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Background



Motivating Example 1

Context: Robotics, Biomechanics, Ergonomics

Box-Lifting Problem

minimize  f(6, Joint trajectory)
Joint trajectory
subject to Dynamics %@ =

Joint limits “‘

Torque limits ==
Collision avoidance
Stability

Boundary conditions



Motivating Example 2

Context: Biomechanics, Rehabilitation

Force-Sharing Problem

minimize (6, Muscle forces)
Muscle forces

subject to Force limits

Consistent joint f
Ty ry Tz 0 0 0

moments [Z B I A H

fa . Joint Muscle moment-arms Muscle

fa torques matrix forces



Inverse Optimization

X" € argmin, .y f(x)

Type ‘ Given  Desired
Direct Optimization f(-), X x*
Constraint Discovery f(-), x* X
Inverse Optimization | x*, X f(-)



Convex combination of basis

Assumption 1: with basis 7 = {f;}7", of (convex, C*) cost
functions

Problem 1: Feasibility

C{ienAdm y € argmin,y f,(x)

Problem 2: Distance
* . o 2
pr=min [ly —x|l3

Ja € A" | x € argmin, cx fo(X)



Bounding distance

Is basis 7 = {f;}_; not good enough?

Option 1: Run global optimization on the non-convex bilevel

distance problem.

Option 2: Find the lower bound on the distance using convex
SDP.

Allows only to discard basis sets, not validate them.



Unconstrained



Unconstrained setting

Basis functions f; are strongly convex and C*.
Ground set (x,a) € W =R" x A"
Optima Sets
G ={(x,a) € W| V£ (x) =0}
G =16

Projection Problem

p*= min [ly — |3
(x,2)€G

Mapping representation (continuous surjection)

kA" — G k(o) = x = argmin, cpn fo(x)



G quadratic example

G is compact and path-connected.

fi(x) = %(X —x) " Qj(x — xj), Qi € S4+

Unconstrained set of global optima G
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Constrained




Constrained Setting

Each f; weakly convex.

X ={x € R"| Aegx = beg, gk(x) <0Vk =1.r}
Assuming Slater’s condition holds

Ix' € R" | AegX' = b, gu(x') <0Vk=1.r



KKT Conditions

Necessary and sufficient for optimality

X = arg min,, cgn fo(x")
—
JAeRP, JueR":

Vifa(X) + ALX + 3011 1k Vigi(x) = 0
AegX = b
g(x) <0, uy >0  Vk=1.n

> hkgk(x) = 0.
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Optimal Sets (Constrained)

Ground set
We=R"x A" x R x RY

Constrained-optimal sets
G = {(x, a, 1, \) € W | KKT conditions (prev.) hold}
gc _ 7_(_xg\c

Projection Problem

p*= min

(x,0,1,0)€GC

y = x|l3.

Mapping representation
kS AT = G€ k() ={x € X | x = argmin,cx f(x)}
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G¢ quadratic example

fi(x) = %(X —x)" Qj(x — xj), Q €Sy

gk(X) = aka — bk

Sets of unconstrained and constrained global optima G and G
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Solving




Upper Bounds

Upper bounds: local search

Unconstrained (continuous)
Fe) = lly = 2y s Q) (22 csei)ll3
Constrained (discontinuous)

k(@) = argmin, .y Y57 xT o Qix/2 + ajp] x

Fé(a)= min lly —xI3

monitor N(Z ; Q)
=1
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Unconstrained Lower Bounds

(x,a) eW = M=[1lxd][l xa]" €Sy

Mll Mlx Mla
M = Mxl Mxx an
Mal Max Maa
ly = x5+ > My, = 2yiMy) + Iy 13
i=1
Z;n:l Majl =1

My >0 Vji=1.m
Vifa(x) ZJm=1 QjMya; — (Qf)gf)Mlaj =0
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Valid inequalities

M1 = ZJ'":l Ma,o; Vi=1.m
Mao; > 0 Vi#j
Mao; < @iy Moo, < Vi
M0, < Miq, Vi=1.m
My,a; < 1/4 Vi # .
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Constrained Lower Bounds

(x,a,)\,u) cWwe — M= [1 X v u][l X Qv ’LL]T € Sitntmtr

but affine \ does not enter the moment matrix.

Express KKT conditions through the moment matrix.

Add additional valid inequalities.
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Projection unconstrained example

fi(x) =3(x—x)TQi(x —x),  Q €Sy

Projection of a random point onto unconstrained set of global optima G
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G = {z|Vans} y ProjGM  —-—-LMI
o s — Projg(y) - Keshavaraz
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Projection constrained example

(x) = 2(x —x)TQi(x — x),  Q €Sy

gk(X) = aka — bk

Projection of a random point onto constrained set of global optima G*
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Extensions




Max-Representable Functions

Let f;(x) = maxec1...; wie(x) for L; finite, w;, convex.

Convexity preserved over (pointwise) maxima

Cast unconstrained projection as lifted constrained problem
. m
f* = min -1 aifi(x)
f*= min T
xeX, TeRM ZJ:]' /
ajwi(x) <7 Ve=1.L;, j=1.m.

Can now handle piecewise-affine costs

19



Projection onto Local Minima

Nonconvex functions f;(x)
Distance between y and a local minimum of £,(x)?
Unconstrained: V2f,(x) = 0

Constrained: harder, Hessian form positive over critical cone
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Take-aways




Conclusion

Minimize distance to global optima
Solve: local search, LMI + valid constraints

Handle max-representable piecewise functions
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Analyze continuity properties
Perform POP

Project onto local minima

Discover good cost candidates f;
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Thank you for your attention

http://github.com/jarmill/inverse_optimal


http://github.com/jarmill/inverse_optimal
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