A Model of Heave Dynamics for Bagged Air Cushioned Vehicles

Jared Miller and Bahram Shafai

Northeastern University

- 1. Air Cushioned Vehicles
- 2. System Model
- 3. Dynamics Simulation
- 4. External Disturbances

Air Cushioned Vehicles

Air Cushioned Vehicle

Crafts supported by cushion of pressurized air Robust craft, can handle waves and rough terrain

Dynamics principles formulated by Sir Christopher Cockerell in 1955

Figure 1: US Navy LCAC

Paradigm Hyperloop

Team for SpaceX Hyperloop Competition (MUN, NEU, CNA)

Figure 2: Competition 2 Pod

Subsystems

(a) Levitation and Suspension subsystem (M = 909 kg)

(b) Air supply subsystem ($\dot{m}_{in} = 0.16 \text{ kg/s}$)

Pod Video Atmospheric Pressure

Pod Video Tube Pressure

Create full dynamic model for pod motion

Table 1: 6DOF of Pod motions

Translational

Heave Focus of Paper Surge External Propulsion Sway Spring/Mass Damper

Rotational

Roll	Out of Scope (3d)
Pitch	Out of Scope (3d)
Yaw	Spring Mass Damper

Figure 4: Credit to Jmvolc on Wikipedia 'Ship Motions'

System Model

Sowayan and Khalid Model (2013)

3 state open-skirted ODE model

- z: Craft Height
- ż: Vertical Speed
- p: Chamber Pressure

Figure 5: Image from [1]

Model Equations

Dynamics:

$$M\ddot{z} = (p - p_{atmo})A - Mg \tag{1a}$$

$$\dot{p} = \frac{\gamma RT}{A(z+d)} \left(\dot{m}_{in} - \dot{m}_{escape} - \frac{pA\dot{z}}{RT} \right)$$
(1b)

Arithmetic Expressions:

$$\dot{m}_{escape} = \frac{c_0 p Lz}{\sqrt{RT}} \sqrt{\frac{2\gamma}{\gamma - 1} \left(\left(\frac{p_{atmo}}{p}\right)^{\frac{2}{\gamma}} - \left(\frac{p_{atmo}}{p}\right)^{\frac{\gamma + 1}{\gamma}} \right)}$$
(1c)

Based on Bernoulli's Equation and Isentropic Expansion

Pod 2 in Atmosphere

- $\dot{m}^*_{in}=0.16$ kg/s, $z^*=0.12$ mm
- Equilibrium is unstable

Add porous bag to retain pressurized air (reduce \dot{m}_{escape}) Darcy (linear, [2]):

$$\dot{m}_{escape} \approx -\frac{\rho_{atmo}\kappa A_e}{\mu} \frac{\partial P}{\partial z}$$
 (2a)

Forchheimer (quadratic, [3]):

$$\rho_{atmo} \frac{\partial P}{\partial z} \approx \beta \left(\frac{\dot{m}_{escape}}{A_e}\right)^2 + \frac{\mu}{\kappa} \left(\frac{\dot{m}_{escape}}{A_e}\right)$$
(2b)

Escape area $A_e = Lz$

Dynamics:

$$M\ddot{z} = (p - p_{atmo})A - Mg \tag{3a}$$

$$\dot{p} = \frac{\gamma RT}{Az} (\dot{m}_{in} - \dot{m}_{escape} - \frac{pA\dot{z}}{RT})$$
(3b)

Arithmetic Expressions:

$$\rho_{atmo}\frac{\partial P}{\partial z} = \beta \left(\frac{\dot{m}_{escape}}{A_e}\right)^2 + \frac{\mu}{\kappa} \left(\frac{\dot{m}_{escape}}{A_e}\right)$$
(3c)

$$A_e = Lz \tag{3d}$$

$$\frac{\partial P}{\partial z} = \frac{p - p_{atmo}}{\ell} \tag{3e}$$

Darcy/Forchheimer Comparision (Linearization)

Figure 6: Forchheimer pulls leftmost pole from $-3.35 * 10^8$ to -14.8 rad/s

 $\dot{m}_{in}=0.16$ kg/s, $z^*_{
m darcy}=6.5$ nm, $z^*_{
m forch}=0.83$ mm

Darcy/Forchheimer (with Impulse Response)

Open Loop Stability in Atmosphere

Bilinear Sum-of-Squares optimization [4] Dynamics Taylor-expanded to 5th order

Figure 7: 1-sublevel set of V(x)

Dynamics Simulation

Pod Liftoff (atmosphere)

Pod Drop (atmosphere)

Pod Drop (tube)

Closed Loop System

Flow controllers are $G_{\overline{8}}^3$ pneumatic MPYE's from FESTO Have critical frequency of 65 Hz = 408.4 rad/s Add new state \dot{m}_{in} to system:

$$\ddot{m}_{in} = 408.4(\dot{m}_{in}^{\text{desired}} - \dot{m}_{in}) \tag{4}$$

Figure 8: Example of MPYE flow controller

Pod Drop LQR Control (tube)

19

External Disturbances

Track Profile

Dynamics:

$$M\ddot{z} = (P_{bag} - P_{atmo})A - Mg \tag{5a}$$

$$\dot{p} = \frac{\gamma RT}{A(z + w_{height})} (\dot{m}_{in} - \dot{m}_{escape} - \frac{P_{bag}A\dot{z}}{RT})$$
(5b)

Arithmetic Expressions:

$$\rho_{atmo}\frac{\partial P}{\partial z} = \beta \left(\frac{\dot{m}_{escape}}{A_e}\right)^2 + \frac{\mu}{\kappa} \left(\frac{\dot{m}_{escape}}{A_e}\right)$$
(5c)

$$A_e = L(z + w_{height}) + W w_{gap}$$
(5d)

$$\frac{\partial P}{\partial z} = \frac{p - p_{atmo}}{\ell} \tag{5e}$$

60 mph simulation

400 mph simulation

23

700 mph simulation

Breaks down in low pressure

Full model requires 4 skates, include pitch and roll

ODE approximation to Navier-Stokes

Neglects spatial pressure dependence

Ignores bag tearing effects

Hybrid contact dynamics

Couette/Poiseuille flow lowers outside pressure

Simple model of Air Cushion Vehicle

Stable in atmospheric pressure

Tendency towards instability at low pressure

References

- A. S. Sowayan and K. A. AlSaif, "Investigation of the heave dynamics of air cushion vehicles (acv): parametric and chaotic studies," *Latin American Journal of Solids and Structures*, vol. 10, no. 4, pp. 725–745, 2013.
- S. Whitaker, "Flow in porous media i: A theoretical derivation of darcy's law," *Transport in porous media*, vol. 1, no. 1, pp. 3–25, 1986.
- V. A. Jambhekar, "Forchheimer porous-media flow models-numerical investigation and comparison with experimental data," Master's thesis, Universität Stuttgart, Stuttgart, 11 2011.
 - A. Majumdar, A. A. Ahmadi, and R. Tedrake, "Control design along trajectories with sums of squares programming," in *Robotics and Automation (ICRA), 2013 IEEE International Conference on.* IEEE, 2013, pp. 4054–4061.