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Background



Motivating Example 1

Context: Robotics, Biomechanics, Ergonomics

Box-Lifting Problem

minimize
Joint trajectory

f (θ, Joint trajectory)

subject to Dynamics

Joint limits

Torque limits

Collision avoidance

Stability

Boundary conditions
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Motivating Example 2

Context: Biomechanics, Rehabilitation

Force-Sharing Problem

minimize
Muscle forces

f (θ,Muscle forces)

subject to Force limits

Consistent joint

moments
ଵ

ଶ

ଷ

ଵଵ ଵଶ

ଶଶ ଶଷ ଶସ

ଷସ ଷହ

ଵ

ଶ

ଷ

ସ

ହ

ଵ ଶ

ଶ
ଷ

ସ
ସ

ହ

Muscle moment-arms
matrix

Joint 
torques

Muscle 
forces

3



Inverse Optimization

x∗ ∈ argminx∈X f (x)

Type Given Desired

Direct Optimization f (·), X x∗

Constraint Discovery f (·), x∗ X

Inverse Optimization x∗, X f (·)

4



Convex combination of basis

Assumption 1: with basis F = {fj}mj=1 of (convex, C 1) cost

functions

fα(x) =
m∑
j=1

αj fj(x), α ∈ ∆m

Problem 1: Feasibility

find
α∈∆m

y ∈ argminx∈X fα(x)

Problem 2: Distance

p∗ = min
x∈X

∥y − x∥22

∃α ∈ ∆m | x ∈ argminx ′∈X fα(x
′)
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Bounding distance

Is basis F = {fj}mj=1 not good enough?

Option 1: Run global optimization on the non-convex bilevel

distance problem.

Option 2: Find the lower bound on the distance using convex

SDP.

Allows only to discard basis sets, not validate them.
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Unconstrained



Unconstrained setting

Basis functions fj are strongly convex and C 1.

Ground set (x , α) ∈ W = Rn ×∆m

Optima Sets

Ĝ = {(x , α) ∈ W | ∇x fα(x) = 0}
G = πx Ĝ

Projection Problem

p∗ = min
(x ,α)∈Ĝ

∥y − x∥22

Mapping representation (continuous surjection)

κ : ∆m 7→ G κ(α) = x = argminx ′∈Rn fα(x
′)
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G quadratic example

G is compact and path-connected.

fj(x) =
1
2
(x − xj)

TQj(x − xj), Qj ∈ S++
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Constrained



Constrained Setting

Each fj weakly convex.

X = {x ∈ Rn | Aeqx = beq, gk(x) ≤ 0 ∀k = 1..r}

Assuming Slater’s condition holds

∃x ′ ∈ Rn | Aeqx
′ = b, gk(x

′) < 0 ∀k = 1..r
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KKT Conditions

Necessary and sufficient for optimality

x = argminx ′∈Rn fα(x
′)

⇐⇒
∃λ ∈ Rp, ∃µ ∈ Rr :

∇x fα(x) + AT
eqλ+

∑r
k=1 µk∇xgk(x) = 0

Aeqx = b

gk(x) ≤ 0, µk ≥ 0 ∀k = 1..n∑
k µkgk(x) = 0.
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Optimal Sets (Constrained)

Ground set

Wc = Rn ×∆m × Rr
+ × Rq

Constrained-optimal sets

Ĝc = {(x , α, µ, λ) ∈ Wc | KKT conditions (prev.) hold}
Gc = πx Ĝc

Projection Problem

p∗ = min
(x ,α,µ,λ)∈Ĝc

∥y − x∥22.

Mapping representation

κc : ∆m ⇒ Gc κc(α) = {x ∈ X | x = argminx ′∈X fα(x
′)}
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Gc quadratic example

fj(x) =
1
2
(x − xj)

TQj(x − xj), Qj ∈ S++

gk(x) = aTk x − bk
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Solving



Upper Bounds

Upper bounds: local search

Unconstrained (continuous)

F (α) = ∥y − (
∑m

j=1 αjQj)
−1(

∑m
j=1 αjφj)∥22

Constrained (discontinuous)

κc(α) = argminx∈X
∑n

j=1 x
TαjQjx/2 + αjφ

T
j x

F c(α) = min
x∈κc (α)

∥y − x∥22

monitor N (
m∑
j=1

αjQj)
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Unconstrained Lower Bounds

(x , α) ∈ W 7→ M = [1 x α][1 x α]T ∈ S1+n+m
+

M =

M11 M1x M1α

Mx1 Mxx Mxα

Mα1 Mαx Mαα



∥y − x∥22 7→
n∑

i=1

(Mxixi − 2yiM1xi ) + ∥y∥22

α ∈ ∆m 7→


∑m

j=1Mαj1 = 1

Mαj1 ≥ 0 ∀j = 1..m

∇x fα(x) 7→
∑m

j=1QjMxαj
− (Qjx

f
j )M1αj

= 0
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Valid inequalities

Mαi1 =
∑m

j=1Mαiαj
∀i = 1..m

Mαiαj
≥ 0 ∀i ̸= j

Mαiαj
≤ αi , Mαiαj

≤ αj ∀i ̸= j

Mαiαi
≤ M1αi

∀i = 1..m

Mαiαj
≤ 1/4 ∀i ̸= j .
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Constrained Lower Bounds

(x , α, λ, µ) ∈ Wc 7→ M = [1 x α µ][1 x α µ]T ∈ S1+n+m+r

but affine λ does not enter the moment matrix.

Express KKT conditions through the moment matrix.

Add additional valid inequalities.
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Projection unconstrained example

fj(x) =
1
2
(x − xj)

TQj(x − xj), Qj ∈ S++
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Projection constrained example

fj(x) =
1
2
(x − xj)

TQj(x − xj), Qj ∈ S++

gk(x) = aTk x − bk
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Extensions



Max-Representable Functions

Let fj(x) = maxℓ∈1..Lj wjℓ(x) for Lj finite, wjℓ convex.

Convexity preserved over (pointwise) maxima

Cast unconstrained projection as lifted constrained problem

f ∗ =min
x∈X

∑m
j=1 αj fj(x)

f ∗ = min
x∈X , τ∈Rm

∑m
j=1 τj

αjwjℓ(x) ≤ τj ∀ℓ = 1..Lj , j = 1..m.

Can now handle piecewise-affine costs
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Projection onto Local Minima

Nonconvex functions fj(x)

Distance between y and a local minimum of fα(x)?

Unconstrained: ∇2
x fα(x) ≻ 0

Constrained: harder, Hessian form positive over critical cone
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Take-aways



Conclusion

Minimize distance to global optima

Solve: local search, LMI + valid constraints

Handle max-representable piecewise functions
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Future Work

• Analyze continuity properties

• Perform POP

• Project onto local minima

• Discover good cost candidates fj
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Thank you for your attention

http://github.com/jarmill/inverse_optimal
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