Science Foundation (NSF)

Air Force Office of Scientific Research (AFOSR)

Artificial and Natural Intelligence Toulouse Institute (ANITI)

Czech Science Foundation (GACR)

Marie Sklodowska-Curie Actions (POEMA)

The Audience

Code: http://github.com/jarmill/peak